Electronic Supplemental Information.

References

Complete list of authors for reference 12:

Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C.
Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.
A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople,
Gaussian, Inc., Pittsburgh PA, (1998).

DFT calculations – geometry

DFT is a powerful tool in chemistry, which is able to treat a great variety of chemical species, including open-shell coordination compounds. We have evaluated the effect of basis set on the geometry and excitation energies, and have furthermore examined the relative stability of various possible spin states of $[Co(biur)_2]^-$.

The optimized structures of $[Co(biur)_2]^{-1}$ and $[Co(R, R-bn(biur)_2)]^{-1}$ are characterized in terms of Co-N distances and N-Co-N angles as shown in **Table S1**.

The Co-N bond lengths and angles obtained by DFT are in excellent agreement with the data available from crystal structure determinations of related compounds. The very short Co-N distances of ca. 1.85 Å illustrates the strong electron donating character of the ligand. There is a clear tendency for increasing bond length with increasing basis set size. In fact, the smallest basis set gives the best agreement with the crystallographic data in the case of the Co-N bond. The bond angles are in fair agreement, in particular for the TZV basis set, and this basis set was found to be the best suited for further calculations. While $[Co(biur)_2]^-$ is completely planar and of D_{2h} symmetry, the bridged compound, $[Co(R,R-bn(biur)_2)]^-$ was predicted to be slightly skewed with C₂ symmetry. As for $[Co(biur)_2]^-$, $[Co(R,R-bn(biur)_2)]^-$ at the UB3LYP/TZV level, were in fair agreement with the values from the crystal structure of $[Co(R,S-stien(biur)_2)]^-$, but with the same trend for slightly shorter Co-N bonds as seen in the non-bridged species. The N-Co-N angles are markedly affected by the presence of the bridge, but this change is well-predicted by the applied DFT method.

·	a)	a) a) b)		b)	a)	c)	
Level of theory / reference	UB3LYP/ UB3LYP/ UB3LYP/ UB3LYP/ 6- 6-31G* LanL2DZ TZV 311+G(d,2p) Birker, 1974		UB3LYP/TZV	Langkjær, 1985			
$\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$		R R´	= H = H		$ R = Ph \\ R' = H $	R = H R' = CH(Me)-CH(Me) = R'	R = H R' = CH(Ph)-CH(Ph) = R'
Co-N1 / Å	1.949 1.950 1.960		1 992	1.84(2)	1.866	1.846(3)	
Co-N2 / Å	1.040	1.657	1.800	1.002	1.83(2)	1.856	1.834(3)
N1-Co-N2 / °	90.37	90.96	90.45	90.16	90.5(9)	92.4	92.1(1)
N1-Co-N3 / °	89.63	89.04	89.55	89.84	89.5(9)	86.1	86.5(1)

Table S1. Comparison of geometric parameters for some Co(III) bisbiuretato compounds.

^{a)} DFT calculation, this study, ^{b)} Crystal structure, ref. 4, ^{c)} Crystal structure, ref. 6

DFT calculations – spin state

It is of interest to evaluate how DFT predicts the relative stability of spin states for unusual species, such as $[Co(biur)_2]^-$. It was found that the ${}^{3}B_{1g}$ state was the most stable, and vertical energy differences to ${}^{1}A_{g}$ and ${}^{5}A_{g}$ were $1.14 \,\mu m^{-1}$ and $1.75 \,\mu m^{-1}$ respectively. For singlet and quintet spin states geometry optimizations within the D_{2h} point group were carried out using the optimized geometry of the triplet as a starting point. The singlet converged with one minor imaginary vibrational frequency (-52.75 cm⁻¹), corresponding to a twisting of the two biuret planes. Attempts to optimize the geometry in a point group of lower symmetry resulted in non-converging wavefunctions, but it is plausible that a more stable singlet state with a more twisted or even D_{2d} symmetry can be attained. In a similar fashion the quintet spin state calculations yielded a converged geometry in D_{2h}, which had a single imaginary frequency (-44.72 cm⁻¹), again corresponding to a twisting of the biuret units. Upon changing the point group to D_{2d} a more stable geometry and electronic state was reached. **Table S2** summarizes the relative energies of the calculations of various spin states and geometries, all obtained using UB3LYP with the TZV basis set.

Table S2: Relative energy of low	w, intermediate and high	n spin states of [Co(biur) ₂] ⁻ at
the UB3LYP/TZV level.		

Point group		D _{2d}				
Electronic state	${}^{3}\mathbf{B}_{1g}$	${}^{1}A_{1g}$		${}^{5}A_{1g}$		${}^{5}A_{2}$
Geometry	Optimized	Vertical Optimized		Vertical	Optimized	Optimized
Energy / kJ mol ⁻¹	0.00	152 136		221	164	87.3
Energy / µm ⁻¹	0.00	1.27	1.14	1.85	1.37	0.73

Time-dependent DFT and electronic spectra

The effect of basis set on TD- DFT excitation energies is illustrated by examining the six lowest transitions in $[Co(biur)_2]$ as shown in **Table S3**.

