Gold(I) and platinum(II) complexes with a new diphosphine ligand

based on the cyclotriphosphazene platform

Eric W. Ainscough, * Andrew M. Brodie, * Adrian B. Chaplin, Joy M. O'Connor and Carl

A. Otter

Chemistry-Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand

Experimental

Analytical grade solvents were used as supplied for synthesis with the exception of tetrahydrofuran (THF), which was distilled from sodium/benzophenone. (2-hydroxy-phenyl)diphenylphosphine has been reported previously¹ but was prepared here using a similar procedure for the preparation of (4-hydroxyphenyl)diphenylphosphine.² [Au(tht)Cl] (tht = tetrahydrothiophene), 0.05M AuBF₄ in CH₃CN and [M(CO)₄(pip)₂] (M = W and Mo, pip = piperidine) and [N₃P₃(biph)₂Cl₂] (biph = 2,2'-biphenol) were prepared according to literature procedures.³⁻⁶ Cyclotriphosphazene (N₃P₃Cl₆) was a gift from Otsuka Chemical Company Ltd (Japan) and Pt(COD)Cl₂ was obtained from Aldrich. Microanalyses were performed by the Campbell Microanalytical Laboratory, University of Otago. ¹H NMR and ³¹P{¹H} NMR spectra were recorded on a Brucker Avance 400 spectrometer. Phosphorus chemical shifts are referenced to 85% aqueous H₃PO₄ and proton chemical shifts are referenced to TMS. Electrospray mass spectra were obtained from CH₃CN solutions on a Micromass ZMD spectrometer run in the positive ion mode. Listed peaks correspond to the most abundant isotopomer; assignments were made by a comparison of observed and simulated spectra.

Syntheses

 $(2-hydroxyphenyl)diphenylphosphine (HOC_6H_4PPh_2)$. A mixture of 2-bromophenol (6 mL, 51.7 mmol), 2-methoxypropane (10 mL, 104.4 mmol) and phosphorus oxychloride (1 drop) was stirred under N₂ for 1 h in the absence of light. NEt₃ (4 drops) was added and the volatiles were removed under vacuum. The residue was dissolved in hexane (55 mL) and to this solution was added dropwise a solution of BuLi (1.7M in hexane, 33.5 mL, 57 mmol). The mixture was stirred for a further 4 h and the white precipitate formed was filtered under N2 and dried by N2 flow. The precipitate was dissolved in THF (50 mL) and cooled to -78° C. To this solution was added dropwise a solution of chlorodiphenylphosphine (7 mL, 39.9 mmol) in THF (50 mL). The yellow solution was allowed to warm to room temperature and stirred over 16 h. A solution of HCl (20%, 25mL) was added and stirred for 3 h. The mixture was extracted with diethyl ether (4 x 40 mL) and the extracts were combined, stirred with Na₂CO₃, filtered, washed with water (3 x 40 mL) and dried over MgSO₄. The solvent was removed to give an orange oil that was dissolved in CH₂Cl₂ and passed through a short column of silica gel using CH₂Cl₂ as eluent. Concentration of the eluent on a rotary evaporator yielded a white solid that was filtered, washed with hexane and vacuum dried. Further product was obtained from the filtrate by adding hexane and standing at -4°C overnight. Yield: 8.0g. ¹H NMR (CDCl₃): δ 7.38 - 7.24 (m, 11H, aryl), 7.00 – 6.83 (m, 3H, aryl), 6.22 ppm (s, H, OH). ³¹P{H} NMR (CDCl₃): -28.7 ppm (s, P).

