Supplementary material for Dalton Transactions manuscript: Gas Phase Synthesis and Reactivity of Binuclear Gold Hydride Cations, (R₃PAu)₂H⁺ (R=Me and Ph).

George N. Khairallah, Richard A. J. O'Hair^{*} and Michael I. Bruce

List of material:

A- Figure S1: Structures with key bond lengths for gold species I – O.

B- List of the Cartesian coordinates of the structures presented in figures 3, 6 and S1 and discussed throughout the text:

Structure C: $Au_2H(PH_3)_2^+$ (Figure 3a) Structure F: $Au(PH_3)_2^+HAu$ (Figure 3b) Structure G: $Au(PH_3)_2^+AuH$ (Figure 3c) Structure H: $Au(PH_3)_2^+HAu$ (Figure 3a) Transition state for isomerization of C to X (Figure 6) Structure I: Au_2H^+ (Figure S1a) Structure J: $Au_2H(PH_3)^+$ (Figure S1b) Structure K: $(HAuPH_3)_2$ (Figure S1c) Structure L: $HAuPH_3$ (Figure S1d) Structure M: AuH (Figure S1e) Structure N: $Au(PH_3)_2^+$ (Figure S1g) Structure O: $Au(PH_3)^+$ (Figure S1f)

C- Supporting Tables:

Table S1: Peak assignments for figs. 3, S1 and S3. Note that the m/z shown are for the strongest peak in the cluster if applicable.

Table S2: The calculated B3LYP/6-31G(d) energies (in Hartrees) of the various structures used in the thermochemistry calculations in the text. The basis set used for Au is the LanL2DZ.

 Table S3: Estimated thermochemistry for eqs. 11-13 using the DFT calculated energies from Table S2.

Supplementary material for Khairallah et al.; Dalton Trans. 2006 Page S2

Figure S1: Structures with key bond lengths for gold species I – O.

B- List of the Cartesian coordinates of the structures presented in figures 3, 6 and S1 and discussed throughout the text:

Structure	C: <i>L</i>	Au ₂ H(PE	$I_{3})_{2}^{+}$	(Figure 3a)
-----------	--------------------	----------------------	------------------	-------------

Au	-1.453324	-0.167521	0.000208
Η	-0.000055	-1.119668	0.000024
Au	1.453368	-0.167500	-0.000209
Р	3.634510	0.728008	0.000519
Р	-3.634686	0.728010	-0.000518
Η	-4.625191	-0.085558	0.575904
Η	-4.188894	1.017130	-1.259365
Η	-3.818280	1.941320	0.685136
Η	3.817798	1.941542	-0.684835
Η	4.625081	-0.085259	-0.576209
Η	4.188755	1.016878	1.259405

Structure F: Au(PH₃)₂⁺HAu (Figure 3b)

Au	1.465095	0.000205	-0.000057
Р	1.646753	2.380674	0.000102
Η	2.941916	2.927142	-0.002516
Η	1.053310	3.033154	1.094276
Η	1.048523	3.033927	-1.090996
Р	1.649321	-2.379915	0.000117
Η	1.055765	-3.033538	-1.093307
Η	1.052898	-3.033557	1.091966
Η	2.945172	-2.924734	0.001795
Au	-2.210668	-0.000429	0.000007
Н	-0.638503	0.003930	-0.000528

Structure G: Au(PH₃)₂⁺AuH (Figure 3c)

Au	-1.218243	0.000603	-0.000057
Р	-1.144622	-2.385468	0.000142
Η	-2.393695	-3.031523	-0.001059
Η	-0.490414	-2.959712	1.101562
Η	-0.487948	-2.960038	-1.099637
Р	-1.140490	2.386325	0.000136
Η	-0.483033	2.959943	-1.099664
Η	-0.485182	2.959280	1.101574
Η	-2.388505	3.034438	-0.000855
Au	1.695921	-0.000737	-0.000055

