Supplementary Material

Table S1. Protonation constants (log $K_{H_hL_l}$) of ligands L¹, L², L⁵ – L⁷, L¹², L¹³ and stability constants (log $K_{M_mH_hL_l}$) of their metal complexes with divalent metal ions (T = 298.2 K and I = 0.10 mol dm⁻³ KNO₃).

IXINO3).						
Ion	Equilibrium quotient	L^{1a}	L^{2a}	$L^{5}(L^{6})^{b}$	$L^{7 c}$	$L^{12 d}$	L ^{13 e}
H^{+}	[HL]/[L]×[H]	10.570	10.74	9.74 (9.92)	11.1	10.83	$10.511 (10.58)^{\rm f}$
	$[H_2L]/[HL]\times[H]$	9.836	10.08	8.67 (8.56)	10.1	10.15	$9.824(9.92)^{t}$
	$[H_3L]/[H_2L]\times[H]$	8.92	9.49	4.67 (4.66)	9.4	9.30	9.129 (9.28) ^f
	$[H_4L]/[H_3L]\times[H]$	5.80	7.76	_	8.5	8.45	$5.615(5.80)^{\mathrm{f}}$
	$[H_5L]/[H_4L]\times[H]$	4.03	5.57	_	3.4	7.30	_
	$[H_6L]/[H_5L]\times[H]$	-	3.52	_	1.9	4.98	_
Ni ²⁺	[ML]/[M]×[L]	13.07	12.65	- (16.27)	_	12.23	8.702
	[MHL]/[ML]×[H]	9.23	9.16	_	_	9.7	5.27
	[MH ₂ L]/[MHL]×[H]	5.82	9.00	_	_	8.46	_
	$[MH_3L]/[MH_2L]\times[H]$	_	5.34	_	_	6.2	_
	$[M_2L]/[ML]\times[M]$	4.08	5.03	_	_	_	_
	$[M_2L]/[M_2LOH]\times[H]$	8.50	7.64	_	_	7.83*	_
	$[M_2LOH]/[M_2L(OH)_2]\times[H]$	_	10.00	_	_	10.5	_
Cu ²⁺	[ML]/[M]×[L]	20.12	18.08	20.23 (19.76)	19.8	19.35	$13.117(13.21)^{\rm f}$
	[MHL]/[ML]×[H]	8.76	9.44	_	10.1	9.75	$10.757(10.92)^{\rm f}$
	$[MH_2L]/[MHL]\times[H]$	6.26	8.30	_	5.9	7.69	_
	$[MH_3L]/[MH_2L]\times[H]$	1.88	6.527	_	3.7	4.06	_
	$[MH_4L]/[MH_3L]\times[H]$	_	2.32	_	_	_	_
	[ML]/[MLOH]×[H]	11.73	11.61	_	10.53	_	$9.789(9.9)^{\rm f}$
	[MLOH]/[ML(OH) ₂]×[H]	_	_	_	14.13	_	-
	$[M_2L]/[ML]\times[M]$	6.38	10.55	_	_	7.82	_
	$[M_2L]/[M_2LOH] \times [H]$	5.94	9.14	_	_	7.81	_
	$[M_2LOH]/[M_2L(OH)_2]\times[H]$	9.10	10.70	_	_	9.4	-
Zn ²⁺	[ML]/[M]×[L]	13.07	12.24	11.91 (12.816	18.91	10.53	10.702
	[MHL]/[ML]×[H]	8.98	9.28	_	5.97	9.56	-
	$[MH_2L]/[MHL]\times[H]$	5.41	8.58	_	_	8.16	_
	$[MH_3L]/[MH_2L]\times[H]$	-	5.54	_	_	_	_
	[ML]/[MLOH]×[H]	11.72	11.31	8.06 (8.48	10.28	_	_
	$[M_2L]/[ML] \times [M]$	_	6.53	_	_	_	_
	[M ₂ L]/[M ₂ LOH]×[H]	9.71*	8.41	_	_	7.55*	-
	$[M_2LOH]/[M_2L(OH)_2]\times[H]$	9.91	9.74	_	_	9.5	_
Cd^{2+}	[ML]/[M]×[L]	10.19	9.49	8.77 (9.759	-	9.46	-
	[MHL]/[ML]×[H]	8.61	9.36	_	_	9.89	_
	[MH ₂ L]/[MHL]×[H]	6.70	8.93	-	-	8.23	-
	$[MH_3L]/[MH_2L]\times[H]$	-	6.33	-	-	-	-
	[ML]/[MLOH]×[H]	-	11.88	9.62 (10.30)	-	-	_
	$[M_2L]/[ML] \times [M]$	4.00	4.69		-	-	_
	[M ₂ L]/[M ₂ LOH]×[H]	8.69	-	_	-	4.19*	_
	$[M_2LOH]/[M_2L(OH)_2]\times[H]$	8.91	_	-	_	9.69	_

