Supplementary information:

Theoretical investigation of paramagnetic group 13 diazabutadiene radicals: Insights into the prediction and interpretation of EPR spectroscopy parameters

Heikki M. Tuononen^{*a} and Andrea F. Armstrong^b

^a Department of Chemistry, University of Jyväskylä
 P.O. Box 35, FIN-40014 Jyväskylä, Finland
 E-mail: <u>hetuonon@cc.jyu.fi</u>
 Tel: +358-14-260-2613
 Fax: +358-14-260-2501

^b Department of Chemistry, McMaster University
1280 Main St. W., Hamilton, Ontario, Canada L8S 4M

(R–DAB)MX ₂ •	R	М	14 N	$^{1}\mathrm{H}$	Х
$M = {}^{27}Al$	Н	-6.9	2.9	-7.1	8.3
$X = {}^{19}F$	Me	-7.5	3.7	-6.2	8.8
	^t Bu	-7.4	3.7	-6.3	9.7
	Ph	-7.1	3.6	-6.7	8.3
$\mathbf{M} = {}^{27}\mathrm{Al}$	Н	-7.4	3.0	-7.1	1.5
$X = {}^{35}Cl$	Me	-8.1	3.7	-6.2	1.5
	^t Bu	-8.2	3.8	-6.2	1.6
	Ph	-7.7	3.6	-6.7	1.4
$\mathbf{M} = {}^{27}\mathrm{Al}$	Н	-7.6	3.0	-7.0	5.7
$X = {}^{79}Br$	Me	-8.2	3.8	-6.2	6.2
	^t Bu	-8.4	3.8	-6.2	7.1
	Ph	-7.8	2.7	-6.7	5.5
$\mathbf{M} = {}^{27}\mathrm{Al}$	Н	-8.2	3.0	-6.9	6.3
$\mathbf{X} = {}^{127}\mathbf{I}$	Me	-8.7	3.8	-6.1	7.3
	^t Bu	-8.9	3.9	-6.1	10.0
	Ph	-8.4	3.7	-6.6	6.8
$M = {}^{69}Ga$	Н	-23.2	3.4	-7.0	8.0
$X = {}^{19}F$	Me	-25.4	4.2	-6.0	8.6
	^t Bu	-25.2	4.2	-6.1	9.7
	Ph	-24.1	4.1	-6.6	8.0
$M = {}^{69}Ga$	Н	-22.8	3.5	-6.8	1.5
$X = {}^{35}Cl$	Me	-24.9	4.3	-5.9	1.5
	^t Bu	-25.2	4.4	-6.0	1.7
	Ph	-23.6	4.2	-6.5	1.4

Table S1 Calculated hyperfine coupling constants of monocyclic group 13 diazabutadiene radicals 6- $\mathbf{M}^{\mathbf{R}}_{\mathbf{X}}{}^{a}$

Table S1 Continued

(R–DAB)MX2•	R	М	14 N	$^{1}\mathrm{H}$	Х
$M = {}^{69}Ga$	Н	-22.9	3.6	-6.8	6.0
$X = {}^{79}Br$	Me	-25.0	4.3	-5.9	6.5
	^t Bu	-25.3	4.5	-5.9	7.5
	Ph	-23.6	4.3	-6.4	5.8
$M = {}^{69}Ga$	Н	-23.9	3.6	-6.7	8.3
$\mathbf{X} = {}^{127}\mathbf{I}$	Me	-25.5	4.4	-5.8	9.1
	^t Bu	-25.8	4.5	-5.8	11.9
	Ph	-24.2	4.3	-6.3	8.9
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	-35.7	3.7	-6.6	5.2
$X = {}^{19}F$	Me	-39.6	4.6	-5.7	5.3
	^t Bu	-39.2	4.5	-5.8	6.1
	Ph	-37.3	4.5	-6.2	4.9
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	-32.1	3.8	-6.6	1.0
$X = {}^{35}Cl$	Me	-35.8	4.7	-5.6	1.0
	^t Bu	-36.5	4.6	-5.7	1.1
	Ph	-33.7	4.6	-6.2	1.0
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	-30.6	3.8	-6.6	4.5
$X = {}^{79}Br$	Me	-33.9	4.7	-5.6	4.6
	^t Bu	-34.7	4.7	-5.7	5.1
	Ph	-31.6	4.6	-6.2	4.1
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	-29.0	3.9	-6.5	6.6
$\mathbf{X} = {}^{127}\mathbf{I}$	Me	-31.8	4.7	-5.3	7.2
	^t Bu	-32.8	4.7	-5.7	8.9
	Ph	-29.8	4.6	-6.1	7.0