2

[N₃P₃(biph)₂(OC₆H₄PPh₂)₂] (L). To a solution of (2-hydroxyphenyl)diphenylphosphine (0.535g, 1.92 mmol) in THF (70 mL) cooled to 0°C was added NaH (0.07 g, 60% dispersion in oil washed with hexane, 3 mmol). After stirring for 30 min at room temperature, [N₃P₃(biph)₂Cl₂] (0.5g, 0.87 mmol) was added. The mixture was heated at reflux over 21 h and the solvent removed using a rotary evaporator. The residue was extracted with CH₂Cl₂ (150 mL) and filtered through Celite. The filtrate was taken to dryness using a rotary evaporator, and chromatography on silica using CH₂Cl₂/hexane (1:1) as eluent yielded a pure fraction of the product. Yield: 650 mg. ³¹P{¹H} NMR (CDCl₃): δ 27.0 (d, *J*_{PP} = 94 Hz, 2P, phosphazene), 9.6 (t, *J*_{PP} = 95 Hz, P, phosphazene), -15.5 ppm (s, 2P, phosphine). ESMS: 1058 [MH]⁺. *Anal*. Required for C₆₀H₄₄N₃O₆P₅: C, 68.12; H, 4.19; N, 3.97%. Found: C, 68.06; H, 4.48; N, 3.80%.

[AuL]BF₄·CH₂Cl₂ (1). To a solution of L (106 mg, 0.1 mmol) in CH₃CN/CH₂Cl₂ (1:2, *ca.* 20 mL) was added a solution of AuBF₄ in CH₃CN (0.05M, 2mL). The solution was stirred at room temperature over 2 h, the volume reduced to *ca.* 4 mL using a stream of N₂ gas and then refrigerated. Slow evaporation of the solution left a crystalline material that was recrystallised from CH₂Cl₂/hexane and dried under vacuum. Yield: 123 mg. ³¹P{¹H} NMR (CDCl₃): δ 29.6 (s, 2P, phosphine), 24.5 (d, *J*_{PP} = 91 Hz, 2P, phosphazene), 13.2 (t, *J*_{PP} = 89 Hz, P, phosphazene) ppm. ESMS: 1254 [AuL]⁺. *Anal.* Required for C₆₁H₄₆AuBCl₂F₄N₃O₆P₅: C, 51.36; H, 3.25; N, 2.95%. Found: C, 51.05; H, 3.34; N, 3.28%. X-ray quality crystals of 1·CH₃CN were grown by vapour diffusion of Et₂O into a CH₃CN solution of the complex.

[{AuCl}₂L]·1.5CHCl₃ (2). Pentane was allowed to vapour diffuse into a chloroform solution containing [Au(tht)Cl] (31.6 mg, 0.1 mmol) and L (53mg, 0.05 mmol). After 5 days, the crop of white crystals so obtained was filtered, washed with pentane and dried under vacuum. Yield: 64 mg. ³¹P{¹H} NMR (CDCl₃): δ 27.5 (s, 2P, phosphine), 24.0 (d, *J*_{PP} = 102 Hz, 2P, phosphazene), 6.8 (t, *J*_{PP} = 102 Hz, P, phosphazene) ppm. ESMS: 1254 [AuL]⁺. Required for C_{61.5}H_{45.5}Au₂Cl_{6.75}N₃O₆P₅: C, 44.62; H, 2.76; N, 2.56%. Found: C, 43.46; H, 2.77; N, 2.45%. Crystals of **2**·2.7CHCl₃ suitable for x-ray analysis were obtained by an identical procedure using [NBu₄][AuCl₂] instead of [Au(tht)Cl].

[PtLCl₂] (3). A solution of L (0.1g) and Pt(COD)Cl₂ (0.035g) in CH₂Cl₂ (20 mL) was heated at reflux over 3.5 h. The solution was concentrated on a rotary evaporator and hexane was added to produce a white precipitate that was collected by filtration, washed with Et₂O and air dried. Yield 100 mg. ³¹P{¹H} NMR (CDCl₃): δ 26.0 - 25.5 (m, 2P, phosphazene), 5.7 - 4.5 (m, P, phosphazene), 7.15 (bs, phosphine, J_{PtP} = 3780 Hz). *Anal.* Required for C₆₀H₄₄Cl₂N₃O₆P₅Pt: C, 54.43; H, 3.35; N, 3.17%. Found: C, 54.17; H, 3.37; N, 3.20%. Crystals of **3**·4CH₃CN suitable for x-ray analysis were grown from an acetonitrile solution of the complex.