^a Present work. ^b I = 0.1 mol dm⁻³ KNO₃, ref. 23. ^c I = 0.1 mol dm⁻³ NMe₄Cl, ref. 10. ^d I = 0.15 mol dm⁻³ NaClO₄, ref. 20. ^e I = 0.1 mol dm⁻³ KCl, ref. 21. ^f I = 0.15 mol dm⁻³ NaCl, ref. 22. * log $\beta_{M_mH_hL_1}$

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

Table S2. pM values determined for the complexes of the indicated ligands and divalent metal ions. ^a						
Ion	Ligand	pH = 7.5	pH = 11			
Ni ²⁺	L ^{1 b}	5.44	9.91			
	L^{2b}	5.21	10.93			
	$L^{7 c}$	_	_			
	$L^{12 d}$	4.63	9.61			
	L ^{13 e}	2.81	7.39			
Cu ²⁺	L ^{1 b}	10.61	16.66			
	L^{2b}	10.19	15.38			
	$L^{7 c}$	8.15	14.50			
	$L^{12 d}$	9.18	15.88			
	$L^{13 e}$	6.21	11.61			
Zn^{2+}	L^{1b}	5.37	10.83			
	L^{2b}	5.31	11.25			
	$L^{7 c}$	6.35	14.35			
	$L^{12 d}$	3.70	10.08			
	$L^{13 e}$	3.41	10.03			
Cd^{2+}	L^{1b}	3.87	9.26			
	L^{2b}	3.74	7.36			
	$L^{7 c}$	_	_			
	$L^{12 d}$	3.31	8.13			
	L ^{13 e}	_	_			

^a $C_L = 1.67 \times 10^{-3}$ mol dm⁻³; T = 298.2 K, using the Hyss program, ref. 28. ^b I = 0.10 mol dm⁻³ in KNO₃. ^c I = 0.10 mol dm⁻³ in NMe₄Cl. ^d I = 0.15 mol dm⁻³ in NaClO₄. ^e I = 0.1 mol dm⁻³ KCl.

