## Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006 Encapsulation of labile trivalent lanthanides into a homobimetallic

chromium(III)-containing triple-stranded helicate. Synthesis, characterization

and divergent intramolecular energy transfers

Martine Cantuel, Frédéric Gumy, Jean-Claude G. Bünzli,\* and Claude Piguet\*

## **Supporting Information**

(12 pages)

Table S1 Elemental analyses (%C, %H, %N), synthetic yields ( $\eta$ ) and molecular weights (*MW*) for [ZnLnZn(L2)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>7</sub>(H<sub>2</sub>O)<sub>n</sub> (Ln = La, Eu,

| Complexes                                                                                                 | %C            | %Н          | %N            | $\eta$ / % | $MW / g \cdot mol^{-1}$ |
|-----------------------------------------------------------------------------------------------------------|---------------|-------------|---------------|------------|-------------------------|
| [ZnLaZn(L2) <sub>3</sub> ](CF <sub>3</sub> SO <sub>3</sub> ) <sub>7</sub> (H <sub>2</sub> O) <sub>5</sub> | 50.09 (50.13) | 3.91 (3.66) | 12.01 (12.06) | 70         | 3833.16                 |
| [ZnEuZn(L2) <sub>3</sub> ](CF <sub>3</sub> SO <sub>3</sub> ) <sub>7</sub> (H <sub>2</sub> O) <sub>7</sub> | 49.67 (49.50) | 3.86 (3.71) | 11.87 (11.91) | 71         | 3882.25                 |
| $[ZnGdZn(L2)_3](CF_3SO_3)_7(H_2O)_8$                                                                      | 49.21 (49.20) | 3.87 (3.74) | 11.78 (11.84) | 74         | 3905.55                 |
| [ZnTbZn(L2) <sub>3</sub> ](CF <sub>3</sub> SO <sub>3</sub> ) <sub>7</sub> (H <sub>2</sub> O) <sub>6</sub> | 49.63 (49.64) | 3.92 (3.67) | 11.88 (11.94) | 82         | 3871.19                 |
| [ZnLuZn(L2) <sub>3</sub> ](CF <sub>3</sub> SO <sub>3</sub> ) <sub>7</sub> (H <sub>2</sub> O) <sub>6</sub> | 49.48 (49.44) | 3.84 (3.66) | 11.90 (11.89) | 73         | 3887.24                 |
| $[CrLaCr(L2)_3](CF_3SO_3)_9(H_2O)_{12}(^{n}Bu_4NCF_3SO_3)_{0.1}$                                          | 46.10 (46.18) | 3.88 (3.71) | 10.91 (10.90) | 78         | 4254.86                 |
| $[CrEuCr(L2)_3](CF_3SO_3)_9(H_2O)_8(^{n}Bu_4NCF_3SO_3)_{0.1}$                                             | 46.67 (46.69) | 3.66 (3.58) | 11.02 (11.01) | 88         | 4210.77                 |
| $[CrGdCr(L2)_3](CF_3SO_3)_9(H_2O)_9(^{n}Bu_4NCF_3SO_3)_{0.3}$                                             | 46.55 (46.54) | 3.67 (3.69) | 10.83 (10.82) | 78         | 4312.38                 |
| $[CrTbCr(L2)_3](CF_3SO_3)_9(H_2O)_7(^nBu_4NCF_3SO_3)_{0.3}$                                               | 46.86 (46.82) | 3.65 (3.63) | 10.99 (10.92) | 86         | 4270.81                 |
| $[CrLuCr(L2)_{3}](CF_{3}SO_{3})_{9}(H_{2}O)_{10}(^{n}Bu_{4}NCF_{3}SO_{3})_{0.3}$                          | 46.06 (46.15) | 3.73 (3.70) | 10.68 (10.73) | 80         | 4348.11                 |

Gd, Tb, Lu) and  $[CrLnCr(L2)_3](CF_3SO_3)_9(H_2O)_n(^nBu_4NCF_3SO_3)_p$ .