[W(CO)₄L] (4). *cis*-[W(CO)₄(pip)₂] (46.6 mg, 0.1mmol) and L (106 mg, 0.1mmol) were combined in toluene (25 mL) and heated at reflux under N₂ for 2 h. The resulting brown solution was filtered and the filtrate was removed on a rotary evaporator to give a brown oil. The product was isolated using column chromatography on silica, eluting with CH₂Cl₂/hexane (1:1). Fractions were combined and concentrated on a rotary evaporator,

initiating crystallisation of the yellow product that was washed with pentane and dried under vacuum. Yield 31 mg. *Anal.* Required for C₆₄H₄₄N₃O₁₀P₅W: C, 56.78; H, 3.28; N, 3.10%. Found: C, 57.03; H, 3.51; N, 3.25%. ³¹P{¹H} NMR (CDCl₃): δ 26.5 (d, *J*_{PP} = Hz, 2P, phosphazene), 14.2 (t, *J*_{WP} = 289 Hz, 2P, phosphine), 3.9 (t, *J*_{PP} = Hz, P, phosphazene) ppm. v(CO) cm⁻¹: 2020m, 1918s, 1892s, 1866s.

[Mo (CO)₄L] (5). *cis*-[Mo(CO)₄(pip)₂] (37.8 mg, 0.1 mmol) and L (106 mg, 0.1 mmol) were combined in CH₂Cl₂ (25 mL) and heated at reflux under N₂ over 2 h. The complex was isolated in an analogous manner to [W(CO)₄L] (above). Yield 46 mg. ³¹P{¹H} NMR (CDCl₃): δ 29.6 (s, 2P, phosphine), 26.4 (d, *J*_{PP} = Hz, 2P, phosphazene), 4.1 (t, *J*_{PP} = Hz, P, phosphazene) ppm. *Anal.* Required for C₆₄H₄₄MoN₃O₁₀P₅: C, 60.72; H, 3.50; N, 3.32%. Found: C, 60.77; H, 3.86; N, 3.31%. v(CO) cm⁻¹: 2023m, 1932s, 1900s, 1868s.

X-ray Crystallography

The x-ray data was collected on a Siemens P4 four circle diffractometer, using a Siemens SMART 1K CCD area detector. The crystals were mounted in an inert oil, transferred into the cold gas stream of the detector and irradiated with graphite monochromated Mo- K_{α} ($\lambda = 0.71073$ Å) x-rays. The data were collected by the SMART program and processed with SAINT to apply Lorentz and polarisation corrections to the diffraction spots (integrated 3 dimensionally). The structures were solved by direct methods and refined using the SHELXTL program. Hydrogen atoms were calculated at ideal positions. For the solution of 2·2.7CHCl₃, the electron density of disordered CHCl₃ was

removed from the unit cell using PLATON / SQUEEZE. Approximately 2.7 molecules of CHCl₃ per cell were removed (314 e⁻ per cell and 869 Å³ was left by the void).

References

- A. Suárez, M. A. Méndez-Rojas and A. Pizzano, *Organometallics*, 2002, 21, 4611-4621; D. Empsall, B. L. Shaw and B. L. Trutle, *J. Chem. Soc., Dalton Trans.*, 1976, 1500-1506; B. Rauchfuss, *Inorg. Chem.*, 1977, 16, 2966-2968; O. Herd, A. Heßler, M. Hingst, P. Machnitzki, M. Tepper and O. Stelzer, *Catalysis Today*, 1998, 42, 413-420; M. K. Cooper, J. M. Downes, P. A. Duckworth and E. R. T. Tiekink, *Aust. J. Chem.*, 1992, 45, 595-609.
- G. A. Carriedo, F. J. G. Alonso, P. A. González, C. D. Valenzuela and N. Y. Sáez, *Polyhedron*, 2002, 21, 2579-2586.
- 3. R. Uson, A. Laguna and M. Laguna, *Inorg. Synth.*, 1989, **26**, 85-91.
- B. D. Alexander, B. J. Johnson, S. M. Johnson, P. D. Boyle, N. C. Kann, A. M. Mueting and L. H. Pignolet, *Inorg. Chem.*, 1987, 26, 3506-3513.
- 5. D. J. Darensbourg and R. L. Klump, *Inorg. Chem.*, 1978, 17, 2680-2682.
- G. A. Carriedo, L. Fernández-Catuxo, F. J. García-Alonso, P. Gómez-Elipe and P.
 A. González, *Macromolecules*, 1996, 29, 5320-5325.