 \overline{a} Values reported in Gauss (1G = 0.1mT).

[(R–DAB)MX] ₂ **	R	М	14 N	$^{1}\mathrm{H}$	Х
$M = {}^{27}Al$	Н	5.5	1.6 / 1.9	-3.8 / -3.9	14.0
$\mathbf{X} = {}^{19}\mathbf{F}$	Me	2.8	2.0 / 2.3	-3.1 / -2.7	13.2
	^t Bu	5.3	2.1 / 2.3	-3.0 / -2.7	14.4
	Ph	4.3	1.8 / 2.1	-2.4 / -2.6	9.2
	Ph (C_{2h})	0.7	1.9	-2.9	10.0
$M = {}^{27}Al$	Н	5.9	1.6 / 1.9	-3.8 / -3.9	2.1
$X = {}^{35}Cl$	Me	3.5	2.0 / 2.3	-3.1 / -2.7	1.9
	^t Bu	5.1	2.2 / 2.3	-3.0 / -2.7	2.1
	Ph	4.5	1.9 / 2.0	-2.4 / -2.5	1.3
	$\mathrm{Ph}\left(C_{2\mathrm{h}}\right)$	1.3	1.9	-2.9	1.4
$\mathbf{M} = {}^{27}\mathrm{Al}$	Н	6.1	1.5 / 1.9	-3.8 / -3.9	9.2
$X = {}^{79}Br$	Me	3.9	2.0 / 2.3	-3.1 / -2.7	8.9
	^t Bu	5.2	2.2 / 2.3	-3.0 / -2.7	9.3
	Ph	4.7	1.89/ 2.0	-2.4 / -2.5	5.1
	Ph (C_{2h})	1.7	1.9	-2.9	5.9
$\mathbf{M} = {}^{27}\mathrm{Al}$	Н	6.3	1.6 / 1.9	-3.8 / -3.9	11.5
$\mathbf{X} = {}^{127}\mathbf{I}$	Me	4.1	2.0 / 2.3	-3.1 / -2.7	11.3
	^t Bu	5.3	2.1 / 2.3	-3.0 / -2.7	13.2
	Ph	4.2	1.8 / 2.0	-2.3 / -2.5	5.1
	Ph (C_{2h})	1.8	1.9	-2.9	6.7
$M = {}^{69}Ga$	Н	7.3	1.8 / 2.0	-3.9 / -4.0	12.6
$X = {}^{19}F$	Me	4.0	2.3 / 2.5	-3.1 / -2.6	12.4
	^t Bu	8.1	2.3 / 2.5	-3.0 / -2.7	13.4
	Ph	4.3	1.8 / 2.1	-2.4 / -2.6	9.1
	Ph (C_{2h})	-1.0	2.1	-2.9	9.5
$M = {}^{69}Ga$	Н	10.6	1.9 / 2.1	-3.9 / -4.0	2.0
$X = {}^{35}Cl$	Me	7.1	2.3 / 2.6	-3.0 / -2.6	1.9
	^t Bu	10.3	2.4 / 2.5	-3.0 / -2.6	2.0
	Ph	6.0	1.9 / 2.2	-2.3 / -2.6	1.2
	Ph (C_{2h})	1.7	2.1	-2.8	1.4

