Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an ¹⁷O and ¹H relaxation study of its Gd(III) complex

Petra Lebdušková, ^{ab} Angélique Sour,^b Lothar Helm,^{*b} Éva Tóth, ^{bc} Jan Kotek,^a Ivan Lukeš ^{*a} and André E. Merbach^b

^a Department of Inorganic Chemistry, Charles University, Hlavova 2030, 12840 Prague, Czech Republic. Fax: +420 2 2195 1253; Tel: +420 2 2195 1259; E-mail: lukes@natur.cuni.cz

^b Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,

Switzerland. Fax: +41 21 693 98 75; Tel: +41 21 693 98 76; E-mail: lothar.helm@epfl.ch

^c Centre de biophysique moléculaire, CNRS, rue Charles-Sadron, 45071 Orléans, Cedex 2, France.

Supplementary information

Appendix. Equations used in the analysis of ¹⁷O NMR and ¹H NMRD data.

Table S1. Proton relaxivities $(r_1 / \text{mM}^{-1}\text{s}^{-1})$ of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=5.3 mM, pH=6.25, at variable temperature.

Table S2. Proton relaxivities $(r_1 / \text{mM}^{-1}\text{s}^{-1})$ of $[\text{Gd}(\text{DTTAP-bz-NH}_2)(\text{H}_2\text{O})]^{2^-}$, $c(\text{Gd}^{\text{III}})=4.2 \text{ mM}$, pH=6.75, at variable temperature.

Table S3. Proton relaxivities $(r_1 / \text{mM}^{-1}\text{s}^{-1})$ of $[\text{Gd}(\text{DTTAP-bz-NO}_2)(\text{H}_2\text{O})]^{2^-}$, $c(\text{Gd}^{\text{III}})=3.8 \text{ mM}$, pH=6.59, at variable temperature.

Table S4. Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=39 mM, pH=5.69, P_m =7.95·10⁻⁴ at 9.4 T. Reference was G5-(Y(DTTAP))₆₃, c(Y^{III})=34 mM, pH=5.83.

Table S5. Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=39 mM, pH=5.69, P_m =7.95·10⁻⁴ at 4.7 T. Reference was G5-(Y(DTTAP))₆₃, c(Y^{III})=34 mM, pH=5.83.

Table S6. Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of $[Gd(DTTAP-bz-NH_2)(H_2O)]^{2-}$, $c(Gd^{III})=46$ mM, pH=5.51, P_m=8.19·10⁻⁴ at 9.4 T. Reference was acidified H₂O, pH=3.3.

Table S7. Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of $[Gd(DTTAP-bz-NO_2)(H_2O)]^2$, $c(Gd^{III})=32$ mM, pH=5.91, P_m=5.73·10⁻⁴ at 9.4 T. Reference was acidified H₂O, pH=3.3.

Table S8. Calculation of the number of chelating groups per dendrimer.

Figure S1. Variable temperature reduced ¹⁷O chemical shifts of $[Gd(DTTAP-bz-NO_2)(H_2O)]^{2-}$, $c(Gd^{III})=32 \text{ mM}$, pH=5.91, $P_m=5.73 \cdot 10^{-4}$ at 9.4 T. Reference was acidified H₂O, pH=3.3. **Figure S2.** Variable temperature reduced ¹⁷O chemical shifts of $[Gd(DTTAP-bz-NH_2)(H_2O)]^{2-}$, $c(Gd^{III})=46 \text{ mM}$, pH=5.51, $P_m=8.19 \cdot 10^{-4}$ at 9.4 T. Reference was acidified H₂O, pH=3.3. **Figure S3.** Variable temperature reduced ¹⁷O chemical shifts of $G5-(Gd(DTTAP)_{63}, c(Gd^{III})=39 \text{ mM}$, pH=5.69, $P_m=7.95 \cdot 10^{-4}$ at 4.7 T and 9.4 T. Reference was G5-(Y(DTTAP))_{63}, c(Y^{III})=34 \text{ mM},

pH=5.83.

Table S9. Fitted parameters of G5-(Gd(DTTAP))₆₃.

Table S10. Fitted parameters of $[Gd(DTTAP-bz-NO_2)(H_2O)]^{2-}$ and $[Gd(DTTAP-bz-NH_2)(H_2O)]^{2-}$. The underlined parameters were fixed during the fitting.

Equations.

