Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

Hybrid Organic-Inorganic Nanomaterials Based on Polythiophene Dendronized Nanoparticles

Rigoberto C. Advincula
Department of Chemistry, University of Houston, Houston, TX 77204 USA. E-mail: radvincula@uh.edu

Electronic Supplementary Information (ESI)

ESI Figure 1. FT-IR spectra of TOPO, P3T, and CdSe nanocrystals before and after exchange with the dendrons in the $\mathrm{P}=\mathrm{O}$ stretching region. Reference 16.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESI Figure 2. Absorption and Fluorescence spectra of P 7 T in CHCl_{3}. The bottom graph is of the $\mathrm{P} 7 \mathrm{~T} / \mathrm{NC}$ complex. The fluorescence for both P 7 T and NC is completely quenched in the complex. Deconvolution yields about 34 P7T molecules per NC. For more details, see the text. Reference 16.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESI Figure 3. Current density vs voltage for a P7T/CdSe device in the dark and under 0.1 $\mathrm{mW} / \mathrm{cm}^{2}$ illumination. Reference 16 .

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESIFigure 4. HRTEM micrographs and size-distribution histograms for $\mathrm{Au}-\mathrm{SC}_{2} 3 \mathrm{~T} 6 \mathrm{C}$ and $\mathrm{Au}-\mathrm{SC}_{11} 7 \mathrm{~T} 6 \mathrm{C}$.

Table 1. Summary of TEM, Absorption and Fluorescence Spectra Data

	core diameter (nm)	$\lambda^{\text {abs }}{ }_{\max }(\mathrm{nm})$	surface plasmon $\lambda_{\max }(\mathrm{nm})$	$\lambda^{\mathrm{fl}}{ }_{\max }(\mathrm{nm})$
$\mathrm{HSC}_{2} 3 \mathrm{~T}$		349		456
$\mathrm{Au} \mathrm{NPs}+\mathrm{HSC}_{2} 3 \mathrm{~T}$		350	523	455
$\mathrm{Au}-\mathrm{SC}_{2} 3 \mathrm{~T}$	2.88 ± 0.69	349	526	457
$\mathrm{HSC}_{11} 3 \mathrm{~T}$		349		455
$\mathrm{Au} \mathrm{NPs}+\mathrm{HSC}_{11} 3 \mathrm{~T}$		344	522	453
${\mathrm{Au}-\mathrm{SC}_{11} 3 \mathrm{~T}}^{4.09 \pm 1.03}$	342	527	454	
$\mathrm{HSC}_{2} 7 \mathrm{~T}$		311		536
$\mathrm{Au} \mathrm{NPs}+\mathrm{HSC}_{2} 7 \mathrm{~T}$			531	533
$\mathrm{Au-SC}_{2} 7 \mathrm{~T}$	3.84 ± 0.97		534	536
$\mathrm{HSC}_{11} 7 \mathrm{~T}$				534
$\mathrm{Au} \mathrm{NPs}+\mathrm{HSC}_{11} 7 \mathrm{~T}$			524	535
$\mathrm{Au-SC}_{11} 7 \mathrm{~T}$	4.68 ± 1.22		535	540

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESI Figure 5. UV-vis absorption spectra for dendritic thiol ligands, the reaction mixtures right before work-up and NCTDs after work-up. Solvent: toluene.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESI Figure 6. FT-IR spectra for dendritic thiol ligands and NCTDs.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESI Figure 7. ${ }^{1} \mathrm{H}$ NMR spectra for dendritic thiol ligands and hybrid nanoparticles.

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry 2006

ESI Figure 8. Fluorescence spectra for the NCTDs and their optically matched mixtures.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

ESI Figure 9. AFM topographic images and height profiles of Au-SC $\mathbf{2}$ 3T6C (top).