Table S3: Effect of basis set fo	r various TD-	-UB3LYP calculations a	at different
geometries. Transition energies	are given in	μm^{-1} for the six lowest of	excited states.
	T 1 1 1 1	1	

Basis set		Excited state number:							
Geometry	TD-DFT	1	2	3	4	5	6		
6-31G* 6D	6-31G* 5D	0.749	0.797	1.38	1.55	2.21	2.32		
6-31G* 6D	TZV	0.656	0.712	1.30	1.46	2.11	2.20		
6-31G* 6D	6-311++G**	0.654	0.712	1.30	1.47	2.08	2.16		
6-311++G**	6-311+G*	0.614	0.670	1.27	1.41	2.02	2.09		
TZV	TZV	0.637	0.690	1.28	1.44	2.04	2.14		

The data in **Table S3** shows that increasing the basis set leads to lower excitation energies. The results at the TZV level are very close to the $6-311++G^{**}$ calculations, the latter basis set requiring much longer computational resources. A TD calculation was also performed at the $6-311+G^*$ level on a $6-311++G^{**}$ geometry, yielding values that confirm the trend for lower excitation energies with a larger basis set, although the values cannot be directly compared due to the difference in geometry.

Finally, a TD-UB3LYP/TZV was performed on a UB3LYP/TZV geometry resulting in excitation energies which are comparable to the values obtained with larger basis sets, but requiring less computational resources. Thus, we find that the TZV basis is a suitable choice for further studies, and it is possible to add a polarization function by requesting the TZVP basis set in the Gaussian software.

DFT results with Pople basis sets

Table S4 contains characterization of the obtained Kohn-Sham molecular orbitalsfrom a UB3LYP/ $6-311+G^*$ calculation on $[Co(biur)_2]$

Table S4. Characterization of Kohn-Sham (KS) β -orbitals and their eigenvalues in $[Co(biur)_2]^-$ at the UB3LYP/ 6-311+G* level (UB3LYP/6-311+G(d, 2p) level geometry). Both α and β orbitals up to number 65 are occupied, while 66 α and 67 α are the singly occupied KS orbitals. For the most part α and β orbitals are occurring in pairs of similar nature, while there is a difference in the eigenvalues of the α and β KS orbitals. Here results are only shown for β KS orbitals.

β orbital	type	repr.in D _{2h}	Explanation	E/au	E/µm⁻¹
82	Z	b _{1u}	4p _z mix	0.17180	3.770
81	х	b _{3u}	4p _x mix	0.15695	3.445
80	x^2+y^2	a _g	4s mix	0.15600	3.424
79	У	b _{2u}	L sigma	0.15528	3.408
78	yz	b _{3g}	7π	0.15274	3.352
77	z ²	ag		0.14376	3.155
76	ху	b _{1g}	mainly Lo	0.14218	3.120
75		au	6π	0.13199	2.897
74	ZX	b _{2g}	6π	0.12621	2.770
73	Z	b _{1u}	7π	0.12371	2.715
72	У	b _{2u}	mainly Lo	0.12211	2.680
71	У	b _{2u}	mainly Lo	0.10889	2.390
70	х	b _{3u}	mainly Lo	0.10881	2.388
69	z^2-x^2	a _g	mainly Lo	0.07763	1.704
68	ху	b _{1g}	3d mix	0.06700	1.470
67	yz	b _{3g}	3d mix	-0.00346	-0.076
66	ZX	b _{2g}	3d mix	-0.00930	-0.204
65		a _u	4π	-0.13799	-3.028
64	X	b _{3u}	mainly Lo	-0.15240	-3.345
63	ху	b _{1g}	mainly Lo	-0.15764	-3.460
62	z	b _{1u}	5π	-0.16667	-3.658
61	yz	b _{3g}	5π	-0.16714	-3.668
60	У	b _{2u}	mainly Lo	-0.17095	-3.752
59	ZX	b _{2g}	4π	-0.17428	-3.825
58	z	b _{1u}	3π	-0.17552	-3.852
57	z ²	a _q	3d mix	-0.17469	-3.834
56	yz	b _{3q}	3π	-0.17620	-3.867
55	y ² -z ²	a	3d mix	-0.19314	-4.239
54	x ²	a	3d mix	-0.20715	-4.546
53	x	b _{3u}	bonding	-0.25151	-5.520
52	v	b ₂₁₁	bonding	-0.28424	-6.238
51		a	2π	-0.29094	-6.385
50	xv	b _{1a}	bonding	-0.29052	-6.376
49	zx	b _{2a}	2π	-0.29512	-6.477
48	z ²	a	mainly Lo	-0.32081	-7.041
47	x	b _{3u}	mainly Lo	-0.33557	-7.365
46	v	b ₂₁₁	mainly Lo	-0.33583	-7.370
45	xy	b _{1a}	mainly Lσ	-0.34547	-7.582
44	yz	b _{3a}	1π	-0.34702	-7.616
43	z	b _{1u}	1π	-0.34757	-7.628
42		aa	mainly Lo	-0.35820	-7.861
41	у	b _{2u}	mainly Lo	-0.36173	-7.939

