Cobalt(II)-octacyanotungstate(V) organic-inorganic hybrid ferromagnetic materials with pyrazine and 4,4'-bipyridine

Robert Podgajny,^{a*} Maria Bałanda,^b Marcin Sikora,^c Marta Borowiec,^c Leszek Spałek,^d Czesław Kapusta,^c and Barbara Sieklucka^{a*}

^a Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, e-mail: <u>podgajny@chemia.uj.edu.pl</u>, <u>siekluck@chemia.uj.edu.pl</u>

^b H. Niewodniczański Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland

^cFaculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland

^d Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

Supplementary Information

Table of contents

- **Table S1.** IR spectra of 1, 2 and related *spacer* ligands.
- **Table S2.** Isotopic pattern of multi-lines bands assigned to the $\{Co_2(DMF)_2[W(CN)_8]_2\}^{2-}$ (1a), $\{Co_2(H_2O)W(CN)_8\}^{-}$ (1b) and $\{Co_2(pyz)_2[W(CN)_8]_2\}^{2-}$ (1c) aggregates.
- **Table S3.** Isotopic pattern of multi-lines bands assigned to the
 ${Co_4(CN)_4(H_2O)_5(pyz)_2[W(CN)_8]_2}^{2-}$ (1d)
 ${Co_4(CN)_4(DMF)_2(H_2O)_2(pyz)_4[W(CN)_8]_2}^{2-}$ (1e)
 ${Co_4(CN)_4(DMF)_3(pyz)_4[W(CN)_8]_2}^{2-}$ (1f) and
 ${Co_4(CN)_4(DMF)_3(H_2O)_2(pyz)_4[W(CN)_8]_2}^{2-}$ (1g) aggregates.
- **Table S4.** Isotopic pattern of multi-lines bands assigned to the $\{Co(H_2O)_4[W(CN)_7]\}^-(1h)$, $\{Co[W(CN)_8]\}^-(1i)$ and $\{Co(H_2O)[W(CN)_8]\}^-(1j)$ aggregates.
- **Table S5.** Isotopic pattern of multi-lines bands assigned to the ${Co_2(DMF)_2(H_2O)_6[W(CN)_8]_2}^{4-}$ (2a), ${Co_4(DMF)_4(H_2O)_{10}(4,4'-$

bpy)[W(CN)₈]₄}⁴⁻ (**2b**) and {Co₄(DMF)₃(H₂O)₇(4,4'-bpy)₂[W(CN)₈]₄}⁴⁻ (**2c**) aggregates.

- **Table S6.** Isotopic pattern of multi-lines bands assigned to the $\{Co_2(H_2O)_6(4,4'-bpy)[W(CN)_8]_2\}^{2-}$ (2d) and $\{Co_2(DMF)_4[W(CN)_8]_2\}^{2-}$ (2e) products of fragmentation within the band of m/z = 607.88.
- **Table S7.** The interpretation of fragmentation spectrum of m/z = 607.88.
- **Figure S1.** The comparison of IR spectra of **pyz** (condensed phase) and **1** range 1200 900 cm⁻¹.
- **Figure S2.** The comparison of IR spectra of **4,4'-bpy** (condensed phase) and **2** range 700 500 cm⁻¹.
- **Figure S3.** The comparison of IR spectra of **4,4'-bpy** (condensed phase) and **2** range 1100 800 cm⁻¹.
- **Figure S4.** Reflectance electronic spectra of solids 1 (red), 2 (green) and mixture of solids CoSO₄·7H₂O and 4,4'-bpy (blue) recorded at ambient temperature.
- Figure S5. TGA coupled with QMS analyses for 1 (left) and 2 (right).
- Figure S6. The fragmentation spectra of m/z = 607.88 band.
- Figure S7. The representative fragment of ES-MS spectrum showing multi-lines bands assigned to set of doubly charged $[W(CN)_x]^{2-}$ species.
- Figure S8. Thermal dependence of molar magnetisation for 1 and 2 measured at $H_{dc} = 2$ kOe. Inset: magnetisation change of 1 during the cooling of the sample in the field of superconducting magnet (ca. 10 Oe).

