$\left[\mathbf{U}\left\{\left(\mathbf{S i M e}_{2} \mathbf{N P h}\right)_{3}\right.\right.$-tacn $\left.\}\left(\mathbf{O P P h}_{3}\right)\right]$

The compound was obtained as a dark red solid in quantitative yield by adding one equiv of OPPh_{3} to a solution of $\left[\mathrm{U}\left\{\left(\mathrm{SiMe}_{2} \mathrm{NPh}\right)_{3}\right.\right.$-tacn $\left.\}\right]$ in toluene.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}\right) 7.40\left(6 \mathrm{H}, d, \mathrm{H}-\mathrm{o}, \mathrm{OPPh}_{3}\right) ; 6.97\left(6 \mathrm{H}, t, \mathrm{H}-\mathrm{m}, \mathrm{OPPh}_{3}\right), 6.58(6 \mathrm{H}$, H-m); 6.41 (3H, H-p); 6.07 (6H, CH2); 5.44 (3H, $t, \mathrm{H}-\mathrm{p}, \mathrm{OPPh}_{3}$); 3.27 (6H, b, H-o); $1.82\left(6 \mathrm{H}, \mathrm{CH}_{2}\right) ;-3.18\left(18 \mathrm{H}, \mathrm{SiMe}_{2}\right)$

Dark red crystals of $\left[\mathrm{U}\left\{\left(\mathrm{SiMe}_{2} \mathrm{NPh}\right)_{3}\right.\right.$-tacn $\left.\}\left(\mathrm{OPPh}_{3}\right)\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ were obtained from a concentrated solution of $\left[\mathrm{U}\left\{\left(\mathrm{SiMe}_{2} \mathrm{NPh}\right)_{3}\right.\right.$ - tacn$\left.\}\left(\mathrm{OPPh}_{3}\right)\right]$ in toluene. The molecular structure is shown in Figure S 1 and selected bond distances and angles are given in Table S1.

Data were collected at 110K on a Bruker APEX CCD area-detector diffractometer with graphite-monochromatized MoK_{α} radiation $(\lambda=0.71069 \AA$) in the ϕ and ω scan mode. The structure was solved by direct methods using $\operatorname{SIR} 97^{25}$ and refined by full-matrix least squares refinements on F^{2} using SHELXL- 97^{24} and the winGX software package. ${ }^{26}$ All non-hydrogen atoms were refined with anisotropic thermal motion parameters, and the hydrogen atoms were assigned idealized positions based on the geometries of their attached carbon atoms. The drawing was made with ORTEP $3 .{ }^{27}$ A summary of the crystallographic data is given in Table S2.

CCDC reference 299439.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

Table S1. Selected bond lengths $[\AA]$ and angles (deg.) for
$\left[\mathrm{U}\left\{\left(\mathrm{SiMe}_{2} \mathrm{NPh}\right)_{3}-\operatorname{tacn}\right\}\left(\mathrm{OPPh}_{3}\right)\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$

U-N(1)	$2.454(3)$
U-N(2)	$2.468(3)$
U-N(3)	$2.436(2)$
U-N(4)	$2.762(3)$
U-N(5)	$2.785(3)$
U-N(6)	$2.750(3)$
U-O	$2.483(2)$
N(1)-U-N(2)	$120.56(9)$
N(1)-U-N(3)	$117.35(9)$
N(2)-U-N(3)	$118.43(9)$
O-U-N(1)	$84.36(8)$
O-U-N(2)	$83.79(8)$
O-U-N(3)	$82.69(8)$

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

Table S2. Crystallographic Data

	$\left[\mathrm{U}\left\{\left(\mathrm{SiMe}_{2} \mathrm{NPh}\right)_{3}-\operatorname{tacn}\right\}\left(\mathrm{OPPh}_{3}\right)\right] \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$
Formula	$\mathrm{C}_{62} \mathrm{H}_{76} \mathrm{~N}_{6} \mathrm{Si}_{3} \mathrm{OPU}$
fw	1274.56
crystal syst	orthorhombic
space group	P 212121
a, \AA	$12.2797(4)$
b, \AA	$17.8483(6)$
c, \AA	$27.1851(8)$
V, \AA^{3}	$5958.2(3)$
Z	4
$\rho_{\text {calc, }{ }^{3} \text { gcm }}{ }^{-3}$	1.421
Crystal size, mm	
$\mu($ MoK $\alpha), \mathrm{mm}^{-1}$	0.28 x 0.18 x 0.14
Theta range, ${ }^{\circ}$	2.857
Measured reflections	1.82 to 34.41
Independent	$24465(0.0590)$
reflections $[\mathrm{R}($ int $)]$	
Observed reflections	18480
$[\mathrm{I}>2 \sigma(\mathrm{I})]$	
R_{1}	0.0481
wR	

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2006

Fig S1 - ORTEP diagram of $\left[\mathrm{U}\left\{\left(\mathrm{SiMe}_{2} \mathrm{NPh}\right)_{3}\right.\right.$-tacn $\left.\}\left(\mathrm{OPPh}_{3}\right)\right]$ using 40% probability ellipsoids