 $Cr(^{2}E)$  $Eu({}^{5}D_{0}),$  $Tb(^{5}D_{4})$ Table S2 Lifetimes of and excited levels (ms) in [CrGd(L1)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>5</sub>(H<sub>2</sub>O)<sub>6</sub><sup>13</sup>  $[CrGdCr(L2)_3](CF_3SO_3)_9(H_2O)_9(^{n}Bu_4NCF_3SO_3)_{0.3},$  $[ZnEuZn(L2)_3](CF_3SO_3)_7(H_2O)_7,$  $[ZnEu(L3)_3](ClO_4)_5(H_2O)_4$ ,<sup>32</sup> [ZnEu(L1)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>4</sub>(ClO<sub>4</sub>)(CH<sub>3</sub>CN)<sub>4</sub>,<sup>33</sup> [CrEuCr(L2)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>9</sub>(H<sub>2</sub>O)<sub>8</sub> (<sup>n</sup>Bu<sub>4</sub>NCF<sub>3</sub>SO<sub>3</sub>)<sub>0.1</sub>, [CrEu(L1)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>5</sub>(H<sub>2</sub>O)<sub>4</sub>.<sup>13</sup> [ZnTbZn(L2)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>7</sub>(H<sub>2</sub>O)<sub>6</sub> and [CrTbCr(L2)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>9</sub>(H<sub>2</sub>O)<sub>7</sub>(<sup>n</sup>Bu<sub>4</sub>NCF<sub>3</sub>SO<sub>3</sub>)<sub>0,3</sub> in the solid-state and in solution under various excitation conditions (analysing wavelengths set at the maximum of the Eu( ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ ), Tb( ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ ) or Cr( ${}^{2}E \rightarrow {}^{4}A_{2}$ ) transitions).

| T / K | Compd                                          | $\overline{\nu}_{exc}$ /cm <sup>-1</sup> | $\overline{\nu}_{an} / cm^{-1}$ | $\tau$ (ms)                               | Reference |
|-------|------------------------------------------------|------------------------------------------|---------------------------------|-------------------------------------------|-----------|
| 10    | $\left[\text{CrGdCr}(\text{L2})_3\right]^{9+}$ | 21468                                    | 13245                           | 2.27(1) Cr( <sup>2</sup> E)               | This work |
| 295   |                                                | 21468                                    | 13316                           | 0.031(1) Cr( <sup>2</sup> E)              | This work |
| 10    | $[CrGd(L1)_3]^{6+}$                            | 21322                                    | 13301                           | 3.62(1) Cr( <sup>2</sup> E)               | 13        |
| 295   |                                                | 21322                                    | 13348                           | $0.19(1) \text{ Cr}(^{2}\text{E})$        | 13        |
| 10    | $\left[\text{ZnEuZn}(\text{L2})_3\right]^{7+}$ | 28169                                    | 16152                           | 1.94(2) $Eu(^{5}D_{0})$                   | This work |
|       |                                                | 23810                                    | 16152                           | 1.96(1) Eu( <sup>5</sup> D <sub>0</sub> ) | This work |
|       |                                                | 21468                                    | 16152                           | 2.022(6) $Eu(^{5}D_{0})$                  | This work |
|       |                                                | 17218                                    | 16152                           | 2.05(8) Eu( <sup>5</sup> D <sub>0</sub> ) | This work |
| а     |                                                | 28169                                    | 16298                           | 2.21(5) Eu( <sup>5</sup> D <sub>0</sub> ) | This work |
| 295   |                                                | 23810                                    | 16152                           | $0.69(4) Eu(^{5}D_{0})$                   | This work |
|       |                                                | 21468                                    | 16152                           | $0.683(2) Eu(^{5}D_{0})$                  | This work |
| а     |                                                | 28169                                    | 16298                           | 1.48(1) $Eu(^{5}D_{0})$                   | This work |
| 10    | $[ZnEu(L3)_3]^{5+}$                            | 25000                                    | 16152                           | 1.96(7) $Eu(^{5}D_{0})$                   | 32        |
| 10    | $[ZnEu(L1)_3]^{5+}$                            | 17235                                    | 16152                           | 2.53(1) Eu( <sup>5</sup> D <sub>0</sub> ) | 32        |
| 295   |                                                | 17241                                    | 16152                           | 1.67(2) $Eu(^{5}D_{0})$                   | 33        |
| 10    | $\left[\text{CrEuCr}(\text{L2})_3\right]^{9+}$ | 28169                                    | 13245                           | 2.08(2) Cr( <sup>2</sup> E)               | This work |