Transition λ / nm $\Delta E/\mu m^{-1}$ dom. leav.orb dom. A. orb. State ³B_{1g} 0 $Z^2 \rightarrow ZX$ 1628 54b ag 66b b2q ³B_{3q} 0 0.614 1 z² →yz 1492 67b b3g $^{3}B_{2q}$ 0 0.670 2 55b ag ${}^{3}B_{3g}$ $X^2 \rightarrow ZX$ 790 54b ag 0 1.266 3 66b b2g 709 54b ag ${}^{3}\mathsf{B}_{2q}$ 0 $X^2 \rightarrow VZ$ 1.410 4 67b b3g 4π→zx 5 496 65b au 66b b2g ³B_{3u} 0.0718 2.016 ${}^{3}B_{2u}$ 6 478 65b au 67b b3g 0.0242 4π→yz 2.092 ${}^{3}A_{g}$ 3π→zx 7 451 56b b3g 66b b2g 0 2.217 ${}^{\overline{3}}\mathsf{B}_{3g}$ 0 8 444 67a b3g 68a b1g yz→xy 2.252 430 56b b3g 66b b2g $^{3}A_{a}$ 0 3π→zx 2.326 9 ${}^{3}\mathsf{B}_{2g}$ 0 10 426 66a b2g 2.347 68a b1g zx→xy ${}^{3}B_{1g}$ 11 415 0 2.410 59b b2g 66b b2g 12 0 415 64b b3u $^{3}A_{u}$ 2.410 66b b2g $^{3}A_{g}$ 13 405 54b ag 68b b1g 0 2.469 14 ${}^{3}A_{q}$ 0 399 59b b2g 2.506 67b b3g ${}^{3}B_{2g}$ 15 0 399 63b b1g 66b b2g 2.506 16 392 ³B_{1u} 0 2.551 64b b3u 67b b3g ${}^{3}\mathsf{B}_{3g}$ 17 380 0 2.632 63b b1g 67b b3g 18 379 ³B_{3u} 3π→zx 2.639 58b b1u 66b b2g 0.0152 ${}^{\bar{3}}\mathsf{B}_{1g}$ 19 2.740 365 56b b3q 67b b3q 0 3π→yz 20 361 58b b1u 67b b3g $^{3}\mathsf{B}_{3u}$ 0.0395 2.770 4π→xy 21 361 65a au 68a b1g ³A_u 0.0003 2.770 22 357 60b b1g 66b b2q ${}^{3}\mathsf{B}_{2a}$ 0 2.801 23 355 62b b1u ${}^{3}\mathsf{B}_{3u}$ 0.014 5π→zx 2.817 66b b2g ${}^{3}A_{g}$ 24 354 61b b3g 0 2.825 66b b2a 25 ³Β_{3α} 0 341 60b b1g 67b b3g 2.933 26 5π→yz 339 62b b1u 67b b3g ³B_{3u} 0.0005 2.950 27 ${}^{3}B_{1g}$ 339 61b b3g 67b b3g 0 2.950 28 56a ag $^{3}A_{g}$ 3.106 322 0 68a b1g 29 3.125 320 57b ag 66b b2q ³B_{3q} 0 4π→yz 30 311 68a b1g ³B_{2u} 3.215 64a b3u 0.1631 ${}^{3}B_{2g}$ 31 57b ag 304 67b b3g 0 3.289 32 297 $^{3}A_{q}$ 0 3.367 59a ag 68a b1g 33 $^{3}B_{1g}$ 0 295 68a b1g 3.390 63a b1g 34 291 ³B_{1u} 3.436 58a b1u 68a b1g 0 35 ${}^{3}\mathsf{B}_{2u}$ 286 62a b2u 68a b1g 0.0437 Lσ→yz 3.497 4π→xy 36 284 65b au 68b b1g $^{3}A_{u}$ 0.0005 3.521 37 281 60a b3g ³B_{3a} 0 3.559 68a b1g ³B_{1u} 38 281 61a b1u 0 3.559 68a b1g 39 262 56b b3g 68b b1g ³B_{3q} 0 3.817 40 257 $^{3}B_{2g}$ 0 59b b2g 3.891 68b b1g $^{3}B_{1g}$ 41 256 59a 0 4.840 68a b1g