pyz ^a	pyz^b	1	4,4'-bpy ^c	4,4'-bpy ^d	2	Assignment ^e
		3394vs(v.br.)			3444s(v.br.)	ν(О–Н)
3066w	3064s	2962vw		2965s	2964vw	v(ArC-H)
2973w	2970w	2925w		2926vs	2927w	
		2851vw		2850s	2852vw	
		2180m(sh)			2197(sh)	v(C≡N)
		2156s			2184(sh)	
		2144m(sh)			2173m	
					2154m	
					2123m	
		1651s			1653m	γ(О-Н),
		1624m(sh)		1604w	1608vs	
			1593s	1594s	1535m	(ArC=C)
1490s	1491w	1491vw	1535s	1535m	1491m	
1418vs	1415vs	1418vs	1490s	1491m	11911	
111010	111010	1381w		1465s	1413s	
1342m	1342w		1416m	1412s	1380w	
	1240vw	1256vw		1380m	1322w	
		1236vw				
1178m	1178w	1158m	1221s	1221m	1223m	γ(ArCH in-plane)
1148vs	1150s		1176w			ring breathing,
1125w	1125w	1126m		1133vw		ring deformation,
1110m	1105w		1102m	1102vw	1106w	γ(ArCH out-of-plane)
			1079s	1079m	1068m	
1067vs	1068s	1083w	1043m	1044w	1045w	
1048vw		1051s	995s	992m	1005w	
1032vw			982m	983w		
1022m	1021vs	1026w	968m	968w		
1006m						
926vw						
823vw			882m	884w		
804vs	805w(sh)	803m	853w	855w	856w	
789w	795vs		800vs	807m	810s	
752vw				747w		
700vw			736s	736w	730w	
597w				724w		
			618s	612s	634m 621(sh)	Ring deformation,
				570-	574	Coordinati
		19 (m)	500-	5/0W	5/4W	Coordination,
		404w(SII) 471m	2088	302W	4/3111(V.DT.)	
417m	416m	4/1111 450m				
41/111	410M	430111				

^a The IR pattern of pyz was adapted from ref. 54.^b The IR spectra of pyz in solid state. ^cThe IR pattern of free 4,4'-bpy was adapted form ref. 55.^d The IR spectra of pyz in solid state. ^cThe bands of pyz and 4,4'-bpy and were assigned according to the refs. 54,55.

1a		1b		1c	
$(m/z)_{\rm exp}$	$(m/z)_{calc}$ (Int. / %)	$(m/z)_{exp}$	$(m/z)_{\text{calc}}$ (Int. / %)	$(m/z)_{exp}$	$(m/z)_{calc}$ (Int. / %)
	520.96 (0.23)		523.85(0.37)		527.94 (0.22)
	521.46 (0.19)		524.85 (0.04)		528.44 (0.20)
521.92	521.96 (25.29)	525.95	525.85 (81.46)	528.95	528.94 (25.01)
522.48	522.46 (34.74)	526.95	526.85 (53.50)	529.28	529.44 (35.03)
523.00	522.96 (74.84)	527.95ª	527.85 (100.00) (max)	530.00	529.94 (74.83)
523.52	523.46 (52.74)	528.95	528.85 (11.40)	530.45	530.44 (54.03)
523.95 (max)	523.96 (100.00) max	530.00	529.85 (88.20)	530.98ª	530.94 (100.00) max
524.50	524.46 (57.61)	530.98	530.85 (10.25)	531.45	531.44 (59.45)
524.95	524.96 (75.41)		531.85 (0.73)	531.92	531.94 (75.73)
525.48	525.46 (20.99)		532.85 (0.04)	532.52	532.44 (22.56)
525.95	525.96 (32.05)			532.98	532.94 (31.96)
526.45	526.46 (9.20)			533.48	533.44 (9.88)
526.95	526.96 (1.47)			533.95	533.94 (1.57)
	527.46 (0.17)				534.44 (0.17)

Table S2. Isotopic pattern of multi-lines bands assigned to the $\{Co_2(DMF)_2[W(CN)_8]_2\}^{2-}$ (1a), $\{Co_2(H_2O)W(CN)_8\}^{-}$ (1b) and $\{Co_2(pyz)_2[W(CN)_8]_2\}^{2-}$ (1c) aggregates.

