Mesomorphism of ionic allylpalladium(II) complexes containing pzr2py as ligands and $[BF_4]^-$, $[PF_6]^-$ or $[CF_3SO_3]^-$ as counteranions (pzr2py = 2-[3,5-bis(4-alkyloxyphenyl)pyrazol-1-yl]pyridine)

Mari Carmen Torralba^a, José Antonio Campo^a, José Vicente Heras^a, Duncan W. Bruce^b and Mercedes Cano^a.*

a Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, E-28040 MADRID, Spain

b Department of Chemistry, University of York, Heslington, YORK YO10 5DD, UK

SUPPLEMENTARY INFORMATION

Spectroscopic data of the compounds studied:

• 2-[3,5-bis(4-decyloxyphenyl)pyrazol-1-yl]pyridine (pz^{dp2}py)

 $pz^{dp2}py$:. IR (KBr, cm⁻¹): v(CN) 1614 (vs), γ (CH)_{py} 792 (m). ¹H-NMR (CDCl₃, δ , J in Hz): 8.42 (ddd, ${}^{3}J = 4.9$, ${}^{4}J = 2.0$, ${}^{5}J = 0.8$, 1H, H6), 7.85 (d, ${}^{3}J = 9.0$, 2H, Ho), 7.74 (ddd, ${}^{3}J = 8.1$, ${}^{3}J = 7.3$, ${}^{4}J = 2.0$, 1H, H4), 7.49 (ddd, ${}^{3}J = 8.1$, ${}^{4}J = {}^{5}J = 1.0$, 1H, H3), 7.22 (d, ${}^{3}J = 8.8$, 2H, Ho), 7.20 (ddd, ${}^{3}J = 7.2$, ${}^{3}J = 4.8$, ${}^{4}J = 1.0$, 1H, H5), 6.95 (d, ${}^{3}J = 9.0$, 2H, Hm), 6.84 (d, ${}^{3}J = 9.0$, 2H, Hm), 6.71 (s, 1H, H4'), 4.00 (t, ${}^{3}J = 6.8$, 2H, OCH₂), 3.96 (t, ${}^{3}J = 6.6$, 2H, OCH₂), 1.79 (m, 4H, CH₂), 1.5-1.2 (m, 28H, CH₂), 0.88 (t, ${}^{3}J = 6.8$, 6H, CH₃).

•
$$[Pd(\eta^3 - C_3H_5)(pz^{R_2}py)][BF_4]$$
 ($R = C_6H_4OC_nH_{2n+1}$; $n = 10$ ($\mathbf{I_{10}}$), 12 ($\mathbf{I_{12}}$), 14 ($\mathbf{I_{14}}$), 16 ($\mathbf{I_{16}}$), 18 ($\mathbf{I_{18}}$))

Spectroscopic data are given for I_{10} . Data for the other homologues are essentially identical, varying only in the integration of the signal at $\delta 1.5$ -1.2.

[$Pd(\eta^3 - C_3H_5)(pz^{dp2}py)$][BF_4] (**I**₁₀): IR (KBr, cm⁻¹): v(CN) 1610 (vs), γ (CH)_{py} 772 (s), v(BF) 1053 (vs), δ (FBF) 518 (w).¹H-NMR (CDCl₃; δ ; *J*, in Hz): 8.87 (d, ³*J* = 4.0, 1H, H6), 7.80 (ddd, ³*J* = 8.7, ³*J* = 7.3, ⁴*J* = 1.7, 1H, H4), 7.58 (d, ³*J* = 8.8, 2H, Ho), 7.56 (1H, H5, masked by the Ho protons), 7.39 (d, ³*J* = 8.8, 2H, Ho), 7.06 (d, ³*J* = 8.6, 2H, Hm), 7.04 (d, ³*J* = 8.6, 2H, Hm), 6.97 (d, ³*J* = 8.8, 1H, H3), 6.70 (s, 1H, H4'), 5.68 (m, ³*J_a* = 12.7, ³*J_s* = 6.3, 1H, Hmeso(C₃H₅)), 4.57 (br, 1H, Hs(C₃H₅)), 4.04 (t, ³*J* = 6.6, 4H, OCH₂), 3.59 (br, 1H, Ha(C₃H₅)), 3.39 (br, 1H, Hs(C₃H₅)), 3.05 (br, 1H, Ha(C₃H₅)), 1.83 (m, 4H, CH₂), 1.5-1.2 (m, 28H, CH₂), 0.88 (t, ³*J* = 6.8, 6H, CH₃).

