## Cationic, linear Au(I) N-heterocyclic carbene complexes: synthesis, structure and anti-mitochondrial activity

Murray V. Baker,\* Peter J. Barnard, Susan J. Berners-Price,\* Simon K. Brayshaw,

James L. Hickey, Brian W. Skelton and Allan H. White

Chemistry M313, <sup>1</sup> The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009,

Australia

**Fig. S1** (a) The centrosymmetric  $[(Me,Et-Im)_2Au]^+$  cation in **2.PF**<sub>6</sub>; (b) The centrosymmetric  $[(i-Pr_2Im)_2Au]^+$  cation in **3.CI**; (c) The  $[(Cy_2Im)_2Au]^+$  cation in **6.PF**<sub>6</sub> (2-symmetry).

**Fig. S2** (a) The three cations of  $[(n-Bu_2Im)_2Au]^+$  in **4.PF**<sub>6</sub>; cations 1 and 2 are centrosymmetric. (b) Unit cell contents of  $[(n-Bu_2Im)_2Au][PF_6]$  (**4.PF**<sub>6</sub>) projected down a.

**Table S1.** Microanalysis results for hexafluorophosphate salts.

\_

<sup>&</sup>lt;sup>1</sup> School of Biomedical, Biomolecular and Chemical Sciences

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006



**Fig. S1** (a) The centrosymmetric  $[(Me,Et-Im)_2Au]^+$  cation in **2.PF**<sub>6</sub>; (b) The centrosymmetric  $[(i-Pr_2Im)_2Au]^+$  cation in **3.CI**; (c) The  $[(Cy_2Im)_2Au]^+$  cation in **6.PF**<sub>6</sub> (2-symmetry).

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006



**Fig. S2** (a) The three cations of  $[(n-Bu_2Im)_2Au]^+$  in **4.PF**<sub>6</sub>; cations 1 and 2 (top two structures in Figure) are centrosymmetric. (b) Unit cell contents of  $[(n-Bu_2Im)_2Au][PF_6]$  (**4.PF**<sub>6</sub>) projected down *a*.

## Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

**Table S1.** Microanalysis results for hexafluorophosphate salts.

|                   | Formula                                                                | Found |      |       | Calculated |      |       |
|-------------------|------------------------------------------------------------------------|-------|------|-------|------------|------|-------|
|                   |                                                                        | C     | Н    | N     | С          | Н    | N     |
| 1.PF <sub>6</sub> | $C_{10}H_{16}N_4AuPF_6$                                                | 22.09 | 2.71 | 10.22 | 22.48      | 3.02 | 10.49 |
| 3.PF <sub>6</sub> | $C_{18}H_{32}N_4AuPF_6$                                                | 33.56 | 5.03 | 8.61  | 33.45      | 4.99 | 8.67  |
| 4.PF <sub>6</sub> | $C_{22}H_{40}N_4AuPF_6$                                                | 37.50 | 5.89 | 7.78  | 37.61      | 5.74 | 7.98  |
| 5.PF <sub>6</sub> | C <sub>22</sub> H <sub>40</sub> N <sub>4</sub> AuPF <sub>6</sub> .EtOH | 38.95 | 6.03 | 7.66  | 38.50      | 6.19 | 7.48  |
| 6.PF <sub>6</sub> | $C_{30}H_{48}N_4AuPF_6$                                                | 45.22 | 6.34 | 6.78  | 45.08      | 6.11 | 6.87  |