^aThe expected maxima are not of the highest intensity due to the overlap of bands of close m/z values.

Table	S3 .	Isotopic	pattern	of	multi-lines	bands	assigned	to	the
${Co_4(CN)}$	$)_4(H_2O)$	$)_{5}(pyz)_{2}[W($	$(CN)_{8}]_{2}^{2}$	(1d)	{Co ₄ (CN) ₄ (DMI	$F_{2}(H_{2}O)_{2$	(pyz) ₄ [W(CN	$[)_8]_2\}^{2-1}$	(1e)
${Co_4(CN)}$) ₄ (DM)	F) ₃ (pyz) ₄ [W	$(CN)_{8}]_{2}\}^{2}$	(1f)	and $\{Co_4(CN)_4($	(DMF) ₃ (H	$_{2}O)_{2}(pyz)_{4}[W$	V(CN)	$[8]_2\}^{2-}$
(1g) aggr	egates.								

1d		1e		1f		1g	
$(m/z)_{exp}$	$(m/z)_{\rm calc}$	$(m/z)_{exp}$	$(m/z)_{calc}$	$(m/z)_{\rm exp}$	$(m/z)_{calc}$	$(m/z)_{exp}$	$(m/z)_{calc}$
	683.91		809.98		828.5		846.51
684.3	684.41	810.3	810.48		829.0	846.8	847.01
884.8	684.91	810.9	810.98	829.6	829.5	847.5	847.51
685.5	685.41	811.6	811.48	830.0	830.0	848.1	848.01
686.0	685.91	812.1	811.98	830.7	830.5	848.6	848.51
686.6	686.41	812.7	812.48	831.1	831.0	849.3	849.01
687.1 (max)	686.91 (max)	813.1	812.98 (max)	831.7	831.5 (max)	849.7 (max)	849.51 (max)
687.6	687.41	813.6 (max)	813.48	832.1 (max)	832.0	850.1	850.01
688.0	687.91	814.1	813.98	832.4	832.5	850.4	850.51
688.4	688.41	814.5	814.48	832.8	833.0	850.9	851.01
689.0	688.91	815.1	814.98	833.4	833.5	851.2	851.51
689.5	689.41	815.5	815.48	834.0	834.0	851.7	852.01
689.9	689.91	816.0	815.98	834.4	834.5	852.2	852.51
	690.41		816.48	835.1	835.0	852.9	853.01
	690.91		816.98		835.5		853.51

Table S4. Isotopic pattern of multi-lines bands assigned to the $\{Co(H_2O)_4[W(CN)_7]\}^-$ (1h),	
 ${Co[W(CN)_8]}^{-}(1i)$ and ${Co(H_2O)[W(CN)_8]}^{-}(1j)$ aggregates.	_

1h		1i		1j	
$(m/z)_{\rm exp}$	(<i>m/z</i>) _{calc} (Int. / %)	$(m/z)_{\rm exp}$	$(m/z)_{calc}$ (Int. / %)	$(m/z)_{\rm exp}$	$(m/z)_{calc}$ (Int. / %)
	492.94 (0.37)		446.9 (0.37)		444.9 (0.37)
	493.94 (0.04)		447.9 (0.04)		445.9 (0.04)
495.2	494.94 (81.59)	449.35	448.9 (81.63)	449.35	446.9 (81.63)
496.2	495.94 (52.56)	450.42	449.9 (53.55)	450.42	447.9 (53.55)
497.1 (max)	496.94 (100.00) (max)	451.38 (max)	450.9 (100.00) (max)	451.38 (max)	468.9 (100.00) (max)
497.95	497.94 (10.50)	452.6	451.9 (11.25)	452.6	469.9 (11.25)
498.98	498.94 (88.82)	453.2	452.9 (88.17)	453.2	470.9 (88.17)
499.92	499.94 (9.23)		453.9 (10.18)		471.9 (10.18)
	500.94 (1.16)		454.9 (0.54)		472.9 (0.54)
	501.94 (0.01)		455.9 (0.02)		473.9 (0.02)