¹⁷O NMR relaxation:

From the measured ¹⁷O NMR relaxation rates and angular frequencies of the paramagnetic solutions, $1/T_1$, $1/T_2$ and ω , and of the acidified water reference, $1/T_{1A}$, $1/T_{2A}$ and ω_A , one can calculate the reduced relaxation rates, $1/T_{1r}$, $1/T_{2r}$ (Eq. [1] and [2]), where $1/T_{1m}$, $1/T_{2m}$ are the relaxation rates of the bound water and $\Delta \omega_m$ is the chemical shift difference between bound and bulk water, τ_m is the mean residence time or the inverse of the water exchange rate k_{ex} and P_m is the mole fraction of the bound water.^{1,2}

$$\frac{1}{T_{1r}} = \frac{1}{P_m} \left[\frac{1}{T_1} - \frac{1}{T_{1A}} \right] = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1OS}}$$
[1]

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[\frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2} + \frac{1}{T_{2OS}}$$
^[2]

The terms I/T_{1OS} and I/T_{2OS} describe relaxation contributions from water molecules not directly bound to the paramagnetic centre. In previous studies it has been shown that ¹⁷O outer sphere relaxation terms due to water molecules freely diffusing on the surface of Gd-polyaminocarboxylate complexes are negligible. For complexes with phosphate groups relaxation terms due to 2nd sphere water molecules can however be important for longitudinal relaxation I/T_{1r} and have therefore to be included.

$$\frac{1}{T_{1r}} = \frac{1}{T_{1r}^{1st}} + \frac{1}{T_{1r}^{2nd}} = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1r}^{2nd}}$$
[3]

$$\frac{1}{T_{2r}} = \frac{1}{T_{2r}^{1st}} = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2}$$
[4]

First sphere contribution to ¹⁷O relaxation:

The ¹⁷O longitudinal relaxation rates in Gd(III) solutions are the sum of the contributions of the dipole-dipole and quadrupolar (in the approximation developed by Halle for non-extreme narrowing conditions) mechanisms as expressed by Eq. [6]-[7], where γ_S is the electron and γ_I is the nuclear gyromagnetic ratio ($\gamma_S = 1.76 \times 1011 \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$, $\gamma_I = -3.626 \times 10^7 \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$), r_{GdO} is the effective distance between the electron charge and the ¹⁷O nucleus, *I* is the nuclear spin (5/2 for ¹⁷O), χ is the quadrupolar coupling constant and η is an asymmetry parameter:

$$\frac{1}{T_{1m}} = \frac{1}{T_{1dd}} + \frac{1}{T_{1q}}$$
[5]

$$\frac{1}{T_{1dd}} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_I^2 \gamma_S^2}{r_{GdO}^6} S\left(S+1\right) \left[3J\left(\omega_I;\tau_{d1}\right) + 7J\left(\omega_S;\tau_{d2}\right)\right]; \quad J\left(\omega;\tau\right) = \frac{\tau}{1+\left(\omega\tau\right)^2}$$
[6]

$$\frac{1}{\tau_{d1}} = \frac{1}{\tau_m} + \frac{1}{T_{1e}} + \frac{1}{\tau_{RO}}$$

$$\frac{1}{T_{1q}} = \frac{3\pi^2}{10} \frac{2I+3}{I^2(2I-1)} \chi^2 \left(1 + \frac{\eta^2}{3}\right) \left[0.2J_1(\omega_I;\tau_{RO}) + 0.8J_2(\omega_I;\tau_{RO})\right]; \quad J_n(\omega;\tau) = \frac{\tau}{1 + (n\omega\tau)^2}$$
[7]

In the transverse relaxation the scalar contribution, $1/T_{2sc}$, is dominating, Eq. [8]. $1/\tau_{s1}$ is the sum of the exchange rate constant and the electron spin relaxation rate.

$$\frac{1}{T_{2m}} \approx \frac{1}{T_{2SC}} = \frac{S(S+1)}{3} \left(\frac{A}{\hbar}\right)^2 \tau_{S1}$$
[8]

$$\frac{1}{\tau_{s1}} = \frac{1}{\tau_m} + \frac{1}{T_{le}}$$
[9]

For slowly rotating species with internal degrees of freedom, the spectral density functions J are described the Lipari-Szabo approach.^{3,4} In this model we distinguish two statistically independent motions; a rapid local motion with a correlation time τ_l and a slower global motion with a correlation time τ_g . Supposing the global molecular reorientation is isotropic, the relevant spectral density functions are expressed as in Eq. [10]-[13], where the general order parameter S² describes the degree of spatial restriction of the local motion. If the local motion is isotropic, S²=0; if the rotational dynamics is only governed by the global motion, S²=1.

$$J(\omega;\tau_{di}) = \left(\frac{S^{2}\tau_{dig}}{1+\omega^{2}\tau_{dig}^{2}} + \frac{(1-S^{2})\tau_{di}}{1+\omega^{2}\tau_{di}^{2}}\right)$$
[10]

$$\frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau_g} + \frac{1}{T_{ie}} \quad ; \quad \frac{1}{\tau_{di}} = \frac{1}{\tau_m} + \frac{1}{\tau^o} + \frac{1}{T_{ie}} \quad ; \quad i = 1,2$$
[11]

$$\frac{1}{\tau^o} = \frac{1}{\tau_o} + \frac{1}{\tau_l^o}$$
[12]

$$J_n(\omega) = \left(\frac{S^2 \tau_g}{1 + \left(n\omega\tau_g\right)^2} + \frac{\left(1 - S^2\right)\tau^O}{1 + \left(n\omega\tau^O\right)^2}\right)$$
[13]