Table S2 Calculated hyperfine coupling constants of dimeric group 13 diazabutadiene diradicals 7- M_{X}^{R}

Table S2 Continued

[(R–DAB)MX]2**	R	М	14 N	${}^{1}\mathrm{H}$	Х
$M = {}^{69}Ga$	Н	11.6	1.9 / 2.1	-3.9 / -4.1	8.3
$X = {}^{79}Br$	Me	8.3	2.4 / 2.6	-3.0 / -2.6	8.2
	^t Bu	10.9	2.4 / 2.5	-2.9 / -2.6	8.8
	Ph	6.3	1.9 / 2.1	-2.3 / -2.4	4.1
	Ph (C_{2h})	2.9	2.2	-2.8	5.6
$M = {}^{69}Ga$	Н	12.7	1.9 / 2.1	-3.9 / -4.0	10.4
$\mathbf{X} = {}^{127}\mathbf{I}$	Me	9.5	2.3 / 2.6	-3.0 / -2.6	10.3
	^t Bu	11.2	2.4 / 2.5	-3.0 / -2.6	12.5
	Ph	10.8	1.9 / 2.2	-2.3 / -2.6	4.6
	Ph (C_{2h})	3.6	2.1	-2.8	6.6
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	7.4	1.9 / 2.0	-3.9 / -4.0	8.1
$X = {}^{19}F$	Me	2.3	2.4 / 2.6	-2.6 / -2.9	7.6
	^t Bu	16.9	2.3 / 2.5	-2.6 / -2.9	10.7
	Ph	6.5	2.0 / 2.2	-2.2 / -2.7	5.1
	Ph (C_{2h})	4.3	2.2	-2.6	5.7
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	13.2	1.9 / 2.1	-3.9 / -4.0	1.4
$X = {}^{35}Cl$	Me	7.6	2.5 / 2.6	-2.6 / -2.9	1.3
	^t Bu	11.9	2.4 / 2.5	-2.6 / -2.9	1.5
	Ph	10.6	2.1 /2.3	-2.2 / -2.6	0.8
	$\mathrm{Ph}\left(C_{2\mathrm{h}}\right)$	4.3	2.2	-2.6	0.9
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	14.7	2.0 / 2.1	-3.9 / -4.0	5.6
$X = {}^{79}Br$	Me	9.4	2.5 / 2.6	-2.6 / -2.9	5.3
	^t Bu	18.8	2.1 / 2.3	-2.7 / -2.9	6.7
	Ph	12.5	2.3	-2.2 / -2.6	3.3
	$\mathrm{Ph}\left(C_{2\mathrm{h}}\right)$	5.7	2.0 / 2.1	-2.6	3.6
$\mathbf{M} = {}^{115}\mathbf{In}$	Н	17.8	2.0 / 2.1	-3.9 / -4.0	7.8
$\mathbf{X} = {}^{127}\mathbf{I}$	Me	12.1	2.5 / 2.6	-2.6 / -2.9	7.8
	^t Bu	20.1	2.4 / 2.5	-2.7 / -2.8	9.8
	Ph	15.9	2.2 / 2.3	-2.3 / -2.4	3.9
	Ph (C_{2h})	8.5	2.3	-2.6	4.5

 \overline{a} Values reported in Gauss (1G = 0.1mT).

