Supplementary Information for

Equilibrium and NMR spectroscopic studies on the gadolinium(III), yttrium(III), copper(II) and zinc(II) complexes formed with the DTPA-N,N''-bis(amide), -bis(n-butylamide) and -bis[bis(n-butylamide)] ligands. Kinetic stabilities of the gadolinium(III) complexes

Zoltán Jászberényi^[a], István Bányai^[b], Ernő Brücher^[a], Róbert Király^[a], Kálmán Hideg^[c], Tamás Kálai^[c]

^[a]University of Debrecen, Department of Inorganic and Analytical Chemistry, H-4010 Debrecen, Hungary

^[b]University of Debrecen, Department of Physical Chemistry, H-4010 Debrecen, Hungary

^[c]University of Pécs, Institute of Organic and Medicinal Chemistry, H-7602 Pécs, Hungary

- Figure S1 pH dependence of the relaxivities of the Gd^{3+} complexes [(1) GdL^2 , (2) GdL^1 , (3) GdL^0 , 25°C, [GdL] = 1×10⁻³ M, 9 MHz]
- Figure S2 ¹H (upper) and ¹³C NMR spectra of YL^0 complex. The bottom left spectrum shows the CO region while the CH₂ peaks are shown in the bottom right spectrum. T= 323 K, pH = 5.8 and c= 0.05 M in D₂O solution.
- Figure S3. ¹³C 2D EXSY NMR spectrum of YL⁰ complex. The carbonyl region is shown. T= 323 K, pH = 5.8 and c= 0.05 M in D₂O solution.
- Figure S4 Pseudo-first-order rate constants of the exchange reactions between GdL^1 (5×10⁻⁴ M) and Zn²⁺. [Zn²⁺]= 0.03 M (1), 0.02 M (2), 0.015 M) (3) and 0.01 M (4) (25 °C, 1.0 M KCl)
- Figure S5. Pseudo-first-order rate constants of exchange reactions between GdL^{0} (5×10⁻⁴ M) and Zn²⁺. [Zn²⁺]= 0.03 M (1), 0.02 M (2), 0.015 M (3) and 0.01 M (4) (25 °C, 1.0 M KCl)
- Figure S6. Pseudo-first-order rate constants of exchange reactions between GdL^{1} (2×10⁻⁴ M) and Cu²⁺. [Cu²⁺]= 6×10⁻³ M (1), 4×10⁻³ M (2), 2×10⁻³ M (3) and 1×10⁻³ M (4) (25 °C, 1.0 M KCl)
- Figure S7. Pseudo-first-order rate constants of exchange reactions between GdL^2 (5×10⁻⁴ M) and Zn²⁺. [Zn²⁺]= 0.03 M (1), 0.02 M (2), 0.015 M (3) and 0.01 M (4) (25 °C 1.0 M KCl)
- Figure S8. Pseudo-first-order rate constants of exchange reactions between GdL^2 (2×10⁻⁴ M) and Cu²⁺. [Cu²⁺]= 6×10⁻³ M (1), 4×10⁻³ M (2), 2×10⁻³ M (3) and 1×10⁻³ M (4) (25 °C, 1.0 M KCl)

Figure S1 pH dependence of the relaxivities of the Gd^{3+} complexes [(1) GdL^2 , (2) GdL^1 , (3) GdL^0 , 25°C, [GdL] = 1×10⁻³ M, 9 MHz]

Figure S2 ¹H (upper) and ¹³C NMR spectra of YL^0 complex. The bottom left spectrum shows the CO region while the CH_2 peaks are shown in the bottom right spectrum. T= 323 K, pH = 5.8 and c= 0.05 M in D₂O solution.

Figure S3. ¹³C 2D EXSY NMR spectrum of YL^0 complex. The carbonyl region is shown. T= 323 K, pH = 5.8 and c= 0.05 M in D₂O solution.

Figure S4 Pseudo-first-order rate constants of the exchange reactions between GdL^1 (5×10⁻⁴ M) and Zn²⁺. [Zn²⁺]= 0.03 M (1), 0.02 M (2), 0.015 M) (3) and 0.01 M (4) (25 °C, 1.0 M KCl)

Figure S5. Pseudo-first-order rate constants of exchange reactions between GdL^{0} (5×10⁻⁴ M) and Zn²⁺. [Zn²⁺]= 0.03 M (1), 0.02 M (2), 0.015 M (3) and 0.01 M (4) (25 °C, 1.0 M KCl)

Figure S6. Pseudo-first-order rate constants of exchange reactions between GdL^1 (2×10⁻⁴ M) and Cu^{2+} . [Cu^{2+}]= 6×10⁻³ M (1), 4×10⁻³ M (2), 2×10⁻³ M (3) and 1×10⁻³ M (4) (25 °C, 1.0 M KCl)

Figure S7. Pseudo-first-order rate constants of exchange reactions between GdL^2 (5×10⁻⁴ M) and Zn²⁺. [Zn²⁺]= 0.03 M (1), 0.02 M (2), 0.015 M (3) and 0.01 M (4) (25 °C 1.0 M KCl)

Figure S8. Pseudo-first-order rate constants of exchange reactions between GdL^2 (2×10⁻⁴ M) and Cu²⁺. [Cu²⁺]= 6×10⁻³ M (1), 4×10⁻³ M (2), 2×10⁻³ M (3) and 1×10⁻³ M (4) (25 °C, 1.0 M KCl)