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry 2006

DETAILS OF THE SYNTHESIS:

Phosphonic Acid-terminated Dendron Synthesis

The synthetic protocol for some of the dendron precursors is shown in Scheme 1. A detailed synthetic procedure for some of these materials has been published previously. ${ }^{\text {Error! Bookmark not defined. }}$

Synthesis of $5,5^{\prime}$ '-Dihexyl-[2,2';3',2'’]terthiophene (3) (3T). The Grignard reagent formed from 7.51 g of 2-Bromo-5-hexyl-thiophene ($7.51 \mathrm{~g}, 30.3 \mathrm{mmol}$) and magnesium ($0.78 \mathrm{~g}, 32 \mathrm{mmol}$) was slowly added to a mixture of 2,3-dibromothiophene ($3.09 \mathrm{~g}, 12.76 \mathrm{mmol}$), NidpppCl $2(7 \mathrm{mg}$, 0.13 mmol), and 100 ml ether at $0{ }^{\circ} \mathrm{C}$. After 20 hours, the reaction was quenched with dilute HCl and the organic phase was separated, and combined with the ether extraction from the aqueous phase. The solvent was evaporated after drying over magnesium sulfate. The residue was then run though a flash column using hexanes as eluent. Pale yellow viscous liquid was obtained (4.62 g , Yield: 87%). ${ }^{1} \mathrm{H}$ NMR (in CDCl 3$) 7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=3.5 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 2.77(\mathrm{t}, 4 \mathrm{H}), 1.65(\mathrm{~m}$, $4 \mathrm{H}), 1.34(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, 6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (in CDCl_{3}) 147.53, 146.03, 134.99, 132.30, $132.12,131.35,129.62,127.64,125.94,124.15,124.01,123.98,31.59,31.55,30.18,30.12,28.79$, 28.77, 22.68, 22.61, 14.11. Elemental Analysis Calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~S}_{3} \mathrm{C}, 69.17$; H, 7.74; S, 23.09. Found: C, 69.42; H, 7.61; S, 22.98.

Synthesis of $\mathbf{5}^{\prime}$-Bromo-5,5’'-dihexyl-[2,2';3',2’’]terthiophene. In the absence of light, 1.96 g of N-Bromosuccinimide (NBS., 11.0 mmol) in 15 mL dimethylformamide (DMF) was added dropwise to a solution of 4.16 g of $5,5^{\prime \prime}$-dihexyl-[$\left.2,2^{\prime} ; 3^{\prime}, 2^{\prime \prime}\right]$ terthiophene ($3 \mathrm{~T}, 10.0 \mathrm{mmol}$) in 5 mL DMF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight and then poured into water. After extraction with hexane, the organic layer was dried over MgSO_{4} and concentrated. Pale yellow viscous liquid was obtained by chromatography on silica gel using hexane as eluent (4.32 g , Yield: 87.1%). ${ }^{1} \mathrm{H}$ NMR (in CDCl3) $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=3.6 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 2.76(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, 6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (in CDCl_{3}) 148.08, 146.44, 133.54, 132.48, 132.27, 131.85, 130.89, 128.00, 126.21, 124.09, $123.89,110.646,31.41,30.03,29.94,28.62,22.47,13.98$.

Synthesis of $\mathbf{5 , 5}{ }^{\prime}$ '-Dihexyl-[2,2';3',2'’]terthiophenyl phosphonic acid diethyl ester. ${ }^{1}$ A mixture of 2.48 g of 5^{\prime}-bromo- $5,5^{\prime \prime}$-dihexyl-[2, $\left.2^{\prime} ; 3^{\prime}, 2^{\prime \prime}\right]$ terthiophene (5.0 mmol), 2.5 g of triethyl phosphite and 0.25 g of NiBr_{2} was heated up to $135^{\circ} \mathrm{C}$ overnight under N_{2}. The reaction mixture was first cool to r.t. and triethyl phosphite was removed by vacuum distillation. The residue was purified by flash column on silica gel using hexane/dichloromethane/ethyl acetate (5:1:2) as eluent (yellow liquid, 1.67 g, Yield: 60.4%). ${ }^{1} \mathrm{H}$ NMR (in CDCl3) 7.61 (d, $1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$), 6.98 (d, 1 H , $\mathrm{J}=3.0 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 4.17(\mathrm{~m}, 4 \mathrm{H}), 2.77(\mathrm{t}$, $4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 1.64(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.31(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, 6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (in $\left.\mathrm{CDCl}_{3}\right)$ $148.59,146.74,138.94,138.80,133.35,132.69,132.48,130.79,128.12,126.61,124.30,124.04$, $62.73,62.65,31.43,31.40,31.37,30.02,29.97,28.61,22.46,16.24,16.16,13.97 .{ }^{31} \mathrm{P}$ NMR (in CDCl_{3}): 11.72 (s).