Parameter	Al ^{Ph} _I Calc.	Al ^{Dipp} Exptl. ^b	Ga ^{tBu} I Calc.	Ga^{tBu} I Exptl. ^b	Ga ^{Ph} I Calc.	Ga^{Dipp}I Exptl. ^c	In ^{Ph} Cl Calc.	In ^{Dipp} Cl Exptl. ^d
r MN	1.918	1.889	1.965	1.931	1.971	1.945	2.164	2.193
r NC(1)	1.332	1.337	1.328	1.337	1.329	1.339	1.328	1.331
r NC(2)	1.421	1.445	1.475	1.488	1.418	1.437	1.418	1.439
r C(1)C(1*)	1.399	1.409	1.398	1.450	1.399	1.404	1.402	1.384
r MX	2.507	2.514	2.537	2.531	2.517	2.519	2.337	236.4
$\angle XMX^*$	116.2	110.8	115.1	109.3	117.1	112.3	117.5	111.5
\angle XMN	112.8	114.2	113.1	114.8	112.8	114.0	113.7	112.3
\angle MNC(1)	110.2	108.9	108.3	109.6	110.2	109.1	110.5	110.9
\angle NMN	85.7	87.4	85.8	87.1	84.0	85.7	78.5	77.0
\angle MNC(2)	129.5	130.5	130.9	129.6	128.6	129.2	129.0	128.6
\angle NC(1)C(1*)	116.9	116.7	118.8	116.9	117.8	117.6	120.2	119.8

Table S3 Calculated and experimental geometrical parameters of monocyclic group 13 diazabutadiene complexes $6-M^{R}_{X}{}^{a}$

^{*a*} Average values of experimental parameters are reported. ^{*b*} Reference 11e. ^{*c*} Reference 11d. ^{*d*} Reference 11h.

Parameter	Ga ^{tBu} I	Ga ^{tBu} I	Ga ^{Ph} Br	Ga ^{Dipp} Br	Ga ^{Ph} I	Ga ^{Dipp} I	In ^{Dipp} Cl	In ^{Dipp} Cl
	Calc.	Exptl. ^b	Calc.	Exptl. ^c	Calc.	Exptl. ^c	Calc.	Exptl. ^d
r MM*	2.433	2.423	2.454	2.466	2.462	2.576	2.742	2.727
r MX	2.618	2.617	2.377	2.374	2.586	2.586	2.387	2.409
r MN(1)	1.986	1.968	1.999	1.982	2.000	1.997	2.198	2.168
r MN(2)	1.997	1.966	-	-	-	-	-	-
r N(1)C(1)	1.327	1.334	1.331	1.343	1.332	1.336	1.330	1.324
r N(2)C(2)	1.328	1.322	-	-	-	-	-	-
r C(1)C(2)	1.397	1.395	1.392	1.385	1.391	1.411	1.394	1.410
r N(1)C(3)	1.475	1.483	1.405	1.434	1.405	1.445	1.399	1.444
r N(2)C(4)	1.472	1.484	-	-	-	-	-	-
\angle XMM*	119.4	115.2	112.5	113.2	112.3	113.8	114.9	118.8
\angle N(1)MN(2)	84.2	85.2	82.7	83.9	82.8	84.0	77.4	78.7
\angle N(1)MM	97.2	116.3	124.0	123.2	123.8	121.8	125.2	122.2
\angle N(2)MM	128.8	124.8	-	-	-	-	-	-
$\angle C(1)N(1)M$	115.4	109.0	109.6	134.2	109.6	109.9	110.1	110.2
$\angle C(2)N(2)M$	109.2	108.8	-	-	-	-	-	-
$\angle C(1)C(2)N(2)$	118.5	118.7	118.1	118.1	118.8	117.4	120.6	120.4
$\angle C(2)C(1)N(1)$	118.8	118.0	-	-	-	-	-	-
∠ MN(1)C(3)	130.0	131.2	129.7	131.0	129.8	131.8	128.4	130.2
\angle MN(2)C(4)	127.7	131.1	-	-	-	-	-	-
d XMM*X*	81.7	72.8	180.0	180.0	180.0	180.0	180.0	180.0

Table S4 Calculated and experimental geometrical parameters of dimeric group 13 diazabutadiene diradicals $7 \cdot M_{I}^{R}{}^{a}$

^{*a*} Average values of experimental parameters are reported. ^{*b*} Reference 11e. ^{*c*} Reference 11d. ^{*d*} Reference 11f.