Table S3 Spectroscopic UV-vis-NIR data for the mono- and dinuclear complexes of Ni ²⁺ and							
Cu^{2+} with L^1 and L^2 at 298.2 K							
Complex	nII	$(mm)(a/dm^3 ma)^{-1} am^{-1})$					
(M:L ratio)	рп (color)	$\lambda_{\rm max}$ / IIIII (8/ diff IIIOI CIII)					
Ni^{2+}/I^{-1}	7.5	$> 1300 \ 1165 \ (sh \ 1.9) \ 950 \ (sh \ 1.5) \ 770 \ (5.6) \ 580 \ (13.4)$					
$(1\cdot1)$	(nurnle)	$= 1500, 1105 (sii., 1.9), 950 (sii., 1.9), 770 (5.0), 580 (19.4), 408 (sb. 16.0), 370 (45.0), 290 (1.5 \times 10^3), 264 (5.2 \times 10^3)$					
(1.1)	(purple) 11.12	$408 (sii., 10.9), 570 (45.0), 290 (1.5 \times 10), 204 (5.2 \times 10)$ 1165 (sh 10.3) 050 (sh 23.2), 770 (sh 26.0), 570 (66.6), 420					
	(light blue)	$(sh, 101.8), 354 (103.4), 290 (1.5 \times 10^3), 264 (4.9 \times 10^3)$					
N_{i}^{2+}/I^{1}	(ingite blue) 9 4	$(31., 101.8), 354 (195.4), 290 (1.3 \times 10), 204 (4.3 \times 10)$ 1165 (sh 10.6) 950 (sh 14.6) 770 (sh 18.4) 580 (50.0) 420					
(2.1)	(nale green)	$(sh, 70.3), 370 (sh, 181.6), 308 (sh, 1.5 \times 10^3), 264 (6.0 \times 10^3)$					
(2.1) Ni ²⁺ /I ²	<u>(pule green)</u> 7.8	$(31., 70.5), 570(31., 101.0), 500(31., 1.5 \times 10), 204(0.0 \times 10)$ 1175 (sh 1 8) 952 (sh 1 2) 752 (3 0) 584 (9 2) 376 (32 9)					
(1.1)	(light blue)	$288 (sh 19 \times 10^3) 262 (47 \times 10^3)$					
(111)	10.8	$1175 (sh \ 9.8) \ 952 (sh \ 11.2) \ 752 (sh \ 12.3) \ 584 (23.3) \ 410$					
	(light blue)	$(\text{sh}, 31.0), 370, (64.5), 288, (1.8 \times 10^3), 264, (4.3 \times 10^3)$					
Ni^{2+}/L^{2}	8.9	1175 (sh., 29.9), 952 (sh., 34.1), 709 (sh., 45.6), 570 (67.5), 410					
(2:1)	(light blue)	(sh., 90.5), 370 (136.3), 288 (2.4×10 ³), 262 (5.8×10 ³)					
	11.4	1175 (sh., 44.3), 952 (sh., 50.6), 702 (sh., 72.9), 570 (93.6), 410					
	(light blue)	$(sh., 129.6), 370 (sh., 184.5), 288 (2.2 \times 10^3), 262 (4.9 \times 10^3)$					
Cu^{2+}/L^1	4.3 (blue)	910 (sh., 15.6), 624 (271.7), 284 (sh., 5.3×10 ³), 266 (9.9×10 ³)					
(1:1)	7.15	910 (sh., 21.2), 728 (sh., 87.2), 622 (211.7), 294 (sh., 4.2×10^3).					
	(purple)	$276 (4.7 \times 10^3), 264 (6.2 \times 10^3)$					
	10.57	910 (sh., 31.5), 728 (sh., 81.2), 622 (203.3), 292 (sh., 3.7×10^3).					
	(blue)	$280(3.7 \times 10^3), 264(7.2 \times 10^3)$					
Cu^{2+}/L^{1}	8.2	938 (sh., 49.0), 774 (sh., 72.9), 622 (294.7), 414 (sh., 183.5),					
(2:1)	(blue)	394 (sh., 226.5), 296 (4.8×10 ³), 264 (1.1×10 ⁴)					
	11.4	938 (sh., 92.1), 774 (sh., 113.5), 588 (175.5), 412 (sh., 216.3),					
	(pale green)	$304 (3.9 \times 10^3), 266 (5.4 \times 10^3)$					
Cu^{2+}/L^2	4.7	922 (sh., 12.3), 781 (sh., 41.9), 620 (214.3), 292 (3.2×10 ³), 282					
(1:1)	(light blue)	$(sh., 2.8), 264 (6.2 \times 10^3)$					
	7.2	922 (sh., 23.0), 781 (sh., 45.1), 620 (192.5), 416 (sh., 69.0), 292					
	(purple)	(3.2×10^3) , 280 (sh., 3.1×10^3), 264 (6.4×10^3)					
	11.2	922 (sh., 26.0), 781 (sh., 36.5), 630 (102.6), 420 (sh., 35.5), 294					
	(light blue)	(3.3×10^3) , 264 (6.4×10^3)					
Cu^{2+}/L^2	7.8	953 (sh., 54.2), 790 (sh., 62.5), 626 (201.9), 416 (sh., 92.7), 302					
(2:1)	(blue)	(2.7×10^3) , 280 (3.2×10^3) , 264 (5.1×10^3)					
	11.4	953 (sh., 71.2), 790 (sh., 96.9.), 614 (283.1), 426 (sh., 275.4),					
	(light blue)	298 (3.8×10^3) , 264 (7.7×10^3)					