Electronic Supplementary Information for Dalton Transactions

This journal is © The Royal Society of Chemistry 2006
Synthesis of 5,5'-Dihexyl-[2,2'; $\mathbf{3}^{\prime}, \mathbf{2}^{\prime}$ ']terthiophenyl phosphonic acid. ${ }^{2}$ To 1.07 g of $5,5^{\prime \prime}$ -dihexyl-[2, $\left.2^{\prime} ; 3^{\prime}, 2^{\prime \prime}\right]$ terthiophenyl phosphonic acid diethyl ester (1.94 mmol), 2.0 g of bromotrimethylsilane was added dropwise with a needle under N_{2}. The reaction mixture was stirred for 2 hrs. Bromotrimethylsilane was removed by house vacuum and then 30 mL of methanol was added. The reaction mixture was refluxing for 4 hrs. and concentrated to give grayish solid $(0.94 \mathrm{~g}$, Yield: 97.7\%). ${ }^{1} \mathrm{H}$ NMR (in CDCl3) $7.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$), $6.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}$), $6.82(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=3.3 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 3.74(\mathrm{br}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H})$, $1.29(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (in $\left.\mathrm{CDCl}_{3}\right)$ 148.06, 146.27, 138.99, 138.02, 133.43, 132.59, $132.38,130.97,128.21,126.72,124.02,123.79,31.44,31.39,31.34,30.02,29.94,28.69,22.49$, $13.99{ }^{31}{ }^{\text {P }}$ NMR (in CDCl_{3}): 14.32 (s). FTIR (KBr): $3300-2400$ (v, br, OH), $3068\left(\mathrm{C}-\mathrm{H}_{\text {aro }}\right.$), 2957,2927,2871,2853 (C-H), 1467, 1180 (P=O), 1063 (Ar-P-O), 1014 (P-O-H ${ }_{\text {sy }}$), 998 (P-O-H ${ }_{\text {asy }}$), 920(Ar-P-O), 859, 802.

Synthesis of Tributyl-(5,5’'-dihexyl-[2, $\left.\mathbf{2}^{\prime} ; \mathbf{3}^{\prime}, \mathbf{2}^{\prime ’}\right]$ terthiophen- $\mathbf{5}^{\prime}$ - \mathbf{y})stannane (4). BuLi (2.5 M in hexane) ($2.43 \mathrm{ml}, 6.06 \mathrm{mmol}$) was added to a solution of ($5,5^{\prime \prime}$ '-Dihexyl-[2, $\left.2^{\prime} ; 3^{\prime}, 2^{\prime \prime}\right]$ terthiophene $(2.3 \mathrm{~g}, 5.5 \mathrm{mmol})$ in THF at $-78{ }^{\circ} \mathrm{C}$. After 45 minutes, tributyltin chloride ($1.99 \mathrm{~g}, 6.1 \mathrm{mmol}$) was added to the mixture. The reaction was allowed to warm to room temperature for 3 hours. After normal workup, the product (pale yellow liquid) was used further without other purifications (estimated yield from NMR, 80\%). ${ }^{1} \mathrm{H}$ NMR (in CDCl 3) $7.11(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}$), $6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 2.78(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{t}, 6 \mathrm{H}$, $\mathrm{J}=7.3 \mathrm{~Hz}), 1.30(\mathrm{~m}, 12 \mathrm{H}), 1.12(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 0.92(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (in $\left.\mathrm{CDCl}_{3}\right) 135.36,133.05$, $132.92,126.82,125.78,124.11,124.00,31.63,31.61,31.59,31.56,30.19,30.17,28.96,28.82$, 28.79, 27.30, 22.61, 14.11, 13.70, 10.86
 flask was charged 3.72 g of (4), 0.425 g of 2,3-dibromothiophene (1.75 mmol), 0.01 g of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and 30 ml of DMF. After three freeze-thaw cycles, the mixture was heated to $100{ }^{\circ} \mathrm{C}$. After 24 hours, the mixture was poured into water, extracted with methylene chloride, and washed thoroughly with KF solution to remove tributyltin chloride. The organic layer was then dried over magnesium sulfate, and the solvent evaporated. The residue was purified by flash column using hexanes/methylene chloride ($10: 1$) as eluent. (viscous orange liquid) (1.31 g , yield $=82 \%$) ${ }^{1} \mathrm{H}$ NMR (in CDCl3) 7.28(d, $1 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=1.7 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}), 6.51(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{t}$, $8 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.67(\mathrm{p}, 8 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.34(\mathrm{~m}, 24 \mathrm{H}), 0.91(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (in CDCl_{3}) $134.50,132.94,132.58,132.22,131.95,131.90,131.85,131.69,131.45,131.13,130.47,129.68$, $129.32,127.59,127.44,126.34,126.15,124.87$, 124.17, 124.14, 124.01, 124.00, 31.58, 31.56, 30.17, 30.13, 28.79, 28.76, 22.60, 22.59, 14.10. Elemental Analysis Calculated for $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{~S}_{7} \mathrm{C}$, 68.37; H, 7.06; S, 24.57. Found: C, 68.57; H, 7.10; S, 24.28.

