ELECTRONIC SUPPLEMENTARY INFORMATION

for

A Robust Microporous 3D Cobalt(II) Coordination Polymer with New Magnetically Frustrated 2D Lattices: Single-Crystal Transformation and Modulation of Cooperative Magnetic Properties via Variety of Guest

Ming-Hua Zeng, Xiao-Long Feng, Wei-Xiong Zhang, Xiao-Ming Chen*

MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering Sun Yat-Sen University Guangzhou 510275 (China) Fax: Int. code +86 20 8411-2245 E-mail: cescxm@zsu.edu.cn

Scheme S1. Schematic representation of the guest removal/exchange.

Fig. S1 Perspective view of the coordination environments of Co^{II} ions in 1·2H₂O.

Figure S2. The H-bonding interactions in $1 \cdot 2H_2O$ (a: 293 K, b: 93 K) viewed along the *b*-axis. The part of atoms omitted for clarity. The ma carboxylate oxygen atoms involving with hydrogen bonds are coordinated to the trigonal-bipyramid CoO₅ spin centers.

Electronic Supplementary Information for *Dalton Transactions* This journal is © The Royal Society of Chemistry 2006

Figure S3. The TGA curves of $1.2H_2O$ (black), 1.MeOH (blue), $1.HCONH_2$ (green) under flowing air, and 1 (magenta) under flowing dinitrogen. $1.2H_2O$ shows the first weight loss of 8.2% at ca. 260°C corresponding to the loss of the lattice water molecules (*ca.* 8.8% weight); 1.MeOH shows the first weight loss of 7.7% at ca. 260 °C corresponding to the loss of the lattice MeOH molecules (*ca.* 8.0 % weight); 1.HCONH₂ shows the first weight loss of 11.7% at ca. 260 °C corresponding to the loss of the lattice HCONH₂ molecules (*ca.* 10.8% weight); the TGA curve in flowing N₂ for 1 shows no weight loss up to ~340 °C.

Figure S4. The TGA curves (20~200°C) of the rehydration of **1** in air (at T = 22(2) °C, relative humidity = 35(5)%) for one day (magenta), three days (black), and six days (blue).

Figure S5. The H-bonding interactions in **1**•MeOH viewed along the *b*-axis. Part of atoms are omitted for clarity.

Figure S6. The H-bonding interactions in 1·HCONH₂ viewed along the *b*-axis.

Fig. S7 Magnetic curves for 1·2H₂O, 1·HCONH₂, 1·MeOH, and 1 (χ_{M} : upper, μ_{eff} : lower,

per Co^{II}_2 under H = 100 Oe). Inset: the amplification curves below 40 K.

Figure S8. First magnetization at 2 K for 1.2H₂O, 1.HCONH₂, 1.MeOH, and 1.

Figure S9. Hysteresis loops at 2 K for $1.2H_2O$.

Figure S10. Magnification of the first magnetization at $2\sim10$ K for $1\cdot2H_2O$, $1\cdotMeOH$ and $1\cdotHCONH_2$ at low field.

Figure S11. The simulated (black) and experimental powder X-ray diffraction patterns of 1·2H₂O (red), 1 (magenta), 1·MeOH (blue) and 1·HCONH₂ (green).

Table S1	Crystallograp	hic data and	l structure refinemer	ts of $1 \cdot 2H_2O'$.
----------	---------------	--------------	-----------------------	--------------------------

Compound	1•2H ₂ O'
Т /К	293
Formula	$C_{10}H_{11}Co_2NO_9$
FW	407.07
<i>a</i> / Å	23.62(2)
<i>b</i> / Å	10.096(6)
<i>c</i> / Å	14.99(1)
β / deg	128.71(2)
$V/\text{\AA}^3$	2790(3)
$D_{\rm c}$ / g·cm ⁻³	1.938
μ / mm ⁻¹	2.424
R _{int}	0.055
$R_1(I>2\theta)$	0.0634
w R_2 (all data)	0.1909
GOF	1.23
$\Delta \rho_{\text{min/max}} (e/\text{ Å}^3)$	-1.04~2.32
Free volume	26.2%

