Table S1 Selected interatomic distances d /pm for

(CH₃NH₃)₂[Gd₂(CCl₃COO)₆(H₂O)₆](CCl₃COO)₂ ·2CCl₃COOH (1) and

 $(NH_{3}CH_{3})_{2}[Gd_{4}(OH)_{4}(CCl_{3}COO)_{10}(H_{2}O)_{6}] \cdot 2H_{2}O(2)$

	(1)	<i>d</i> /pm		(2)	<i>d</i> /pm
Gd1	-011	238.4(4)	Gd1	-01	239.3(8)
	$-O12^{a}$	237.1(4)		-O2	238.8(9)
	-O21	239.5(5)		-O4	237.1(8)
	$-O21^{a}$	290.9(4)		-O01	238.9(8)
	$-O22^{a}$	247.5(4)		-O12	240.7(12)
	-031	233.2(4)		-O41	244.8(11)
	-O1W	243.3(4)		-071	234.7(9)
	–O2W	239.4(4)		-01W	246.9(10)
	-O3W	248.2(5)	Gd2	-O2	244.2(8)
	$-\mathrm{Gd1}^{a}$	420.2(3)		-03	236.2(9)
N1	$-O22^{b}$	294.4(3)		-O4	237.6(9)
	-041^{c}	295.3(3)		-042	234.9(11)
	$-O42^{a}$	280.6(1)		-081	232.9(13)
	$-051^{e_{j}}$	307.8(3)		-03W	244.8(10)
	$-O2W^{c}$	311.2(2)		-04W	241.7(11)
C11	-011	124.1(7)		-06W	242.5(12)
	-012	123.6(7)	Gd3	-01	239.2(9)
C21	-021	123.9(8)		-02	241.8(8)
~~	-022	124.0(7)		-03	242.9(8)
C31	-031	123.8(7)		-002	250.3(10)
0.11	-032	122.3(7)		-021	243.4(11)
C41	-041	122.0(9)		-062	251.4(10)
051	-042	124.9(9)		-082	241.6(13)
C51	-051	118.9(8)		-091	239.7(10)
	-052	129.3(9)	C 14	-02W	249.7(8)
			Gd4	-01	240.1(8)
				-03	238.7(9)
				-04	239.4(9)
				-011	230.0(11)
				-051	233.3(10)
				-051	232.3(9) 240.9(9)
				-001	240.9(9) 249.5(13)
			Gd1	-03W	382.6(1)
			Gui	-Gd3	387.3(1)
				-Gd4	387.3(1) 382.2(1)
			Gd2	-Gd3	3853(1)
			042	-Gd4	3803(1)
			Gd3	-Gd4	388.0(1)
			N1	-022^{c}	280.3(2)
				-072	279.4(3)
				-07W	284.0(3)
			N2	-002	289.2(3)
				-062	282.3(3)
				-O2W	284.2(3)
~	,		I.	· ·	(-)

Symmetry transformations used to generate atoms:

 $^{a)}\!-\!x,\!-\!y,\!-\!z\!+\!1;\,^{b)}\!-\!x,\!-\!y\!+\!1,\!-\!z\!+\!1;\,^{c)}\!x,\!y\!+\!1,\!z;\,^{d)}\!-\!x\!+\!1,\!-\!y\!+\!1,\!-\!z;\,^{e)}\!-\!x\!+\!1,\!-\!y\!+\!2,\!-\!z$

Fig. S1 Comparison of measured (\bigcirc , $H^{(ir)}$:500 Oe; \triangle , $H^{(ir)}$:1000 Oe) and calculated (—) effective Bohr magneton numbers for 1.

Fig. S2 Comparison of measured (\bigcirc , $H^{(ir)}$:500 Oe; \triangle , $H^{(ir)}$:1000 Oe) and calculated (—) effective Bohr magneton numbers for 3.