The Hydration of the Scandium(III) Ion in Aqueous Solution and Crystalline Hydrates Studied by XAFS Spectroscopy, Large Angle X-Ray Scattering and Crystallography

Patric Lindqvist-Reis,^{a,b} Ingmar Persson,^{*,c} and Magnus Sandström^a

^a Department of Physical, Inorganic and Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden

^b Present address: Institut f
ür Nukleare Entsorgung, Forschungszentrum Karlsruhe, P.O.Box 3640, D-76021 Karlsruhe, Germany

^c Department of Chemistry, Swedish University of Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala, Sweden

Supplementary Material

Fig. S1. The fit and the individual contribution of the different scattering paths of the EXAFS data of

a/ solid octaaquascandium(III) trifluoromethanesulfonate (S1), solid line - experimental data, dashed line - calculated model function using the parameters given in Table 3. Separate contributions: (offset -7) - Sc-O_p single scattering (SS) and (offset -16) - Sc-O_c SS.

b/ solid octaaquascandium(III) trifluoromethanesulfonate (S1), solid line - experimental data, dashed line - calculated model function using the parameters given in Table 3. Separate contributions: (offset -8) - Sc-O_p single scattering (SS) and (offset -16) - Sc-O_c SS.

c/ solid hexaaquascandium(III) perchlorate (**S2**), solid line - experimental data, dashed line - calculated model function using the parameters given in Table 3. Separate contributions: (offset -7) - Sc-O single scattering (SS), (offset -14) - Sc-O-O 3-leg linear MS, (offset -16) - Sc-O-O 3-leg linear MS, (offset -18) - Sc-O-Sc-O 4 leg linear MS and (offset -20) - Sc-O-Sc-O 4-leg linear MS.

d/ solid hexaaquascandium(III) hexakis(methanesulfonato)scandate(III) (S3), solid line - experimental data, dashed line - calculated model function using the parameters given in Table 3. Separate contributions: (offset -8) - Sc-O single scattering (SS), (offset -16) - Sc--S single scattering (SS), (offset - 22) Sc-O-S 3-leg multiple scattering (MS), (offset -26) - Sc-O-O 3-leg linear MS, (offset -33) - Sc-O-O 3-leg linear MS, (offset -38) - Sc-O-Sc-O 4-leg linear MS and (offset -43) - Sc-O-Sc-O 4-leg linear MS.

e/ solid tetraaquabis(tosilato)scandium(III) tosilate dihydrate (S4), solid line - experimental data, dashed line - calculated model function using the parameters given in Table 3. Separate contributions: (offset -6) - Sc-O single scattering (SS), (offset – 17) - Sc--S single scattering (SS), (offset – 22) Sc-O-S 3-leg multiple scattering (MS), (offset – 26) Sc-O-O 3-leg multiple scattering (MS), (offset -29) - Sc-O-O 3-leg linear MS, (offset -32) - Sc-O-Sc-O 4-leg linear MS and (offset -35) - Sc-O-Sc-O 4-leg linear MS.

f/ solid $[Sc_2(\mu-OH)_2(OH_2)_5]_2Cl_4 \cdot 2H_2O$, solid line - experimental data, dashed line - calculated model function using the parameters given in Table 2. Separate contributions: (offset -7) - Sc-O single scattering (SS), (offset -15) - Sc-O-O 3-leg linear MS, (offset -17) - Sc-O-Sc-O 4-leg linear MS and (offset -19) - Sc-O-Sc-O 4-leg linear MS.

g/ 0.98 mol·dm⁻³ aqueous solution of scandium(III) trifluoromethanesulfonate and an excess of trifluoromethanesulfonic acid, 0.88 mol·dm⁻³, solid line - experimental data, dashed line - calculated model function using the parameters given in Table 2. Separate contributions: (offset -6) - Sc-O_p single scattering (SS), (offset -14) - Sc-O_c SS, (offset -17) – Sc-O-O 3-leg linear MS, (offset -19) Sc-O-Sc-O 4-leg linear MS, (offset -21) - Sc-O-Sc-O 4-leg linear MS.

h/ 0.98 mol·dm⁻³ aqueous solution of scandium(III) trifluoromethanesulfonate and an excess of trifluoromethanesulfonic acid, 0.88 mol·dm⁻³, refined by GNXAS, solid line - experimental data, dashed line - calculated model function using the parameters

given in Table 2. Separate contributions: (offset +3.5) - Sc-O_p single scattering (SS) and (offset +2) - Sc-O_c SS, (offset -1.5) residual.

i/ 0.34 mol·dm⁻³ aqueous solution of scandium(III) trifluoromethanesulfonate and an excess of trifluoromethanesulfonic acid, 0.05 mol·dm⁻³, refined by GNXAS, solid line - experimental data, dashed line - calculated model function using the parameters given in Table 2. Separate contributions: (offset +4.5) - Sc-O_p single scattering (SS) and (offset +2.5) - Sc-O_c SS, (offset -2) residual.

- *Fig. S2.* (a) LAXS data of an 1.05 mol·dm⁻³ scandium perchlorate solution, L6, with pH \approx 0.8. (Top) Separate model contributions with parameters from Table 5, including the hydrated scandium ion, the hydrated perchlorate ion (dashed line) and the bulk water (doted line). (Middle) Radial distribution function, $D(r) 4\pi r^2 \rho_0$, and the sum of the calculated peak shapes: experimental (solid line); model (dashed line); difference between the experimental and the calculated function (dashed-dotted line). (Bottom) Structure-dependent LAXS intensity functions multiplied by the scattering variable: $s \cdot i(s)$ versus s: experimental data (solid line); model function (dashed line).
- Fig. S3. Baseline-corrected and intensity-normalized Raman spectra of the aqueous solution L1 and the crystalline hydrates S1–S3, S5 and S6 recorded at room temperature. The v₁(Sc-O) symmetric stretching vibrational band is indicated.

(a) Comparison of the Raman spectra of the acidified (~1M HCF₃SO₃) scandium(III) trifluoromethanesulfonate aqueous solution L1 and crystalline [Sc(OH₂)₈](CF₃SO₃)₃ and [Sc(OD₂)₈](CF₃SO₃)₃ (S1). Note that the v_1 (Sc-O) band for the deuterated compound is shifted about 15 cm⁻¹ to lower frequency.

(b) Raman spectrum of crystalline $[Sc(OH_2)_6](ClO_4)_3$ (**S2**). The $v_1(Sc-O)$ band at 432 cm⁻¹ overlap with the deformation mode of perchlorate ion, $v_2(ClO_4^-)$, at 462 cm⁻¹.

(c) Raman spectrum of crystalline $[Sc(OH_2)_6][Sc(OSO_2CH_3)_6]$ (**S3**). The bands at 433 and 472 cm⁻¹ are the symmetric stretching modes, v_1 (Sc-O), of the cation $[Sc(OH_2)_6]^{3+}$ and anion $[Sc(OSO_2CH_3)_6]^{3-}$ entities.

(d) Raman spectrum of crystalline $[Sc_2(\mu-OH)_2(OH_2)_{10}]Br_4 \cdot 2H_2O$ (S5).

(e) Raman spectrum of crystalline $[Sc_2(\mu-OH)_2(OH_2)_{10}]Cl_4 \cdot 2H_2O$ (**S6**).

Fig. S1a.

Fig. S1b.

Fig. S1c.

Fig. S1d.

Fig. S1e.

Fig. S1f.

Fig. S1g.

Fig. S1h.

Fig. S1i.

Fig. 2.