|     |                                                | 28169 | 16155 | $0.196(1) Eu(^{5}D_{0})$                     | This work |
|-----|------------------------------------------------|-------|-------|----------------------------------------------|-----------|
|     |                                                | 24390 | 13228 | 2.10(1) Cr( <sup>2</sup> E)                  | This work |
|     |                                                | 24390 | 16152 | $0.20(1) Eu(^{5}D_{0})$                      | This work |
| а   |                                                | 28169 | 13228 | 3.1(1) $Cr(^{2}E)$                           | This work |
| а   |                                                | 28169 | 16155 | $0.24(1) Eu(^{5}D_{0})$                      | This work |
| 295 |                                                | 28169 | 13316 | 0.033(1) Cr( <sup>2</sup> E)                 | This work |
|     |                                                | 28169 | 16155 | $0.095(2) Eu(^{5}D_{0})$                     | This work |
|     |                                                | 24390 | 13245 | 0.030(1) Cr( <sup>2</sup> E)                 | This work |
|     |                                                | 24390 | 16152 | $0.101(5) \text{ Eu}(^{5}\text{D}_{0})$      | This work |
| а   |                                                | 28169 | 13228 | $0.012(1) \text{ Cr}(^{2}\text{E})$          | This work |
| а   |                                                | 28169 | 16155 | $0.076(1) \text{ Eu}(^{5}\text{D}_{0})$      | This work |
| 10  | $[CrEu(L1)_3]^{6+}$                            | 28329 | 13301 | 3.46(1) Cr( <sup>2</sup> E)                  | 13        |
|     |                                                | 28329 | 16218 | $0.55(4) Eu(^{5}D_{0})$                      | 13        |
| 295 |                                                | 28329 | 13348 | $0.09(1) \ Cr(^{2}E)$                        | 13        |
|     |                                                | 28329 | 16218 | $0.59(1) Eu(^{5}D_{0})$                      | 13        |
| 10  | $\left[ZnTbZn(L2)_3\right]^{7+}$               | 28169 | 18375 | 1.3(1) $\text{Tb}(^{5}\text{D}_{4})$         | This work |
|     |                                                | 23810 | 18375 | 1.67(6) Tb( <sup>5</sup> D <sub>4</sub> )    | This work |
|     |                                                | 20492 | 18375 | 1.54(4) Tb( <sup>5</sup> D <sub>4</sub> )    | This work |
| 10  | $\left[\text{CrTbCr}(\text{L2})_3\right]^{9+}$ | 28169 | 13228 | 1.8(2) $Cr(^{2}E)$                           | This work |
|     |                                                | 28169 | 18375 | 0.00175(4) Tb( <sup>5</sup> D <sub>4</sub> ) | This work |
| 295 |                                                | 28169 | 13228 | 0.106(3) Cr( <sup>2</sup> E)                 | This work |
|     |                                                | 28169 | 18375 | b                                            | This work |
|     |                                                |       |       |                                              |           |

<sup>*a*</sup>  $10^{-3}$  mol·dm<sup>-3</sup> in acetonitrile. <sup>*b*</sup> Not detected.

Table S3 Longitudinal <sup>1</sup>H nuclear relaxation times for the aromatic protons H1-H12 in  $[ZnTbZn(L2)_3]^{7+}$   $(T_{1i}^{exp})$  and in  $[ZnLuZn(L2)_3]^{7+}$   $(T_{1i}^{dia})$ , and computed paramagnetic relaxation times  $(T_{1i}^{para}, eq 11)$  and Tb...H distances  $(r_i^{ZnTbZn,solution}, eq 13)$  in CD<sub>3</sub>CN at 293 K.