Table	S5.	Isotopic	pattern	of	multi-lines	bands	assigned	to	the
$\{Co_2(DM)\}$	$MF)_2(H)$	$_{2}O)_{6}[W(CN)]$	$_{8}]_{2}\}^{4-}$ (2a)), {($Co_4(DMF)_4(H_2OC)$	D) ₁₀ (4,4'-ł	ppy)[W(CN)	8]4}4-	(2b)
and {Co	4(DMF) ₃ (H ₂ O) ₇ (4,4	4'-bpy)2[W(CN)8	$[3]_4\}^{4-}$ (2c) aggre	egates.			

2a		2b		2c	
$(m/z)_{\rm exp}$	(<i>m</i> / <i>z</i>) _{calc} (Int. / %)	$(m/z)_{\rm exp}$	(<i>m/z</i>) _{calc} (Int. / %)	$(m/z)_{\rm exp}$	(<i>m</i> / <i>z</i>) _{calc} (Int. / %)
	287.49(0.22)	605.50	605.50 (0.03)	612.81	612.75 (0.03)
287.81	287.74 (0.19)	605.75	605.75 (0.08)	613.00	613.00 (0.08)
288.00	287.99 (25.01)		606.00 (2.01)	613.25	613.25 (1.95)
288.25	288.24 (34.45)	606.25	606.25 (5.52)	613.44	613.50 (5.41)
288.43	288.49 (74.45)	606.50	606.50 (15.43)	613.68	613.75 (15.13)
288.81	288.74 (52.86)	606.81	606.75 (25.06)	613.94	614.00 (24.84)
289.06 (max)	288.99 (100.00) max	607.12	607.00 (45.13)	614.31	614.25 (44.62)
289.31	289.24 (57.99)		607.25 (57.64)	614.56	614.50 (57.52)
289.62	289.49 (76.02)	607.50	607.50 (82.10)	614.81 (max)	614.75 (81.64)
289.87	289.74 (21.75)	607.75	607.75 (84.94)	615.00	615.00 (85.36)
290.12	289.99 (32.70)	607.88(max)	608.00 (100.00)(max)	615.31	615.25 (100.00) (max)
290.38	290.24 (9.48)	608.25	608.25 (86.88)	615.56	615.50 (87.93)
	290.49 (1.88)	608.50	608.50 (87.82)	615.75	615.75 (88.28)
	290.74 (0.28)		608.75 (63.37)	615.94	616.00 (64.71)
		608.88	609.00 (54.46)	616.31	616.25 (55.10)
		609.19	609.25 (33.16)	616.56	616.50 (34.18)
		609.38	609.50 (23.97)	616.87	616.75 (24.45)
		609.75	609.75 (11.80)	617.06	617.00 (12.33)
		610.06	610.00 (6.50)	617.25	617.25 (6.73)
		610.31	610.25 (2.87)	617.56	617.50 (3.02)
		610.62	610.50 (0.95)		617.75 (1.03)
		610.81	610.75(0.25)	617.94	618.00(0.28)
		611.12	611.00(0.05)		618.25(0.06)

Table S6. Isotopic pattern of multi-lines bands assigned to the $\{Co_2(H_2O)_6(4,4'-bpy)[W(CN)_8]_2\}^{2^-}$ (**2d**) and $\{Co_2(DMF)_4[W(CN)_8]_2\}^{2^-}$ (**2e**) products of fragmentation within the band of m/z = 607.88.