Synthesis of 2,3-di(5,5'-dihexyl-[2,2';3', $\mathbf{2}^{\prime}$ ']terthiophen-5'-yl)thiophene phosphonic acid diethyl ester (6). BuLi (2.5 M in hexane) $(0.242 \mathrm{ml}, 0.55 \mathrm{mmol})$ was added to a solution of $2,3-$ di($5,5^{\prime}$ '-dihexyl-[2, $\left.2^{\prime} ; 3^{\prime}, 2^{\prime \prime}\right]$ terthiophen- 5^{\prime} '-yl)thiophene ($0.5 \mathrm{~g}, 0.55 \mathrm{mmol}$) in THF at $-78^{\circ} \mathrm{C}$. After 45 minutes, diethylchlorophosphate ($0.189 \mathrm{~g}, 1 \mathrm{mmol}$) was added through an addition funnel. The reaction was allowed to warm to room temperature for 24 hours. After extraction with methylene chloride, the organic layer was dried over magnesium sulfate and solvent removed by evaporation. The residue was purified using hexanes/methylene chloride (8:2) as eluent. ${ }^{1} \mathrm{H}$ NMR (in CDCl3)

This journal is © The Royal Society of Chemistry 2006
$7.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.66(\mathrm{~m}, 4 \mathrm{H})$, $4.20(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{t}, 8 \mathrm{H}), 1.63(\mathrm{~m}, 8 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 30 \mathrm{H}), 0.88(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz})$

Synthesis of 2,3-di(5,5',-dihexyl-[2,2';3',2'']terthiophen-5'-yl)thiophene phosphonic acid (P7T). Bromotrimethylsilane $(0.38 \mathrm{~g}, 2.48 \mathrm{mmol})$ was added to a solution of $2,3-\mathrm{di}(5,5 ’$ 'dihexyl[2,2';3', $2^{\prime \prime}$ ']terthiophen- 5^{\prime}-yl)thiophene phosphonic acid diethyl ester ($0.325 \mathrm{~g}, 0.31 \mathrm{mmol}$) in THF and the solution was stirred overnight. The solvent was removed by rotovap and bromotrimethylsilane was removed by house vacuum. Then 30 mL of methanol and 5 ml of THF was added. The reaction mixture was refluxing for 4 hrs . and concentrated to give dark brown viscous oil (0.29 g , Yield: 95%) ${ }^{1} \mathrm{H}$ NMR (in CDCl_{3}) 8.32(br, 2 H), 7.73(d, $1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}$), 7.20(s, $1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}), 6.60(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{~m}, 8 \mathrm{H}), 1.62(\mathrm{~m}, 8 \mathrm{H})$, $1.29(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (in CDCl_{3}) 147.95, 147.61, 146.51, 146.26, 134.67, 134.21, $134.18,133.61,132.49,132.15,132.09,132.04,131.75,131.27,131.08,130.15,127.97,127.76$, $126.67,126.45,124.31,124.25,124.13,124.09,31.72,31.68,31.63,30.30,30.27,29.85,28.93$, 22.74, 14.23. FT-IR (KBr): 3200-2509(v, br, OH), 3067(C-H), 2955, 2928, $2855(\mathrm{C}-\mathrm{H}), 1627$, $1466(\mathrm{C}=\mathrm{C}), 1437\left(\mathrm{CH}_{3}\right), 1374(\mathrm{C}-\mathrm{C}), 1184(\mathrm{P}=\mathrm{O}), 1053(\mathrm{Ar}-\mathrm{P}), 1011(\mathrm{P}-\mathrm{O}-\mathrm{H}), 927(\mathrm{Ar}-\mathrm{P}), 796(\mathrm{C}-$ $\mathrm{H}_{\text {def }}$).