	1·2H ₂ O (293 K)	1 •2H ₂ O (293 K)	1·2H ₂ O (293 K)	$1.2H_2O(93 \text{ K}) \rightarrow$	1 •2H ₂ O (293 K)	1•2H ₂ O (93 K)	Max deviation	Max deviation
	→ 1 (293 K)	\rightarrow 1 ·2H ₂ O (93 K)	→ 1 •MeOH (293	1•MeOH (93 K)	$\rightarrow 1 \cdot \text{HCONH}_2$	$\rightarrow 1 \cdot \text{HCONH}_2$	(293 K)	(93 K)
			K)		(293 K)	(93 K)		
<i>a</i> / Å	-0.29%	-0.095%	-0.39%	+1.3%	+0.14%	+2.0%	0.57%	2.0%
<i>b</i> / Å	-0.23%	+0.25%	+0.11%	-0.78%	+0.21%	-0.45%	0.44%	0.45%
<i>c</i> / Å	-0.19%	-0.59%	+0.44%	0.64%	+0.55%	+0.87%	0.74%	0.87%
β /	-0.10%	-0.51%	-0.17%	0.63%	+0.054%	+0.99%	0.36%	1.0%
deg								
$V/\text{\AA}^3$	-0.52%	-0.46%	+0.46%	0.0036%	+0.80%	0.70%	1.3%	0.70%

 Table S2. Summary of the cell-parameter deviations of the crystal structures

Table S3. Selected bond lengths (Å) for the compounds

									Max	Max
	$1 \cdot 2 H_2 O (293 \text{ K})$	$1 \cdot 2 H_2 O (93 \text{ K})$	$1 \cdot 2 H_2 O' (293 \text{ K})$	1•MeOH (293 K)	1•MeOH (93 K)	1 •HCONH ₂ (293 K)	$1 \cdot \text{HCONH}_2 (93 \text{ K})$	1 (293 K)	deviation	deviation
									for 93 K	for all
Co1-O1	2.089(4)	2.082(4)	2.100(6)	2.089(5)	2.079(4)	2.097(5)	2.083(4)	2.100(6)	0.19%	0.91%
Co1-O3	2.082(3)	2.082(4)	2.082(5)	2.084(4)	2.080(4)	2.085(5)	2.081(4)	2.082(5)	0.19%	0.58%
Co1-O5 ^a	2.013(3)	2.010(3)	2.008(4)	2.017(4)	2.012(3)	2.022(4)	2.020(3)	2.008(4)	0.50%	0.70%
Co1-O6 ^a	2.124(3)	2.113(3)	2.121(5)	2.128(5)	2.117(4)	2.120(5)	2.123(4)	2.121(5)	0.47%	0.76%
Co1-O6 ^c	2.149(3)	2.146(3)	2.160(5)	2.156(4)	2.148(4)	2.163(4)	2.152(4)	2.160(5)	0.23%	0.89%
Co1-N1 ^b	2.161(5)	2.150(5)	2.163(7)	2.149(6)	2.146(5)	2.165(6)	2.147(5)	2.163(7)	0.19%	0.84%
Co2-O2	1.968(5)	1.972(4)	1.959(6)	1.970(6)	1.977(5)	1.972(6)	1.974(5)	1.959(6)	0.25%	0.87%
Co2-O3	2.114(3)	2.107(3)	2.118(5)	2.111(4)	2.114(3)	2.116(4)	2.109(3)	2.118(5)	0.33%	0.47%
Co2-O4 ^d	2.077(3)	2.078(3)	2.081(5)	2.079(4)	2.079(4)	2.078(5)	2.071(3)	2.081(5)	0.43%	0.53%
Co2-O5	1.939(4)	1.936(3)	1.945(5)	1.939(5)	1.942(5)	1.944(5)	1.941(5)	1.945(5)	0.26%	0.47%
Co2-O7 ^c	2.007(4)	2.006(5)	2.009(5)	2.000(4)	1.996(4)	2.000(5)	2.004(4)	2.009(5)	0.45%	0.65%

Symmetry codes: a) 0.5-x, y-0.5, 0.5-z; b) x, 2-y, z-0.5; c) x-0.5, 1.5-y, z-0.5; d) 0.5-x, 0.5+y, 0.5-z; e) x, 2-y, z+0.5.