2d		2e		
$(m/z)_{\rm exp}$	$(m/z)_{calc}$ (Int. / %)	$(m/z)_{\rm exp}$	$(m/z)_{\text{calc}}$ (Int. / %)	
	579.97(0.22)	593.9	594.01(0.22)	
580.6	580.47 (0.20)	594.3	594.51 (0.20)	
580.9	580.97 (24.54)	594.9	595.01 (24.23)	
581.4	581.47 (34,8)	595.3	595.51 (35,07)	
582.0	581.97 (74,35)	595.8	596.01 (74,30)	
582.4	582.47 (54,78)	596.3	596.51 (56,09)	
582.9 (max)	582.97 (100,00) max	597.00 (max)	597.01 (100,00) (max)	
583.3	583.47 (60,80)	597.4	597.51 (62,69)	
583.9	583.97 (76,60)	598.1	598.01 (76,98)	
584.5	584.47 (24,24)		598.51 (25,91)	
584.9	584.97 (32,70)	598.8	599.01 (32,69)	
585.5	585.47 (10,56)	599.3	599.51 (11,27)	
586.1	585.97 (2,12)	599.9	600.01 (2,28)	
	586.47 (0,32)	600.4	600.51 (0,33)	

${Co_2(H_2O)_6(4,4'-bpy)[W(CN)_8]_2}^{2-}(2d)$	$(m/z)_{exp} = 582.9$ $(m/z)_{calc} = 582.97$ $m_{calc} = 1165.94$ a.u.	{Co ₂ (DMF) ₄ [W(CN) ₈] ₂ } ²⁻ (2e)	$(m/z)_{exp} = 597.0$ $(m/z)_{calc} = 597.01$ $m_{calc} = 1194.02$ a.u.
${Co_{2}(H_{2}O)_{5}(4,4^{2}\text{-bpy})[W(CN)_{8}]_{2}}^{2}$	$(m/z)_{exp} = 572.9$ $(m/z)_{calc} = 574$ $m_{rat} = 1148 \text{ a u}$	$\{Co_2(DMF)_2(H_2O)_5[W(CN)_8]_2\}^{2\cdot}$	$(m/z)_{exp} = 568.5$ $(m/z)_{calc} = 569$ $m_{rel} = 1138$ a µ
$\left\{Co_{2}(H_{2}O)_{3}(4,4^{*}\text{-bpy})[W(CN)_{8}]_{2}\right\}^{2}$	$(m/z)_{exp} = 555.8$ $(m/z)_{calc} = 556.1$ $m_{-1} = 1112.2$ a u	$\left\{ Co_2(DMF)_3[W(CN)_8]_2 \right\}^{2}$	$(m/z)_{exp} = 561.5$ $(m/z)_{exp} = 560.5$ $m_{exp} = 1121$ a µ
$\left\{Co_2[W(CN)_8]_2(H_2O)_2(4,4\text{'-bpy})\right\}^{2\text{-}}$	$(m/z)_{exp} = 547.9$ $(m/z)_{calc} = 547$ $m_{-1} = 1094.0$ a u	$\{Co_2[W(CN)_8]_2\}^{2}$	$(m/z)_{exp} = 451.2$ $(m/z)_{exp} = 450.9$ $m_z = 901.8$ a u
$\{Co_2(H_2O)(4,4\text{'-bpy})[W(CN)_8]_2\}^{2\text{-}}$	$(m/z)_{exp} = 538.6$ $(m/z)_{calc} = 538$ $m_z = 1076.0$ a u	$\{Co_2[W(CN)_8][W(CN)_7]\}^{2}$	$m_{\text{calc}} = 438.5$ $(m/z)_{\text{exp}} = 438.5$ $(m/z)_{\text{calc}} = 437.9$ $m_z = 875.8 \text{ a.u.}$
$\left\{ Co_{2}(4,4\text{'-bpy})[W(CN)_{8}]_{2}\right\} ^{2\text{-}}$	$m_{calc} = 1070.0 \text{ a.u.}$ $(m/z)_{exp} = 529.5$ $(m/z)_{calc} = 529$ $m_{calc} = 1058.0 \text{ a.u.}$	$\{Co_2[W(CN)_7]_2\}^{2}$	$\begin{array}{l} m_{\text{cale}} = 87.5 \text{ a.u.} \\ (m/z)_{\text{exp}} = 425.5 \\ (m/z)_{\text{cale}} = 424.9 \\ m_{\text{cale}} = 849.88 \text{ a.u.} \end{array}$
${C0_4(H_2O)_7(4,4'-bpy)[W(CN)_8]_4}^{4-}$	$(m/z)_{exp} = 521.4$ $(m/z)_{calc} = 521.5$ $m_{calc} = 2085.94$ a.u.	$\{Co_2[W(CN)_7][W(CN)_6]\}^{2-}$	$(m/z)_{exp} = 412.5$ $(m/z)_{calc} = 411.9$ $m_{calc} = 823.8$ a.u.
$\left\{Co_4(H_2O)_5(4,4\text{'-bpy})[W(CN)_8]_4\right\}^{4\text{-}}$	$(\underline{m}/z)_{exp} = 513.1$ $(\underline{m}/z)_{calc} = 512.4$ $m_{orle} = 2049.6 a.u.$	$\{Co_2[W(CN)_6]_2\}^{2-1}$	$(m/z)_{exp} = 399.5$ $(m/z)_{calc} = 398.9$ $m_{outc} = 797.8$ a u
${Co_4(H_2O)_4(4,4'\text{-bpy})[W(CN)_8]_4}^{4\text{-}}$	$(m/z)_{exp} = 509.7$ $(m/z)_{calc} = 507.9$ $m_{rel} = 2031.6$ a u		incare i i i i i i i i i i i i i i i i i i i
$\{Co_4(H_2O)_3(4,4^{*}\text{-bpy})[W(CN)_8]_4\}^{4_{*}}$	$(m/z)_{exp} = 503.6$ $(m/z)_{calc} = 503.4$ $m_{-1} = 2013.6$ a u		
$\{Co_4(H_2O)(4,4\text{'-bpy})[W(CN)_8]_4\}^{4\text{-}}$	$(m/z)_{exp} = 495.1$ $(m/z)_{calc} = 494.4$ $m_{-1} = 1980.4$ a u		
${Co_4(4,4'-bpy)[W(CN)_8]_4}^{4-}$	$m_{calc} = 1950.4$ a.u. $(m/z)_{exp} = 490.7$ $(m/z)_{calc} = 489.7$ $m_{calc} = 1959.8$ a.u.		