Alkyl-Thiol-terminated Dendron Synthesis

The synthetic protocol for some of the dendron precursors is shown in Scheme 1. A detailed synthetic procedure for some of these materials will be published in another paper.

Synthesis of 5,5'-Dihexyl-[2,2';3', $\left.\mathbf{2}^{\prime \prime}\right]$ terthiophene-5'-carboxylic acid (HOOC3T6C). n-BuLi (2.5 M in hexane, $5.0 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was added dropwise to a solution of 5,5 "-dihexyl[2,2'; $\left.3^{\prime}, 2^{\prime \prime}\right]$ ter-thiophene ($3 \mathrm{~T} 6 \mathrm{C}, 4.17 \mathrm{~g}, 10.0 \mathrm{mmol}$) in 50 mL of THF at $-78^{\circ} \mathrm{C}$ under N_{2}. After 30 minutes upon addition, about 5 g of dry ice was added and the reaction mixture was warmed up to room temperature very slowly overnight. After normal acidic workup, column chromatography with hexane/isopropanol ($\mathrm{v} / \mathrm{v}, 10 / 1$) as an eluent yielded $4.01 \mathrm{~g}(87 \%)$ of HOOC3T6C as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.68(\mathrm{~m}$, $2 \mathrm{H}), 2.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.76(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 12 \mathrm{H}), 0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.08,149.03,147.08,140.88,137.49,133.24,132.24$, $131.28,129.00,128.31,127.05,124.47$, 124.18, 31.56, 31.54, 31.50, 31.42, 30.29, 30.12, 30.10, 28.71, 22.54, 14.06. FT-IR (KBr): O-H stretch $3450 \sim 2300 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ asymmetric stretch $2928 \mathrm{~cm}^{-}$ ${ }^{1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{O} 1674 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{O} 1296 \mathrm{~cm}^{-1}$, $\mathrm{C}-\mathrm{H}$ out of plane vibration of thiophene ring $798 \mathrm{~cm}^{-1}$. UV-vis (toluene) $\lambda_{\max }, \mathrm{nm}(\log \varepsilon): 284$ (4.14), 355 (4.01).

Synthesis of 5,5''-Dihexyl-[2,2';3',2']terthiophene-5'-carboxylic acid 2,5-dioxo-pyrrolidin-1yl ester (NHS3T6C). A solution of HOOC3T6C ($460 \mathrm{mg}, 1.0 \mathrm{mmol}$), N-hydroxysuccinimide ($126.6 \mathrm{mg}, 1.1 \mathrm{mmol}$) and N -(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (210.9 $\mathrm{mg}, 1.1 \mathrm{mmol}$) in 5 mL of anhydrous DMF was stirred at room temperature overnight. The mixture was filtered through a pad of silica gel with copious washing $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and concentrated under reduced pressure. Purification by flash chromatography (hexane/isopropanol, v/v, 10/1) gave NHS3T6C (475 mg, 85\%) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9$

This journal is © The Royal Society of Chemistry 2006
$\mathrm{Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~m}$, $12 \mathrm{H}), 0.88(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.10,157.09,149.67,147.48,143.06$, $139.18,132.50,132.38,130.75,128.66,127.46,124.60,124.25,122.74,31.54,31.52,31.46$, $31.38,30.10,30.07,28.67,25.59,22.55,22.52,14.05$. FT-IR $(\mathrm{KBr}): \mathrm{CH}_{2}$ asymmetric stretch 2925 $\mathrm{cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{O} 1741 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{O} 1265 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{N} 1200 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{H}$ out of plane vibration of thiophene ring $802 \mathrm{~cm}^{-1}$. UV-vis (toluene) $\lambda_{\max }$, $\mathrm{nm}(\log \quad$): 284 (4.19), 370 (4.13).