| Proton <sup>a</sup> | $\delta^{	ext{exp}}_{	ext{H}i}$ /ppm $^{b}$ | $T_{1i}^{\exp}$ /ms | $T_{1i}^{\rm dia}$ /ms | $T_{1i}^{\mathrm{para}}/\mathrm{ms}$ | $r_i^{\text{ZnEu,solid}}$ /Å <sup>c</sup> | $r_i^{\text{ZnTbZn,solution}}$ /Å <sup>d</sup> |
|---------------------|---------------------------------------------|---------------------|------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|
| H1                  | 3.62                                        | 2.72E+02            | 1.62E+03               | 3.26E+02                             | 11.8                                      | 11.8                                           |
| H2                  | 5.33                                        | 3.68E+02            | 9.62E+02               | 5.95E+02                             | 12.4                                      | 13.0                                           |
| Н3                  | 3.22                                        | 1.38E+02            | 1.01E+03               | 1.60E+02                             | 10.7                                      | 10.4                                           |
| H4                  | 4.38                                        | 1.36E+02            | 1.04E+03               | 1.56E+02                             | 8.7                                       | 10.4                                           |
| H5                  | 0.42                                        | 2.80E+01            | 8.20E+02               | 3.08E+01                             | 7.6                                       | 7.9                                            |
| Н6                  | -12.55                                      | 1.13E+01            | 2.09E+03               | 1.13E+01                             | 6.7                                       | 6.7                                            |
| H7                  | 7.44                                        | 1.82E+01            | 3.07E+02               | 1.86E+01                             | 7.5                                       | 7.3                                            |
| H7'                 | 4.09                                        | 1.00E+01            | 3.07E+02               | 1.04E+01                             | 6.3                                       | 6.6                                            |
| H8                  | -49.0                                       | 3.64E-01            | 2.05E+03               | 3.64E-01                             | 3.8                                       | 3.8                                            |
| H9                  | 4.34                                        | 1.63E+01            | 8.78E+02               | 1.65E+01                             | 7.4                                       | 7.2                                            |
| H10                 | 8.63                                        | 1.22E+01            | 1.05E+03               | 1.23E+01                             | 7.0                                       | 6.8                                            |
| H11                 | 15.98                                       | 3.49E+00            | 9.62E+02               | 3.51E+00                             | 5.5                                       | 5.5                                            |
| H12                 | 15.43                                       | 7.45E+00            | 9.62E+02               | 7.51E+00                             | 6.3                                       | 6.3                                            |

<sup>*a*</sup> For the numbering scheme, see Figure 4. <sup>*b*</sup> Chemical shifts with respect to TMS for  $[ZnTbZn(L2)_3]^{7+}$ . <sup>*c*</sup> Eu...H distances measured in the crystal structure of  $[ZnEu(L1)_3](CF_3SO_3)_4(ClO_4)(CH_3CN)_4$ .<sup>33</sup> <sup>*d*</sup> Computed with eq. 13 by using  $r_{H6}^{ZnEu,solid} = 6.7$  Å as reference.

| L -     |      |                      |                     |               |               |
|---------|------|----------------------|---------------------|---------------|---------------|
| Complex | Т/ К | $\lambda_{exc}$ / nm | $\lambda_{an}$ / nm | $\tau_1 / ms$ | $\tau_2 / ms$ |
| ZnGdZn  | 10   | 355                  | 530                 | 2.45 (86 %)   | 0.49 (14 %)   |
|         | 295  | 355                  | 610                 | 0.042 (64 %)  | 0.006 (36 %)  |
| CrGdCr  | 77   | 274                  | 475                 | 1.58 (63 %)   | 0.12 (37 %)   |
|         |      |                      | 538                 | 1.59 (49 %)   | 0.12 (51 %)   |
|         | 295  | 365                  | 416                 | 0.18 (29 %)   | 0.011 (71 %)  |
|         |      |                      | 437                 | 0.23 (22 %)   | 0.012 (78 %)  |
|         |      |                      | 470                 | 0.012 (78 %)  | 0.011 (84 %)  |
|         |      |                      |                     |               |               |

Table S4 Lifetimes of the ligand-centred  ${}^{3}\pi\pi^{*}$  excited levels in  $[ZnGdZn(L2)_{3}]^{7+}$  and  $[CrGdCr(L2)_{3}]^{9+}$ .



Figure S1 ESI-MS titration of L2 with  $La(CF_3SO_3)_3 \cdot 3H_2O$  and  $Zn(CF_3SO_3)_2 \cdot 6H_2O$  in  $CHCl_3:CH_3CN = 1:1$  (total ligand concentration  $2 \cdot 10^{-4}$  mol·dm<sup>-3</sup>).