Table S7. The interpretation of fragmentation spectrum of m/z = 607.88.

Black line: The IR spectrum of pyz condensed phase,

Red line: The IR spectrum of 1

1178w 1150vs 1125m 1105w	1158m 1126m
1068s	1083w
1021vs	1051s 1026w

Fig. S1. Comparison of IR spectra of pyz (condensed phase) and 1 range 1200 - 900 cm⁻¹

Black line: The IR spectrum of 4,4'-bpy condensed phase,	Green line: The IR spectrum of 2
612s	634m 621(sh)
573w	574w

Fig. S2. The comparison of IR spectra of **4,4'-bpy** (condensed phase) and **2** range 700 - 500 cm⁻¹

Black line: The IR spectrum of 4,4'-bpy condensed phase,

Green line: The IR spectrum of 2

1079w 1044w	1068m 1045w
992m 968w	1005w
983w	
884w	
855w	856w
807m	810s

Fig. S3. The comparison of IR spectra of **4,4'-bpy** (condensed phase) and **2** range 1100 - 800 cm⁻¹

Fig. S4. Reflectance spectra of solids 1 (red), 2 (green) and mixture of solids $CoSO_4$ ·7H₂O and 4,4'-bpy (blue) recorded at ambient temperature.

Figure S5. TGA coupled with QMS analyses for 1 (left) and 2 (right).

Figure S6. The fragmentation spectra of m/z = 607.88 band.

Figure S7. The representative fragment of ES-MS spectrum showing multi-lines bands assigned to set of doubly charged $[W(CN)_x]^{2-}$ species.

Figure S8. Thermal dependence of molar magnetisation for 1 and 2 measured at $H_{dc} = 2$ kOe. Inset: magnetisation change of 1 during the cooling of the sample in the field of superconducting magnet (ca. 10 Oe).