• $[Pd(\eta^3 - C_3H_5)(pz^{R2}py)][X] (X = PF_6, R = C_6H_4OC_nH_{2n+1}; n = 12 (II_{12}), 14 (II_{14}), 16 (II_{16}), 18 (II_{18}); X = CF_3SO_3, R = C_6H_4OC_nH_{2n+1}; n = 12 (III_{12}), 14 (III_{14}), 16 (III_{16}), 18 (III_{18}))$

Spectroscopic data are given for II_{12} and III_{12} . Data for the other homologues are essentially identical, varying only in the integration of the signal at δ 1.5-1.2. $[Pd(\eta^3 - C_3H_5)(pz^{ddp^2}py)][PF_6]$ (II₁₂): IR (KBr, cm⁻¹): v(CN) 1611 (s), γ (CH)_{py} 776 (m), v(PF) 839 (vs), δ (FPF) 557 (m).¹H-NMR (CDCl₃; δ ; *J*, in Hz): 8.73 (d, ³*J* = 4.4, 1H, H6), 7.80 (ddd, ³*J* = 8.8, ³*J* = 7.3, ⁴*J* = 1.5, 1H, H4), 7.58 (d, ³*J* = 8.8, 2H, Ho), 7.47

(1H, H5, masked by the Ho protons), 7.40 (d, ${}^{3}J = 8.6$, 2H, Ho), 7.06 (d, ${}^{3}J = 8.8$, 2H, Hm), 7.04 (d, ${}^{3}J = 8.8$, 2H, Hm), 6.99 (d, ${}^{3}J = 8.8$, 1H, H3), 6.70 (s, 1H, H4'), 5.67 (m, ${}^{3}J_{a} = 12.4$, ${}^{3}J_{s} = 6.8$, 1H, Hmeso(C₃H₅)), 4.3 (br, 1H, Hs(C₃H₅)), 4.04 (t, ${}^{3}J = 6.4$, 4H, OCH₂), 3.7-3.0 (br, 3H, Hs + Ha(C₃H₅)), 1.83 (m, 4H, CH₂), 1.5-1.2 (m, 36H, CH₂), 0.88 (t, ${}^{3}J = 6.5$, 6H, CH₃).

[$Pd(\eta^3 - C_3H_5)(pz^{ddp^2}py)$][CF_3SO_3] (III₁₂): IR (KBr, cm⁻¹): v(CN) 1610 (s), γ (CH)_{py} 769 (m), $v_d(SO_3) + v(CF_3)$ 1256 (vs), $v_s(SO_3)$ 1029 (s).¹H-NMR (CDCl₃; δ ; J, in Hz): 8.89 (d, $^3J = 4.4$, 1H, H6), 7.81 (dd, $^3J = 7.8$, 1H, H4), 7.59 (d, $^3J = 8.6$, 2H, Ho), 7.54 (1H, H5, masked by the Ho protons), 7.40 (d, $^3J = 8.9$, 2H, Ho), 7.06 (d, $^3J = 8.8$, 2H, Hm), 7.04 (d, $^3J = 8.8$, 2H, Hm), 6.97 (d, $^3J = 8.3$, 1H, H3), 6.70 (s, 1H, H4'), 5.69 (m, $^3J_a = 12.4$, $^3J_s = 6.8$, 1H, H $meso(C_3H_5)$), 4.04 (t, $^3J = 6.1$, 5H, OCH₂ + H $s(C_3H_5)$), 3.7-3.2 (br, 3H, Hs + H $a(C_3H_5)$), 1.84 (m, 4H, CH₂), 1.5-1.2 (m, 36H, CH₂), 0.88 (t, $^3J = 6.6$, 6H, CH₃).

(a)

(b)

Figure S1: Other optical textures observed for the SmA phase of these complexes: (a) I_{16} at 117 °C; (b) II_{18} at 120 °C.

All DSC data below were obtained at a scan rate of 5 K min⁻¹.

Figure S2: DSC trace of I_{12} : first heating (solid line), first cooling (dotted line), second heating (dashed line).

Figure S3: DSC trace of II_{14} : first heating (solid line), first cooling (dotted line), second heating (dashed line).

Figure S4: DSC trace of II_{16} : first heating (solid line), first cooling (dotted line), second heating (dashed line).

Figure S5: DSC trace of II_{18} : first heating (solid line), first cooling (dotted line), second heating (dashed line).

Figure S6: DSC trace of **III**₁₄: first heating (solid line), first cooling (dotted line), second heating (dashed line).

Figure S7: DSC trace of **III**₁₆: first heating (solid line), first cooling (dotted line), second heating (dashed line).

Figure S8: DSC trace of **III**₁₈: first heating (solid line), first cooling (dotted line), second heating (dashed line).