Table S4. Se	elected bond	angles (°) for the co	ompounds						
	1· 2H ₂ O (293 K)	1·2H ₂ O 1·2H ₂ O' (93 K) (293 K)	1 •MeOH (293 K)	1•MeOH (93 K)	1•HCONH ₂ (293K)	1•HCONH ₂ (93 K)	1 (293 K)	Max deviation at 93 K	Max ideviation of all
O1-Co1-O5 ^a	90.4(<mark>2</mark>)	90.7(2) 90.6(2)	90.7(<mark>2</mark>)	90. <mark>5(2</mark>)	90. <mark>6</mark> (2)	90.7(2)	90. <mark>6(2</mark>)	0.11%	0.33%
O3-Co1-O5 ^a	96.7(1)	97.0(1) 96. <mark>8</mark> (2)	97.0(2)	96. <mark>5(2</mark>)	96.7(2)	95. <mark>8(2</mark>)	96. <mark>8(2</mark>)	1.25%	1.25%
O1-Co1-O3	88.0(1)	87.5(2) 87.5(2)	88. <mark>0(2</mark>)	88. <mark>8(2</mark>)	88.3(2)	88.2(<mark>2</mark>)	87.5(2)	1.49%	1.49%
O5 ^a -Co1-O6 ^a	89.8(<mark>2</mark>)	89.7(1) 89.8(2)	90.0(2)	89.6(<mark>2</mark>)	89.9(2)	90.3(2)	89. <mark>8(2</mark>)	0.78%	0.78%
O1-Co1-O6 ^a	87. <mark>8</mark> (1)	87.1(1) 88.1(2)	88.1(2)	87. <mark>9(2</mark>)	87.7(2)	87.3(2)	88.1(2)	0.80%	1.15%
O3-Co1-O6 ^a	172.3(1)	171.5(1) 172.1(2)	172.1(2)	173.1(2)	172.3(2)	172.5(2)	172.1(2)	0.93%	0.93%
O5 ^a -Co1-N1 ^b	90. <mark>5</mark> (2)	89.5(2) 90.5(2)	90. 3 (2)	90. <mark>3(2</mark>)	90. <mark>3</mark> (2)	90.4(<mark>2</mark>)	90.5(2)	1.01%	1.01%
O1-Co1-N1 ^b	177.6(<mark>2</mark>)	177.2(2) 177. <mark>3</mark> (2)	178.0(2)	178.5(<mark>2</mark>)	178. 1 (2)	178.3(<mark>2</mark>)	177. <mark>3(2</mark>)	0.73%	0.73%
O3-Co1-N1 ^b	89.7(<mark>2</mark>)	89.7(2) 89.9 (2)	<mark>90.1</mark> (2)	89. <mark>8(2</mark>)	<mark>89.9</mark> (2)	90.4(2)	89. <mark>9(2</mark>)	0.78%	0.78%
O6 ^a -Co1-N1 ^b	94. <mark>5</mark> (1)	95.7(2) 94. 4 (2)	93.7(2)	93.5(2)	94.0(2)	93.9(<mark>2</mark>)	94. <mark>4(2</mark>)	2.35%	2.35%
O5 ^a -Co1-O6 ^c	168.2(<mark>2</mark>)	168.1(1) 167.9(2)	168. <mark>4(2</mark>)	16 <mark>8.9(2</mark>)	168.1(<mark>2</mark>)	169.2(<mark>2</mark>)	167.9(2)	0.65%	0.65%
O1-Co1-O6 ^c	89. <mark>9</mark> (1)	88.9(1) 89.3(2)	89.9(<mark>2</mark>)	90. <mark>1(2</mark>)	89.6(2)	89.5(<mark>2</mark>)	89. <mark>3(2</mark>)	1.24%	1.24%
O3-Co1-O6 ^c	95.2(1)	94.9(1) 95.3(2)	94.6(1)	94.6(1)	95.2(2)	95.0(1)	95. <mark>3(2</mark>)	0.42%	0.74%