Figure S2 a) Variation of absorption spectra observed for the spectrophotometric titration of L2 (total ligand concentration:  $2 \cdot 10^{-4}$  mol·dm<sup>-3</sup>) with Ln(CF<sub>3</sub>SO<sub>3</sub>)<sub>3</sub>.*n*H<sub>2</sub>O at 293 K in CHCl<sub>3</sub>:CH<sub>3</sub>CN = 1:1 (*n* = 2-3, Ln = La, Eu, Lu, Ln:L2 = 0.1-2.5). b) Corresponding variation of observed molar extinctions at five different wavelengths. c) Variation of absorption spectra observed for the spectrophotometric titration of L2 (total ligand concentration:  $2 \cdot 10^{-4}$  mol·dm<sup>-3</sup>) with Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O at 293 K in CHCl<sub>3</sub>:CH<sub>3</sub>CN = 1:1 (Zn:L2 = 0.1-2.5). b) Corresponding variation of observed molar extinctions at six different wavelengths.



Figure S3 a) Variation of absorption spectra observed for the spectrophotometric titration of  $[Eu(L2)_3]^{3+}$  (total ligand concentration: 2·10<sup>-4</sup> mol·dm<sup>-3</sup>) with Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O at 293 K in CHCl<sub>3</sub>:CH<sub>3</sub>CN = 1:1 (Zn:L2 = 0.1-2.5) and corresponding variation of observed molar extinctions at six different wavelengths. b) Variation of absorption spectra observed for the spectrophotometric titration of  $[Lu(L2)_3]^{3+}$  (total ligand concentration: 2·10<sup>-4</sup> mol·dm<sup>-3</sup>) with Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O at 293 K in CHCl<sub>3</sub>:CH<sub>3</sub>CN = 1:1 (Zn:L2 = 0.1-2.5) and corresponding variation of  $[Lu(L2)_3]^{3+}$  (total ligand concentration: 2·10<sup>-4</sup> mol·dm<sup>-3</sup>) with Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O at 293 K in CHCl<sub>3</sub>:CH<sub>3</sub>CN = 1:1 (Zn:L2 = 0.1-2.5) and corresponding variation of observed molar extinctions at six different wavelengths.



Figure S4 <sup>1</sup>H NMR spectra of a)  $[Cr^{II}LaCr^{II}(L2)_3]^{7+}$  and b)  $[Cr^{III}LaCr^{III}(L2)_3]^{9+}$  in CD<sub>3</sub>CN at 243 K (total ligand concentration: 2·10<sup>-3</sup> mol·dm<sup>-3</sup>).



Figure S5 ESI-MS spectrum of  $[CrLaCr(L2)_3]^{9+}$  in acetonitrile (total ligand concentration:  $3 \cdot 10^{-4}$  mol·dm<sup>-3</sup>).



Figure S6 Excitation spectra of a)  $[ZnEuZn(L2)_3](CF_3SO_3)_7$  upon monitoring  $Eu({}^5D_0 \rightarrow {}^7F_2)$  at 10K, b)  $[CrEuCr(L2)_3](CF_3SO_3)_9$  upon monitoring  $Eu({}^5D_0 \rightarrow {}^7F_2)$  at 77K and 295K, c)  $[CrEuCr(L2)_3](CF_3SO_3)_9$  upon monitoring  $Cr({}^2E \rightarrow {}^4A_2)$  at 77K and 295K and d)  $[CrGdCr(L2)_3](CF_3SO_3)_9$  upon monitoring  $Cr({}^2E \rightarrow {}^4A_2)$  at 77K and 295K.



Figure S7 Variation of  $Eu({}^{5}D_{0})$  lifetime with respect to the temperature for  $[ZnEuZn(L2)_{3}](CF_{3}SO_{3})_{7} (\overline{v}_{exc} = 24390 \text{ cm}^{-1}).$ 



Figure S8 Emission spectra of [CrGdCr(L2)<sub>3</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>9</sub> at 10 and 295 K ( $\overline{v}_{exc} = 28170 \text{ cm}^{-1}$ ).