Second sphere contribution to ¹⁷O relaxation:

$$\frac{1}{T_1^{2nd}} \approx \frac{q^{2nd}}{q^{1st}} \frac{1}{T_{pm}^{2nd}} = \frac{q^{2nd}}{q^{1st}} \left(\frac{1}{T_{1dd}^{2nd}} + \frac{1}{T_{1d}^{2nd}} \right)$$
[14]

$$\frac{1}{T_{1dd}^{2nd}} = C_{dd}^{2nd,O} \left(\frac{3\tau_{d1}^{2nd,O}}{1 + (\omega_1 \tau_{d1}^{2nd,O})^2} + \frac{7\tau_{d2}^{2nd,O}}{1 + (\omega_5 \tau_{d2}^{2nd,O})^2} \right)$$
[15]

$$C_{dd}^{2nd,O} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_{17_O}^2 \gamma_S^2}{(r_{GdO}^{2nd})^6} S(S+1)$$
[16]

$$\frac{1}{T_{lq}^{2nd}} = \frac{3\pi^2}{10} \frac{2I+3}{I^2 (2I-1)} \chi^2 \left(1+\eta^2/3\right) \left(\frac{0.2\tau^{2nd,O}}{1+\left(\omega_1 \tau^{2nd,O}\right)^2} + \frac{0.8\tau^{2nd,O}}{1+\left(2\omega_1 \tau^{2nd,O}\right)^2}\right)$$

$$\frac{1}{T^{0,2nd}} = \frac{1}{T} + \frac{1}{T^{0}} \cong \frac{1}{T^{0}}$$
[17]

$$\frac{1}{\tau_{ex}^{2nd,0}} = k_{ex}^{2nd} + \frac{1}{\tau_{v,2nd}^{0,2nd}} + \frac{1}{T_{in}}$$
[18]

¹H NMRD:

The measured longitudinal proton relaxation rate, R_1^{obs} is the sum of a paramagnetic and a diamagnetic contribution as expressed in Eq. [19], where r_1 is the proton relaxivity:

$$R_{1}^{obs} = R_{1}^{d} + R_{1}^{p} = R_{1}^{d} + r_{1} \left[Gd^{3+} \right]$$
[19]

The relaxivity is here given by the sum of inner sphere, second sphere and outer sphere contributions: $r_1 = r_{1is} + r_{1,2nd} + r_{1os}$ [20]

Inner sphere ¹H relaxation:

The inner sphere term is given in Eq. [21], where q^{lst} is the number of inner sphere water molecules.⁵

$$r_{1is} = \frac{1}{1000} \times \frac{q^{1st}}{55.55} \times \frac{1}{T_{1m}^H + \tau_m}$$
[21]

The longitudinal relaxation rate of inner sphere protons, $1/T_{Im}^{H}$ is expressed by Eq. [22], where r_{GdH} is the effective distance between the electron charge and the ¹H nucleus, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the Gd(III) electron spin.

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{GdH}^{6}} S\left(S+1\right) \left[3J\left(\omega_{I};\tau_{d1}\right)+7J\left(\omega_{S};\tau_{d2}\right)\right]$$
[22]

$$J(\omega;\tau_{di}) = \left(\frac{S^{2}\tau_{dig}}{1+\omega^{2}\tau_{dig}^{2}} + \frac{(1-S^{2})\tau_{di}}{1+\omega^{2}\tau_{di}^{2}}\right); \quad i = 1,2$$
[23]

$$\frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau_g} + \frac{1}{T_{ie}}; \quad \frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau^H} + \frac{1}{T_{ie}}; \quad i = 1,2$$
[24]

$$\frac{1}{\tau^{\rm H}} = \frac{1}{\tau_{\rm g}} + \frac{1}{\tau_{\rm l}^{\rm H}}$$
[25]

The spectral density functions are given by Eq. [23].

Second sphere ¹H relaxation:

$$r_{1}^{2nd} = \frac{1}{1000} \times \frac{q^{2nd}}{55.55} \times \frac{1}{T_{1dd}^{2nd,H} + \tau_{m}^{2nd}} \cong \frac{1}{1000} \times \frac{q^{2nd}}{55.55} \times \frac{1}{T_{1dd}^{2nd,H}}$$
[26]

$$\frac{1}{T_{1dd}^{2nd,H}} = C_{dd}^{2nd,O} \left(\frac{3\tau_{d1}^{2nd,H}}{1 + (\omega_1 \tau_{d1}^{2nd,H})^2} + \frac{7\tau_{d2}^{2nd,H}}{1 + (\omega_8 \tau_{d2}^{2nd,H})^2} \right)$$
[27]

$$C_{dd}^{2nd,H} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_{1_H}^2 \gamma_S^2}{(r_{cdo}^{2nd})^6} S(S+1)$$
[28]

$$\frac{1}{\tau_{di}^{2nd,H}} = k_{ex}^{2nd} + \frac{1}{\tau^{H}} + \frac{1}{T_{ie}}$$
[29]

$$\frac{1}{\tau^{\rm H}} = \frac{1}{\tau_{\rm g}} + \frac{1}{\tau_{\rm l}^{\rm H}}$$
[30]