Synthesis of 5,5'-Dihexyl-[2,2';3',2']terthiophene-5'-carboxylic acid (2-mercapto-ethyl)amide ($\mathbf{H S C}_{2} \mathbf{3 T 6 C}$). A solution of NHS3T6C ($200.8 \mathrm{mg}, 0.36 \mathrm{mmol}$), cysteamine ($30.9 \mathrm{mg}, 0.40$ mmol) and 1.0 mL of triethylamine in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the residue was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate, $\left.\mathrm{v} / \mathrm{v}, 50 / 1\right)$ to give $\mathrm{HSC}_{2} 3 \mathrm{~T} 6 \mathrm{C}(46 \mathrm{mg}, 23 \%$ recovery) and 121.5 mg of NHS3T6C in 65% yield as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz})$, $6.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz})$, $3.77(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 2.98(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 2.74(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz})$, $1.60(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 162.16, 148.37, $146.64,136.85,135.35,133.78,131.99,131.54,130.96,128.02,126.80,124.29,124.05,39.39$, $37.86,31.51,31.45,30.12,30.04,28.72,22.55,14.07$. FT-IR (KBr): N-H $3304 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ asymmetric stretch $2928 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2854 \mathrm{~cm}^{-1}$, amide I $1626 \mathrm{~cm}^{-1}$, amide II 1547 cm^{-1}, C-H out of plane vibration of thiophene ring $799 \mathrm{~cm}^{-1}$. UV-vis (toluene) $\lambda_{\max }, \mathrm{nm}(\log \quad$): 283 (4.22), 349 (4.09).

Synthesis of $5,5^{\prime \prime}$-Dihexyl-[2, $\left.2^{\prime} ; 3^{\prime}, 2^{\prime \prime}\right]$ terthiophene- 5^{\prime}-carboxylic acid (11-mercapto-undecyl)-amide (HSC $\mathbf{1 1}^{\mathbf{3 T 6 C}}$). A solution of NHS3T6C ($200.8 \mathrm{mg}, 0.36 \mathrm{mmol}$), 11mercaptoundecylamine ($81.4 \mathrm{mg}, 0.40 \mathrm{mmol}$), and 1.0 mL of triethylamine in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature overnight. The solvent was removed by rotary evaporation and the residue was chromatographed on silica gel (hexane/isopropanol, $\mathrm{v} / \mathrm{v}, 20 / 1$) to give 221.5 mg of $\mathrm{HSC}_{11} 3 \mathrm{~T} 6 \mathrm{C}$ in 95% yield as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9$ $\mathrm{Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.66(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{br}, 1 \mathrm{H}), 3.41(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.76(\mathrm{~m}, 4 \mathrm{H})$, $2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.64(\mathrm{~m}, 8 \mathrm{H}), 1.30(\mathrm{~m}, 26 \mathrm{H}), 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 161.62,147.98,146.28,136.11,135.97,133.80,131.70,131.50,130.17,127.71,126.45$, $124.11,123.89,40.02,38.97,31.36,31.31,29.96,29.91,29.54,29.39,29.35,29.24,29.09,29.03$, 28.58, 28.36, 26.88, 22.44, 22.40, 13.93. FT-IR (KBr): N-H $3302 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ asymmetric stretch $2928 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}$, amide I $1624 \mathrm{~cm}^{-1}$, amide II $1551 \mathrm{~cm}^{-1}$, C-H out of plane vibration of thiophene ring $798 \mathrm{~cm}^{-1}$. UV-vis (toluene) $\lambda_{\max }$, $\mathrm{nm}(\log): 284$ (4.18), 349 (4.10).

