Supporting spectroscopic data and discussion for

Tuning "Kappticity" of Tripodal Ligands

Dawn M. Friesen, Owen J. Bowles, Robert McDonald[‡], and Lisa Rosenberg^{*}

Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada, V8W 3V6

[‡]X-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Sensitivities of tripodal ligands 3-4 to solvolysis and/or oxidation

Summary

In the presence of water and other protic reagents the P–Si bonds in compounds **3b** and **4a-b** are susceptible to cleavage, cleanly liberating the parent 2° phosphine, as determined by NMR spectroscopy (Eqn 1). Initial formation of compounds **7a/b** is followed by further condensation of these silanols to give siloxane products, as observed previously for **3a**.^{9a} In air, compounds **3a-b** succumb more readily to this hydrolysis than to oxidation at phosphorus. Exposure of solid **3a** or **3b** to oxygen gas for 30 minutes resulted in only limited decomposition (primarily hydrolysis, due to trace amounts of water in the oxygen gas), while the PEt₂ derivatives (**4a-b**) decompose rapidly on exposure to the laboratory atmosphere. Although sensitivity to solvolysis is a characteristic that may limit synthetic routes to metal complexes of these ligands, we note that metal coordination does reduce the susceptibility of these Si₃ tripods to both Si-P bond cleavage and oxidation.

Experiments performed

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

Reaction of $CH_3C(Me_2SiPPh_2)_3$ (**3b**) *with* O_2 . *a) In the solid state.* In a Schlenk tube, solid CH₃C(Me₂SiPPh₂)₃ (**3b**, 23 mg, 0.030 mmol) was placed under an atmosphere of oxygen gas (99.9%) for 30 min, then the oxygen was removed under vacuum. The sample was dissolved in benzene-d₆ (0.6 mL) and the solution was transferred to an NMR tube for analysis by ¹H and ³¹P{¹H} NMR spectroscopy. *b) In toluene solution.* In a Schlenk tube, oxygen gas (99.9%) was bubbled through a solution of **3b** (25 mg, 0.033 mmol) in toluene (5 mL) for 30 min. After removal of toluene and oxygen under vacuum, the remaining oily white solid was dissolved in benzene-d₆ (0.6 mL) and transferred to an NMR tube for analysis by ¹H and ³¹P{¹H} NMR spectroscopy.

Reaction of $CH_3C(Me_2SiPPh_2)_3$ (**3b**) *with* H_2O . Distilled water (1.5 mL, 0.083 mmol) was added under nitrogen to an NMR sample containing CH₃C(Me_2SiPPh_2)_3 (**3b**, 19 mg, 0.025 mmol) in C₆D₆, and the reaction was followed by ¹H and ³¹P{¹H} NMR spectroscopy. At room temperature, 35% of **3b** was consumed within 24 h to give HPPh₂ and CH₃C(SiMe₂OH)₃, **7b**. After 24 h, significant conversion of **7b** to siloxane condensation products occurred, indicated by the appearance of new peaks in the SiMe and Me_{apical} region of the ¹H NMR. For CH₃C(Me₂SiOH)₃ (**7b**) : ¹H NMR (360 MHz, C₆D₆, d): 1.23 (s, 3H, CCH₃), 0.27 (s, 18H, SiCH₃). The signal due to SiOH was lost in the baseline beneath SiMe signals.

Reaction of HC(Me₂SiPEt₂)₃ (4a) with H_2O . Distilled water (2.0 mL, 0.11 mmol) was added under nitrogen to an NMR sample containing HC(Me₂SiPEt₂)₃ (4a, 179 mg, 0.037 mmol) in C₆D₆, and the reaction followed by ¹H and ³¹P{¹H} NMR spectroscopy. After 24 hrs, 17% of 4a had been hydrolyzed to give HPEt₂ and 7a.

Reaction of $CH_3C(Me_2SiPEt_2)_3$ (**4b**) *with* H_2O . Distilled water (2.5 mL, 0.14 mmol) was added under nitrogen to an NMR sample containing $CH_3C(Me_2SiPEt_2)_3$ (**4b**, 18 mg, 0.038 mmol) in C_6D_6 , and the reaction followed by ¹H and ³¹P{¹H} NMR spectroscopy. Complete cleavage of all Si-P bonds occurred within 15 min of water addition, liberating HPEt₂ and **7b** quantitatively.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

Variable temperature ³¹P{¹H} NMR studies of CH₃C(SiMe₂PPh₂)₃ (3b)

Changes in the ³¹P{¹H} NMR spectra recorded for **3b** in toluene-d₈ at varying temperatures (Fig 1) correspond to a ground state solution structure similar to its solid state structure (Fig 2 in article). The sharp room temperature singlet undergoes decoalescence, when the sample is cooled to 185K, to give two broad singlets in a 2:1 ratio. Presumably these signals represent P^{2/3} and P¹, respectively (as shown in Fig 3 in article), and complete rotation around all three tripod arms is slowed considerably at this temperature. Figure 2 below illustrates an idealized solution structure for **3b** and two exchange processes that must still be occurring at these low temperatures to render P² and P³ equivalent yet distinct from P¹. When the sample is cooled to 180K, further splitting of these broad signals occurs. Slowing of either of the two exchange processes shown in Fig 2 would give rise to diastereomers, generating as many as four to six distinct P environments. This is consistent with the complexity of the ³¹P{¹H} spectrum of **3b** at 180K. Changes in the SiMe₂ signal in the ¹H{³¹P} NMR as **3b** is cooled are not inconsistent with the exchange processes shown in Fig 2, but these low T spectra are too broad to give detailed structural information. An apparent decoalescence at 195K gives three broad singlets, which may correspond to methyl groups A, B, and C.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

Figure 1. Variable temperature ${}^{31}P{}^{1}H$ NMR of **3b** (toluene-d₈, 202.43 MHz). Signals due to an impurity of the disubstituted compound, CH₃C(Si(CH₃)₂Br){Si(CH₃)₂PPh₂}₂ are marked with "*".

Reference

1. D. M. Friesen, R. McDonald and L. Rosenberg, Can. J. Chem.-Rev. Can. Chim., 1999, 77, 1931-1940.

Figure 2 Mechanisms for phosphorus exchange in **3b**, based on a low temperature solution structure analogous to the solid-state structure. Views are down the apical CH₃–C bond, and Ph substituents are omitted for clarity.