Outer sphere ¹H relaxation:

The outer-sphere contribution can be described by Eq. [31] where N_A is the Avogadro constant, and J_{os} is its associated spectral density function.^{6,7}

$$r_{1os} = \frac{32N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_s^2 \gamma_I^2}{a_{GdH} D_{GdH}} S(S+1) \left[3J_{os}(\omega_I; T_{1e}) + 7J_{os}(\omega_S; T_{2e}) \right]$$
[31]

$$J_{os}(\omega, T_{je}) = \operatorname{Re}\left[\frac{1 + \frac{1}{4}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2}}{1 + \left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2} + \frac{4}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right) + \frac{1}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{3/2}}\right]; \quad j = 1, 2$$

$$T_{GdH} = \frac{a_{GdH}^{2}}{D_{GdH}}$$

$$(33)$$

 a_{GdH} is the distance of closes approach and D_{GdH} is the diffusion coefficient for the diffusion of a water proton relative to the Gd(III) complex.

Electron spin relaxation:

The longitudinal and transverse electronic relaxation rates, $1/T_{1e}$ and $1/T_{2e}$ are described by Solomon-Bloembergen-Morgan theory modified by Powell (Eqs. [34]-[35]), where τ_V is the correlation time for the modulation of the zero-field-splitting interaction.

$$\left(\frac{1}{T_{1e}}\right)^{2FS} = \frac{1}{25}\Delta^2 \tau_{\nu} \left\{ 4S(S+1) - 3 \right\} \left(\frac{1}{1 + \omega_s^2 \tau_{\nu}^2} + \frac{4}{1 + 4\omega_s^2 \tau_{\nu}^2} \right)$$
[34]

$$\left(\frac{1}{T_{2e}}\right)^{ZFS} = \Delta^2 \tau_{\nu} \left(\frac{5.26}{1 + 0.372\omega_S^2 \tau_{\nu}^2} + \frac{7.18}{1 + 1.24\omega_S \tau_{\nu}}\right)$$
[35]

Temperature dependences of water exchange rates and correlation times:

The exchange rates are supposed to follow the Eyring equation. In Eq. [**36**] ΔS^{\ddagger} and ΔH^{\ddagger} are the entropy and enthalpy of activation for the water exchange process, and k_{ex}^{298} is the exchange rate at 298.15 K. In Eq. [**37**] $\Delta H^{\ddagger 2nd}$ is the enthalpy of activation for the second sphere water exchange process and $k_{ex}^{2nd,298}$ is the corresponding exchange rate at 298 K.

$$k_{ex} = \frac{1}{\tau_m} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[36]

$$k_{ex}^{2nd} = \frac{k_{ex}^{2nd,298}}{298.14} \exp\left\{\frac{\Delta H^{\ddagger 2nd}}{T} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[37]

All correlation times and the diffusion constant are supposed to obey an Arrhenius law:

$$\tau = \tau^{298} \exp\left\{\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
[38]

$$D_{GdH} = D_{GdH}^{298} \exp\left\{\frac{E_{GdH}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[39]

ν (¹ H)/MHz	5°C	15°C	25°C	37°C	50°C
0.010	22.6	23.2	22.5	20.2	18.1
0.014	22.7	23.4	22.3	20.3	18.1
0.021	22.4	23.4	22.5	20.1	18.0
0.030	22.4	23.4	22.4	20.2	18.1
0.043	22.5	23.4	22.4	20.3	18.1
0.062	22.5	23.3	22.5	20.3	18.0
0.089	22.5	23.3	22.5	20.1	18.0
0.127	22.5	23.3	22.3	20.1	17.9
0.183	22.4	23.2	22.3	20.1	17.9
0.264	22.3	23.2	22.2	20.1	17.8
0.379	22.0	22.8	21.9	19.8	17.5
0.546	21.8	22.4	21.6	19.4	17.2
0.784	21.1	21.8	21.0	18.8	16.7
1.13	20.6	21.3	20.4	18.2	16.2
1.62	19.9	20.5	19.6	17.7	15.6
2.34	19.1	19.9	18.8	16.7	15.0
3.36	18.5	19.0	18.0	16.2	14.4
4.83	17.9	18.8	17.3	15.6	13.7
6.95	17.5	19.0	17.2	15.5	13.4
10.0	21.4	22.2	21.5	18.8	16.4
11.5	22.8	-	23.0	20.0	17.7
12.0	-	23.9	-	-	-
13.2	23.8	-	24.7	21.6	18.9
13.6	-	24.9	-	-	-
15.2	25.1	-	26.5	23.5	20.3
15.5	-	26.4	-	-	-
17.4	26.0	-	28.3	25.2	22.2
17.6	-	27.6	-	-	-
20	27.6	28.8	30.4	26.8	23.5
30	26.0	29.4	30.6	28.5	24.1
40	24.7	27.9	28.9	27.3	23.5
60	20.6	22.4	23.0	22.0	19.8
100	14.8	14.8	14.7	14.1	13.2
200	9.10	8.74	8.34	7.83	7.55