Synthesis of 2,3-Di(5,5"-dihexyl-[2,2';3',2'’]terthiophene-5'-yl)thiophene-5-carboxylic acid (HOOC7T6C). $\mathrm{n}-\mathrm{BuLi}$ (2.5 M in hexane, $1.2 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added dropwise to a solution of 2,3-di(5,5'"-dihexyl-[2,2';3',2'']terthiophene-5'-yl)thiophene (7T6C, $2.68 \mathrm{~g}, 2.93 \mathrm{mmol}$) in 30 mL of THF at $-78^{\circ} \mathrm{C}$ under N_{2}. After 30 minutes upon addition, about 5 g of dry ice was added and the reaction mixture was warmed up to room temperature very slowly overnight. After normal acidic workup, column chromatography with $\mathrm{CHCl}_{3} /$ ethanol (v/v, 20/1) as an eluent yielded $2.40 \mathrm{~g}(86 \%)$ of HOOC7T6C as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.95$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.66(\mathrm{br}, 4 \mathrm{H}), 2.77(\mathrm{t}, 8 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.65(\mathrm{~m}, 8 \mathrm{H})$, $1.31(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.46,147.89,147.50$, $146.42,146.13,139.79,137.07,134.50,134.25,133.97,133.49,132.50,131.97,131.92,131.88$, $131.58,131.55,131.33,131.10,130.15,127.76,127.58,126.54,126.27,124.18,124.09,124.00$,

This journal is © The Royal Society of Chemistry 2006
$123.95,31.52,31.46,30.12,30.08,28.77,22.57,14.08$. FT-IR (KBr): O-H stretch $3300 \sim 2400 \mathrm{~cm}^{-}$ ${ }^{1}, \mathrm{CH}_{2}$ asymmetric stretch $2925 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{O} 1674 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{O} 1300$ $\mathrm{cm}^{-1}, \mathrm{C}-\mathrm{H}$ out of plane vibration of thiophene ring $800 \mathrm{~cm}^{-1}$.

Synthesis of 2,3-Di(5,5"-dihexyl-[2,2';3',2’]terthiophene-5'-yl)thiophene-5-carbo-xylic acid 2,5-dioxo-pyrrolidin-1-yl ester (NHS7T6C). A solution of HOOC7T6C ($479 \mathrm{mg}, 0.50 \mathrm{mmol}$), N hydroxysuccinimide ($63.3 \mathrm{mg}, 0.55 \mathrm{mmol}$) and N-(3-dimethylamino-propyl)- N '-ethylcarbodiimide hydrochloride ($105.4 \mathrm{mg}, 0.55 \mathrm{mmol}$) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature overnight. The mixture was concentrated in vacuo and the residue was purified by flash chromatography (5% ethanol- CHCl_{3}) affording NHS7T6C ($430 \mathrm{mg}, 82 \%$) as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}), 6.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9$ $\mathrm{Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 6.67(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{~s}, 4 \mathrm{H}), 2.76(\mathrm{~m}, 8 \mathrm{H}), 1.64(\mathrm{~m}, 8 \mathrm{H}), 1.31(\mathrm{~m}$, $24 \mathrm{H}), 0.89(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.96,156.87,148.19,147.74,146.62$, 146.30 , 141.91, 138.72, 134.95, 134.28, 133.68, 132.92, 132.69, 132.06, 131.98, 131.79, 131.67, $131.49,131.27,130.58,130.52,127.87,127.67,126.62,126.31,124.26,124.16,124.07,124.00$, $123.90,31.50,31.38,30.08,30.04,28.67,25.56,22.50,14.03$. FT-IR $(\mathrm{KBr}): \mathrm{CH}_{2}$ asymmetric stretch $2924 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{O} 1741 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{O} 1259 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{N} 1200$ cm^{-1}, C-H out of plane vibration of thiophene ring $800 \mathrm{~cm}^{-1}$.