O6 ^a -Co1-O6 ^c	78.4(1)	78. <mark>5</mark> (1) 78.1(2)	78. <mark>5</mark> (1)	79. <mark>4</mark> (1)	78. <mark>2</mark> (2)	78.9(1)	78. <mark>1(2</mark>)	1.40%	1.79%
O6 ^{c-} Co1-N1 ^b	89. <mark>8</mark> (1)	91.6(2) 90.1(2)	89.5(2)	89.5(<mark>2</mark>)	89.9(2)	89. <mark>6(2</mark>)	90.1(2)	2.35%	2.35%
O2-Co2-O5	128.9(<mark>2</mark>)	130. <mark>0</mark> (2) 129.4(2)	126.5(2)	127.5(2)	127.4(2)	130.1(2)	12 <mark>9.4</mark> (2)	2.04%	2.85%
O5-Co2-O7 ^c	122. <mark>1</mark> (2)	121.4(2) 122. <mark>2</mark> (3)	124.6(2)	123. <mark>3(2</mark>)	124.6(<mark>3</mark>)	12 <mark>2.0</mark> (2)	122. <mark>2(3</mark>)	1.73%	2.64%
O2-Co2-O7 ^c	107. <mark>9</mark> (2)	107.7(2) 107. <mark>3</mark> (3)	107.9(2)	108. <mark>2(2</mark>)	107.0(<mark>3</mark>)	107.0(2)	107.3(3)	0.93%	1.31%
O4 ^d -Co2-O5	99. <mark>2(2</mark>)	98.8(2) 99.0(2)	98. <mark>6</mark> (2)	99.1(<mark>2</mark>)	98.6(2)	99. <mark>0</mark> (2)	99. <mark>0</mark> (2)	0.30%	0.71%
O2-Co2-O4 ^d	90. <mark>9</mark> (2)	90.4(1) 90.8(2)	91. <mark>0</mark> (2)	90.0(<mark>2</mark>)	91.3(2)	90.2(2)	90. <mark>8</mark> (2)	0.44%	1.44%
O4 ^d -Co2-O7 ^c	89. <mark>1</mark> (1)	88. <mark>8</mark> (2) 88.9(2)	89. 7 (2)	89. <mark>6(2</mark>)	89. <mark>0</mark> (2)	89.7(2)	8 <mark>8.9</mark> (2)	0.90%	1.13%
O3-Co2-O5	79. <mark>6</mark> (1)	80.1(1) 79.8(2)	80.1(2)	79. <mark>7(2</mark>)	79.8(<mark>2</mark>)	79.5(<mark>2</mark>)	79. <mark>8(2</mark>)	0.75%	0.75%
O2-Co2-O3	92.8(<mark>2</mark>)	93.0(1) 93.0(2)	92. <mark>0</mark> (2)	92.4(<mark>2</mark>)	92. <mark>5</mark> (2)	92.6(2)	9 <mark>3.0</mark> (2)	0.65%	0.87%
O3-Co2-O7 ^c	88.4(1)	88.9(2) 88.5(2)	88.7(2)	89. <mark>2(2</mark>)	88.9(2)	89. <mark>1</mark> (2)	88. <mark>5</mark> (2)	0.79%	1.7%
O3-Co2-O4 ^d	176. 1 (2)	176.4(2) 175. 8 (2)	176. <mark>9</mark> (2)	177. <mark>5(2</mark>)	176.0(2)	177.2(<mark>2</mark>)	17 <mark>5.8</mark> (2)	0.68%	0.97%

Symmetry codes: a) 0.5-x, y-0.5, 0.5-z; b) x, 2-y, z-0.5; c) x-0.5, 1.5-y, z-0.5; d) 0.5-x, 0.5+y, 0.5-z; e) x, 2-y, z+0.5.