Table S1: Proton relaxivities $(r_1 / \text{mM}^{-1}\text{s}^{-1})$ of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=5.3 mM, pH=6.25, at variable temperature.

v (¹ H)/MHz	5°C	25°C	37°C	50°C
0.010	14.0	9.58	8.02	6.26
0.014	14.0	9.56	8.07	6.26
0.021	14.0	9.63	7.99	6.30
0.030	13.8	9.61	7.93	6.26
0.043	13.9	9.64	8.15	6.25
0.062	13.9	9.61	8.06	6.22
0.089	14.0	9.56	8.04	6.22
0.127	14.0	9.59	8.05	6.25
0.183	13.9	9.59	8.04	6.22
0.264	14.0	9.58	8.07	6.25
0.379	13.9	9.53	8.11	6.25
0.546	13.5	9.56	7.98	6.18
0.784	13.7	9.48	7.99	6.17
1.13	13.5	9.37	7.85	6.15
1.62	13.2	9.27	7.86	6.07
2.34	12.7	9.11	7.68	6.00
3.36	12.3	8.76	7.49	5.87
4.83	11.6	8.27	7.20	5.64
6.95	10.9	7.81	6.72	5.36
10.0	11.1	7.27	5.97	4.80
10.0	11.0	-	-	-
11.6	10.9	7.08	5.68	4.55
13.4	10.8	6.87	5.39	4.34
15.5	10.8	6.62	5.20	4.09
18	10.8	6.44	4.97	3.93
20	10.7	6.34	5.02	4.08
30	10.6	6.34	4.75	3.76
40	10.6	6.22	4.60	3.61
60	10.6	6.23	4.51	3.46
100	10.3	6.08	4.43	3.42
200	9.48	5.88	4.26	3.32
400	7.92	5.49	4.19	3.24

Table S2: Proton relaxivities $(r_1 / \text{mM}^{-1}\text{s}^{-1})$ of $[\text{Gd}(\text{DTTAP-bz-NH}_2)(\text{H}_2\text{O})]^{2^-}$, $c(\text{Gd}^{111})=4.2 \text{ mM}$, pH=6.75, at variable temperature.

ν (¹ H)/MHz	5°C	25°C	37°C	50°C
0.010	14.2	10.1	8.22	6.82
0.014	14.2	10.1	8.24	6.84
0.021	14.3	10.1	8.24	6.81
0.030	14.3	10.1	8.21	6.84
0.043	14.2	10.1	8.22	6.80
0.062	14.2	10.1	8.24	6.81
0.089	14.2	10.1	8.22	6.80
0.127	14.2	10.1	8.21	6.81
0.183	14.2	10.1	8.19	6.79
0.264	14.1	10.1	8.18	6.79
0.379	14.1	10.1	8.20	6.78
0.546	14.0	10.1	8.15	6.74
0.784	13.8	9.99	8.13	6.75
1.13	13.6	9.81	8.04	6.68
1.623	13.3	9.67	7.96	6.59
2.34	12.8	9.43	7.72	6.48
3.36	12.4	9.07	7.48	6.26
4.83	11.6	8.58	7.08	5.94
6.95	11.0	7.77	6.54	5.49
10.0	10.9	7.58	6.07	5.16
11.5	10.7	7.27	5.84	4.93
13.2	10.8	7.04	5.61	4.68
15.2	10.6	6.87	5.34	4.45
17.4	10.6	6.72	5.16	4.31
20	10.7	6.76	5.24	4.34
30	10.2	6.34	4.74	3.76
40	10.2	6.27	4.60	3.61
60	10.3	6.23	4.51	3.47
100	9.90	6.01	4.45	3.39
200	9.36	5.84	4.32	3.32
400	8.23	5.46	4.23	3.23

Table S3: Proton relaxivities $(r_1 / \text{mM}^{-1}\text{s}^{-1})$ of $[\text{Gd}(\text{DTTAP-bz-NO}_2)(\text{H}_2\text{O})]^{2-}$, $c(\text{Gd}^{111})=3.8 \text{ mM}$, pH=6.59, at variable temperature.