Synthesis of 2,3-Di(5,5"-dihexyl-[2,2';3', $\mathbf{2}^{\prime \prime}$ ']terthiophene-5'-yl)thiophene-5-carbo-xylic acid (2-mercapto-ethyl)-amide ($\mathbf{H S C}_{2} \mathbf{7 T 6 C}$). A solution of NHS7T6C ($210.9 \mathrm{mg}, 0.20 \mathrm{mmol}$), cysteamine ($19.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 0.5 mL of triethylamine in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature overnight. The mixture was concentrated in vacuo and the residue was purified by flash chromatography (25% hexane- CHCl_{3}) affording $\mathrm{HSC}_{2} 7 \mathrm{~T} 6 \mathrm{C}(159 \mathrm{mg}, 78 \%$) as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{br}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6$ Hz), $6.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}), 6.63(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H})$, $3.02(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 2.71(\mathrm{~m}, 8 \mathrm{H}), 1.62(\mathrm{~m}, 9 \mathrm{H}), 1.29(\mathrm{~m}, 24 \mathrm{H}), 0.87(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.94,147.82,147.46,146.38,146.09,136.44,136.15,134.50,134.10,133.99$, $133.75,132.14,131.96,131.89,131.83,131.66,131.63,131.47,130.93,130.80,130.61,129.92$, $129.83,127.70,127.50,126.49,126.19,124.13,124.03,39.52,37.91,31.54,30.10,28.76,22.59$, 14.15, 14.01. FT-IR (KBr): N-H $3325 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ asymmetric stretch $2928 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}$, amide I $1628 \mathrm{~cm}^{-1}$, amide II $1543 \mathrm{~cm}^{-1}$, C-H out of plane vibration of thiophene ring $799 \mathrm{~cm}^{-1}$.

Synthesis of 2,3-Di(5,5"-dihexyl-[2,2';3',2"]terthiophene-5'-yl)thiophene-5-carbo-xylic acid (11-mercapto-undecyl)-amide ($\mathbf{H S C}_{\mathbf{1 1}} \mathbf{7 T 6 C}$). A solution of NHS7T6C ($316.5 \mathrm{mg}, 0.30 \mathrm{mmol}$), 11-mercaptoundecylamine ($67.5 \mathrm{mg}, 0.33 \mathrm{mmol}$) and 0.5 mL of triethylamine in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature overnight. The mixture was concentrated in vacuo and the residue was purified by flash chromatography (25% hexane- CHCl_{3}) affording $\mathrm{HSC}_{11} 7 \mathrm{~T} 6 \mathrm{C}(326 \mathrm{mg}, 95 \%$) as a yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 2 \mathrm{H}), 6.86$ $(\mathrm{m}, 2 \mathrm{H}), 6.64(\mathrm{~m}, 4 \mathrm{H}), 6.26(\mathrm{br}, 1 \mathrm{H}), 3.43(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 2.77(\mathrm{~m}, 8 \mathrm{H}), 2.67(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz})$, $1.63(\mathrm{~m}, 12 \mathrm{H}), 1.30(\mathrm{~m}, 38 \mathrm{H}), 0.89(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.23$, 147.83, 147.54, 146.39, 146.16, 137.04, 135.51, 134.48, 134.08, 134.00, 133.69, 132.16, 131.94, $131.89,131.83,131.60,131.19,130.79,130.73,129.90,129.84,127.72,127.68,127.53,127.48$, 126.47, 126.23, 124.15, 123.97, 40.17, 39.19, 31.52, 30.11, 30.07, 29.63, 29.50, 29.30, 29.15, 28.74, 28.42, 26.95, 22.54, 14.10, 14.04. FT-IR (KBr): N-H $3298 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ asymmetric stretch $2924 \mathrm{~cm}^{-1}, \mathrm{CH}_{2}$ symmetric stretch $2855 \mathrm{~cm}^{-1}$, amide I $1624 \mathrm{~cm}^{-1}$, amide II $1558 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{H}$ out of plane vibration of thiophene ring $798 \mathrm{~cm}^{-1}$.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006
${ }^{1}$ P. Tavs. Chem. Ber. 1970, 103, 2428.
${ }^{2}$ C. E. McKenna, M. T. Higa, N. H. Cheung, M.-C. McKenna, Tetrahedron Lett. 1977, 2, 155.