Table S5. Characterization of the 20 lowest lying transitions in [Co(biur)2]-. Level of theory: UB3LYP/ $6-311+G^*$

42	240	64b b3u	68b b1g	³ B _{3u}	0.09	σCT	5.163
43	240	65b au	69b ag	³ B _{1u}	0		5.173
44	238	53b	66b b2g	³ B _{1u}	0		5.218
45	237	58b b1u	68b b1g	³ B _{1u}	0		5.241
46	235	63b b1g	68b b1g	³ A _g	0		5.270
47	234	67a b3g	69a	³ B _{2g}	0		5.308
48	231	53b b3u	67b b3g	³ B _{1u}	0		5.356
49	229	66a b2g	69a	³ B _{3g}	0		5.414
50	227	54a	68a b1g	³ B _{2g}	0		5.458
51	227	65a au	69a ag	³ B _{1u}	0		5.466
52	226	52a	68a b1g	³ B _{1g}	0		5.487
53	224	65a au	72a b3g	³ B _{2u}	0.007	6π→7π	5.525
54	223	65b au	75b au	³ B _{1g}	0		5.559
55	223	62b b1u	68b b1g	³ B _{1u}	0		5.563
56	223	61b b3g	68b b1g	³ B _{3g}	0		5.564
57	223	60b b1g	68b b1g	³ B _{2u}	0.016	σCT	5.568
58	221	64a b3u	69a ag	³ B _{2u}	0.0002	σCT	5.561
59	219	64b b3u	69b ag	³ B _{2u}	0.0193	σCT	5.654
60	215	63b b1g	69b ag	³ B _{1g}	0		5.756
61	215	63b b1g	69b ag	³ B _{1g}	0		5.778
62	212	63a	69a	³ B _{1g}	0		5.835
63	212	65b au	70b	³ B _{2g}	0		5.846
64	212	67a b3g	75a au	³ B _{2u}	0.0025	yz→6π	5.858
65	210	64a b3u	72a b3g	³ B _{1u}	0		5.899
66	210	63a	72a b3g	³ B _{2g}	0		5.911
67	207	62b b1u	69b ag	³ B _{1u}	0		5.985
68	207	65b au	71b	³ B _{3g}	0		5.986
69	207	57b ag	68b b1g	³ B _{1g}	0		6.004
70	206	61b b3g	69b ag	³ B _{2g}	0		6.021
71	205	66a b2g	70a	³ B _{1u}	0.0001	zx→L CT	6.042
72	205	50b b1g	66b b2g	³ B _{2g}	0		6.051
73	204	62a	69a	³ B _{3u}	0.0212	σL→σ*	6.075
74	204	55a b1u	68a b1g	³ B _{1u}	0.0793	σCT	6.086
75	204	60a b3g	69a ag	³ B _{2g}	0		6.087
76	203	67a b3g	70a b3u	³ B _{1u}	0		6.095
77	203	61a b1u	69a ag	³ B _{1u}	0.0001	σCT	6.106
78	202	52b b2u	66b b2g	³ B _{1u}	0		6.131
79	202	60b b2u	69b ag	³ B _{3u}	0.0691		6.131
80	202	50b b1g	67b b3g	³ B _{3g}	0		6.137
81	201	57b ag	69b ag	³ B _{1g}	0		6.143
82	201	67a b3g	72a b3g	³ B _{1g}	0		6.168
83	201	58b b1u	69b ag	³ B _{1u}	0.0105		6.173
84	199	59b b2g	69b ag	³ B _{3g}	0		6.222
85	199	56b b3g	69b ag	³ B _{2g}	0		6.240
86	199	64b b1g	74b b2g	³ B _{1u}	0.0001		6.241

87	199	ag	69a ag	³ A _g	0		6.245
88	198	65a au	70a b3u	³ B _{2g}	0		6.254
89	198	67a b3g	71a b2u	³ B _{1u}	0.0042	yz→Lσ	6.262
90	197	67a b3g	75a au	³ B _{2u}	0.0051	yz→6π	6.303
91	196	64b b3u	76b b1g	³ B _{2u}	0		6.310
92	196	59a ag	72a b3g	³ B _{3g}	0		6.314
93	196	66a b2g	71a b2u	³ A _u	0		6.325
94	196	62a b2u	72a b3g	³ A _u	0		6.336
95	195	52b b2u	67b b3g	³ B _{1u}	0.0002		6.361
96	195	65b au	73b b1u	³ A _g	0		6.361
97	195	65a au	71a b2u	³ B _{3g}	0		6.371
98	194	65b au	72b b2u	³ A _u	0		6.384
99	193	64a b3u	71a b2u	³ B _{1g}	0		6.408
100	193	64b b3u	70b b3u	³ A _g	0		6.436