t / °C	T / K	1000/T / K ⁻¹	T_1 (Gd)/s	T_1 (Y)/s	$T_2(Gd)/s$	$T_2(\mathbf{Y})/\mathbf{s}$	$\ln(1/T_{1r})$	$\ln(1/T_{2r})$
5.4	278.6	3.59	2.41E-03	2.80E-03	9.15E-04	2.00E-03	11.19	13.52
10.7	283.9	3.52	2.91E-03	3.39E-03	8.38E-04	2.47E-03	11.02	13.81
18.3	291.5	3.43	3.47E-03	4.31E-03	6.80E-04	3.24E-03	11.16	14.20
23.6	296.8	3.37	3.93E-03	5.02E-03	6.87E-04	3.92E-03	11.15	14.23
30.3	303.5	3.30	4.59E-03	6.11E-03	7.02E-04	5.00E-03	11.13	14.25
40.2	313.4	3.19	5.60E-03	7.83E-03	9.25E-04	6.77E-03	11.07	13.98
49.2	322.4	3.10	6.73E-03	9.62E-03	1.16E-03	8.62E-03	10.93	13.75
59.7	332.9	3.00	7.99E-03	1.19E-02	1.66E-03	1.10E-02	10.86	13.38
70.5	343.7	2.91	9.62E-03	1.47E-02	2.49E-03	1.40E-02	10.72	12.94
81.3	354.5	2.82	1.17E-02	1.78E-02	3.76E-03	1.71E-02	10.51	12.47

Table S4: Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=39 mM, pH=5.69, P_m =7.95·10⁻⁴ at 9.4 T. Reference was G5-(Y(DTTAP))₆₃, c(Y^{III})=34 mM, pH=5.83.

Table S5: Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=39 mM, pH=5.69, P_m=7.95·10⁻⁴ at 4.7 T. Reference was G5-(Y(DTTAP))₆₃, c(Y^{III})=34 mM, pH=5.83.

t / °C	T / K	1000/T / K ⁻¹	T_1 (Gd)/s	T_1 (Y)/s	$T_2(Gd)/s$	$T_2(\mathbf{Y})/\mathbf{s}$	$\ln(1/T_{1r})$	$\ln(1/T_{\rm 2r})$
6.0	279.2	3.58	2.05E-03	2.68E-03	8.98E-04	1.93E-03	11.89	13.53
10.3	283.5	3.53	2.31E-03	3.14E-03	9.12E-04	2.30E-03	11.88	13.63
14.3	287.5	3.48	2.48E-03	3.52E-03	7.81E-04	2.67E-03	11.92	13.95
18.8	292.0	3.43	2.74E-03	4.11E-03	8.41E-04	3.13E-03	11.94	13.91
24.1	297.3	3.36	3.15E-03	4.88E-03	8.52E-04	3.83E-03	11.86	13.95
29.6	302.8	3.30	3.57E-03	5.64E-03	8.47E-04	4.58E-03	11.77	14.01
37.2	310.4	3.22	4.23E-03	6.94E-03	1.06E-03	5.90E-03	11.66	13.78
47.9	321.1	3.11	5.27E-03	8.86E-03	1.27E-03	7.90E-03	11.48	13.63
58.7	331.9	3.01	6.52E-03	1.14E-02	1.81E-03	1.05E-02	11.32	13.26
71.1	344.3	2.90	8.58E-03	1.45E-02	2.72E-03	1.35E-02	10.99	12.82
81.8	355.0	2.82	1.09E-02	1.74E-02	3.86E-03	1.68E-02	10.66	12.43

_	t / °C	T / K	1000/T / K ⁻¹	T_1 (Gd)/s	$T_1 (H_2O)/s$	$T_2(Gd)/s$	$T_2(H_2O)/s$	$\ln(1/T_{1r})$	$\ln(1/T_{\rm 2r})$
	5.8	279.0	3.58	3.28E-03	3.99E-03	7.85E-04	4.02E-03	11.09	14.04
	12.5	285.7	3.50	4.16E-03	5.02E-03	6.68E-04	5.00E-03	10.82	14.27
	19.6	292.8	3.42	5.15E-03	6.17E-03	6.47E-04	6.26E-03	10.58	14.34
	29.1	302.3	3.31	6.63E-03	7.95E-03	7.12E-04	7.95E-03	10.33	14.26
	39.2	312.4	3.20	8.60E-03	1.02E-02	9.70E-04	1.03E-02	9.99	13.95
	45.9	319.1	3.13	9.95E-03	1.16E-02	1.29E-03	1.16E-02	9.76	13.65
	55.4	328.6	3.04	1.20E-02	1.39E-02	1.77E-03	1.39E-02	9.58	13.31
	59.9	333.1	3.00	1.30E-02	1.51E-02	2.14E-03	1.50E-02	9.49	13.10
	64.5	337.7	2.96	1.40E-02	1.64E-02	2.56E-03	1.63E-02	9.47	12.90
	75.4	348.6	2.87	1.70E-02	1.95E-02	4.10E-03	1.94E-02	9.12	12.37
	85.7	358.9	2.79	1.96E-02	2.25E-02	5.92E-03	2.25E-02	8.99	11.93

Table S6: Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of $[Gd(DTTAP-bz-NH_2)(H_2O)]^{2-}$, $c(Gd^{III})=46$ mM, pH=5.51, $P_m=8.19\cdot10^{-4}$ at 9.4 <u>T. Reference was acidified H₂O, pH=3.3</u>.

Table S7: Variable temperature reduced transverse and longitudinal ¹⁷O relaxation rates of $[Gd(DTTAP-bz-NO_2)(H_2O)]^2$, $c(Gd^{III})=32$ mM, pH=5.91, $P_m=5.73\cdot10^{-4}$ at <u>9.4 T. Reference was acidified H_2O, pH=3.3</u>.

t/°C	T / K	1000/T / K ⁻¹	T_1 (Gd)/s	T_1 (H ₂ O)/s	$T_2(Gd)/s$	$T_2(H_2O)/s$	$\ln(1/T_{1r})$	$\ln(1/T_{2r})$
5.8	279.0	3.58	3.43E-03	3.99E-03	1.07E-03	4.02E-03	11.16	13.99
12.5	285.7	3.50	4.39E-03	5.02E-03	9.24E-04	5.00E-03	10.81	14.25
19.6	292.8	3.42	5.39E-03	6.17E-03	8.37E-04	6.26E-03	10.63	14.41
29.1	302.3	3.31	6.93E-03	7.95E-03	9.13E-04	7.95E-03	10.38	14.34
39.2	312.4	3.20	8.95E-03	1.02E-02	1.20E-03	1.03E-02	10.05	14.07
45.9	319.1	3.13	1.02E-02	1.16E-02	1.50E-03	1.16E-02	9.93	13.83
55.4	328.6	3.04	1.24E-02	1.39E-02	2.09E-03	1.39E-02	9.63	13.47
59.9	333.1	3.00	1.35E-02	1.51E-02	2.45E-03	1.50E-02	9.53	13.30
64.5	337.7	2.96	1.46E-02	1.64E-02	3.02E-03	1.63E-02	9.47	13.06
75.4	348.6	2.87	1.75E-02	1.95E-02	4.63E-03	1.94E-02	9.20	12.57
85.7	358.9	2.79	2.04E-02	2.25E-02	6.66E-03	2.25E-02	9.01	12.13

	G5-(Gd(DTTAP)) _{c2}
n = number of mols of chelate per gram of product obtained from complexometric titration	9.89×10 ⁻⁴
Total percentage of C obtained from elemental analysis	48.9
Percentage of carbon in the chelate (DTTAP-bz-NCS = $C_{21}H_{29}N_4O_{10}S$) calculated from n	24.9
Percentage of carbon in PAMAM skeleton	48.9-24.9 = 24.0
Formula of PAMAM skeleton	$\begin{array}{c} G5\text{-}(NH_2)_{128} \\ C_{1262}H_{2528}N_{506}O_{252} \end{array}$
x = number of chelate bound on the dendrimer	63
Percentage of substituted amino groups	49%
Total percentage of N calculated by using x	16.6
Total percentage of N obtained by elemental analysis	17.3
Total percentage of S calculated by using x	3.1
Total percentage of S obtained by elemental analysis	2.8
Total percentage of P calculated by using x	3.0
Total percentage of P obtained by elemental analysis	2.7

Table S8. Calculation of the number of chelating groups per dendrimer.

Figure S1. Variable temperature reduced ¹⁷O chemical shifts of $[Gd(DTTAP-bz-NO_2)(H_2O)]^{2^-}$, $c(Gd^{III})=32 \text{ mM}$, pH=5.91, $P_m=5.73 \cdot 10^{-4}$ at 9.4 T. Reference was acidified H₂O, pH=3.3.

Figure S2. Variable temperature reduced ¹⁷O chemical shifts of $[Gd(DTTAP-bz-NH_2)(H_2O)]^{2^-}$, $c(Gd^{III})=46 \text{ mM}, \text{pH}=5.51, P_m=8.19 \cdot 10^{-4} \text{ at } 9.4 \text{ T}$. Reference was acidified H₂O, pH=3.3.

Figure S3. Variable temperature reduced ¹⁷O chemical shifts of G5-(Gd(DTTAP))₆₃, c(Gd^{III})=39 mM, pH=5.69, P_m =7.95·10⁻⁴ at 4.7 T (\circ) and 9.4 T (\blacktriangle). Reference was G5-(Y(DTTAP))₆₃, c(Y^{III})=34 mM, pH=5.83.

Parameter	$G5-(Gd(DTTAP))_{63}$
$k_{\rm ex}^{298} [10^6 {\rm s}^{-1}]$	5.0±0.2
$\Delta H^{\ddagger} [kJ mol^{-1}]$	56.2±1.0
ΔS^{\ddagger} [J mol ⁻¹ K ⁻¹]	+71.9±3
$A/\hbar \ [10^6 \text{ rad s}^{-1}]$	<u>-3.8</u>
${\tau_{\rm gO}}^{298} [{\rm ps}]$	4417±340
E_{gO} [kJ mol ⁻¹]	21±2
$\tau_{10}^{298} [\mathrm{ps}]$	71±3
E_{IO} [kJ mol ⁻¹]	21±2
S^2	$0.28{\pm}0.01$
${\tau_{\rm V}}^{298} [{\rm ps}]$	21±2
E _V [kJ mol ⁻¹]	5.5±5.4
$\Delta^2 [10^{20} \text{ s}^{-2}]$	0.62 ± 0.11
$\delta g_{L}^{2} [10^{-2}]$	1.7±0.1
r _{GdO} [Å]	<u>2.5</u>
r _{GdHouter} [Å]	<u>3.5</u>
$\chi (1+\eta^2/3)^{1/2}$ [MHz]	7.58
q	<u>1</u>
q_{2nd}	<u>2</u>
${\tau_{\rm M}}^{298}_{ m 2nd} [{ m ps}]$	<u>50</u>
$\Delta H^{\ddagger}_{2nd} [kJ mol^{-1}]$	<u>35.0</u>
r^{2nd}_{GdH} [Å]	<u>3.5</u>
r^{2nd}_{GdO} [Å]	<u>4.1</u>

Table S9. Fitted parameters of G5-(Gd(DTTAP))₆₃. The underlined parameters were fixed during the fitting.

 P_{1} P_{2} P_{2}

Parameter	$[Gd(DTTAP-bz-NH_2)(H_2O)]^{2-}$	$[Gd(DTTAP-bz-NO_2)(H_2O)]^{2-}$
$k_{\rm ex}^{298} [10^6 {\rm s}^{-1}]$	8.9±1.3	8.3±0.6
$\Delta H^{\ddagger} [kJ mol^{-1}]$	48.1±3	48.5±2
$\Delta S^{\ddagger} [J mol^{-1}K^{-1}]$	$+49.8\pm10$	$+50.3\pm8$
$A/\hbar \ [10^6 \text{ rad s}^{-1}]$	<u>-3.8</u>	<u>-3.8</u>
$\tau_{ m RO}^{298} [m ps]$	116±2	117±10
$E_R [kJ mol^{-1}]$	20.5 ± 0.8	18 ± 1
${\tau_{ m V}}^{298}$ [ps]	28.2±0.5	26.3±0.4
$E_V [kJ mol^{-1}]$	<u>1</u>	<u>1</u>
$\Delta^2 [10^{20} \text{ s}^{-2}]$	0.403 ± 0.003	$0.40{\pm}0.01$
$D^{298}_{GdH} [10^{-10} m^2 s^{-1}]$	25±2	25±2
$E_{\rm DGdH}$ [kJ mol ⁻¹]	30±1	30±1
$\delta g_{L}^{2} [10^{-2}]$	3.3±0.6	2.8±0.5
${ au_{ m RH}}^{298}\!\!/{ au_{ m RO}}^{298}$	0.81 ± 0.04	$0.85 {\pm} 0.08$
r _{GdO} [Å]	<u>2.5</u>	<u>2.5</u>
$r_{ m GdH}$ [Å]	<u>3.1</u>	<u>3.1</u>
r _{GdHouter} [Å]	<u>3.5</u>	<u>3.5</u>
$\chi (1+\eta^2/3)^{1/2}$ [MHz]	<u>7.58</u>	<u>7.58</u>
q	<u>1</u>	<u>1</u>
q _{2nd}	<u>2</u>	<u>2</u>
$\tau_{\rm M}^{298}{}_{2\rm nd} [\rm ps]$	<u>50</u>	<u>50</u>
$\Delta H^{\ddagger}_{2nd} [kJ mol^{-1}]$	<u>35.0</u>	<u>35.0</u>
r^{2nd}_{GdH} [Å]	<u>3.5</u>	<u>3.5</u>
r^{2nd}_{GdO} [Å]	4.1	4.1

Table S10. Fitted parameters of [Gd(DTTAP-bz-NO₂)(H₂O)]²⁻ and [Gd(DTTAP-bz-NH₂)(H₂O)]²⁻. The underlined parameters were fixed during the fitting.

References for equations.

- ¹ T. J. Swift, R. E. Connick, J. Chem. Phys., 1962, 37, 307.
- ² J. R. Zimmermann, W. E. Brittin, *J. Phys. Chem.*, 1957, **61**, 1328.

- ² J. R. Zimmermann, W. E. Brittin, J. Phys. Chem., 1957, **61**, 1328.
 ³ G. Lipari, S. Szabó, J. Am. Chem. Soc., 1982, **104**, 4546.
 ⁴ G. Lipari, S. Szabó, J. Am. Chem. Soc., 1982, **104**, 4559.
 ⁵ Z. Luz, S. Meiboom, J. Chem. Phys., 1964, **40**, 2686.
 ⁶ J. H. Freed, J. Chem. Phys., 1978, **68**, 4034.
 ⁷ S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn. Reson. Spectrosc., 1991, **22**, 487.