Н 3.268903 -0.004719 0.002733

Structure H: Au(PH₃)₂⁺HAu (Figure 3d)

Au	-1.334318	0.000058	-0.006428
Р	-1.466091	-2.374686	0.005991
Η	-2.751491	-2.940107	-0.061737
Η	-0.926786	-3.005625	1.139944
Η	-0.801475	-3.038681	-1.039440
Р	-1.465537	2.374839	0.005937
Η	-0.791988	3.039204	-1.033516
Η	-0.935495	3.004976	1.144700
Η	-2.750151	2.940725	-0.072129
Au	1.986250	-0.000106	-0.015148
Н	1.429215	0.000971	1.447761

Transition state for isomerization of C to G (Figure 6)

Au	1.071959	0.137615	-0.000135
Р	-0.638880	2.112009	0.000257
Η	-0.195519	2.886647	-1.087327
Η	-0.224418	2.874921	1.107220
Η	-2.018181	2.412458	-0.017506
Р	3.241719	-0.750263	0.000183
Η	3.304162	-2.149488	-0.107767
Η	4.006331	-0.491276	1.149794
Η	4.082413	-0.319161	-1.039457
Au	-1.650044	-0.438420	-0.000061
Η	-2.328676	-1.876710	0.003973

Structure I: Au₂H⁺ (Figure S1a)

Au	0.006824	1.356490	0.000000
Η	-1.078162	-0.001549	0.000000
Au	0.006824	-1.356470	0.000000

Structure J: Au₂H(PH₃)⁺ (Figure S1b)

Au	0.999152	-0.112951	-0.000597
Р	3.320537	0.265150	0.001393
Η	3.935478	0.225917	1.263348
Η	3.732182	1.505615	-0.513778
Η	4.072521	-0.654330	-0.748072

Au -1.770533 0.062976 0.000164 H -0.609141 -1.106463 0.011771

Structure K: (HAuPH₃)₂(Figure S1c)

-1.633222	-0.496099	-0.000060
-1.511996	-2.113976	0.000716
-1.829922	1.922087	0.000155
-3.116674	2.508813	0.000090
-1.258880	2.634318	-1.071975
-1.259704	2.633021	1.073570
1.633278	0.496095	-0.000022
1.512147	2.113888	-0.000728
1.829651	-1.922081	0.000223
1.259415	-2.632810	-1.073269
1.259415 1.258834	-2.632810 -2.634493	-1.073269 1.072271
	-1.633222 -1.511996 -1.829922 -3.116674 -1.258880 -1.259704 1.633278 1.512147 1.829651	-1.633222 -0.496099 -1.511996 -2.113976 -1.829922 1.922087 -3.116674 2.508813 -1.258880 2.634318 -1.259704 2.633021 1.633278 0.496095 1.512147 2.113888 1.829651 -1.922081

Structure L: HAuPH₃ (Figure S1d)

Au	0.451369	-0.000021	-0.000014
Η	2.066457	0.000858	0.000565
Р	-1.981558	0.000024	0.000030
Η	-2.666809	-0.075487	1.231744
Η	-2.667561	-1.029088	-0.681288
Η	-2.666833	1.104981	-0.550350

Structure M: AuH (Figure S1e)

Au	0.000000	0.000000	0.019492
Н	0.000000	0.000000	-1.539876

Structure N: Au(PH₃)₂⁺ (Figure S1g)

Au	0.000024	0.001906	-0.004886
Р	2.378450	-0.003781	0.009485
Η	2.996868	-0.912622	-0.866205
Η	2.975426	-0.317951	1.241981
Η	2.998863	1.211998	-0.324781
Р	-2.378445	-0.003749	0.009358
Η	-3.001016	1.161379	-0.469809
Η	-2.976564	-0.167405	1.270520
Η	-2.995566	-1.013028	-0.748374

Au	0.441238	0.000008	0.000000
Р	-1.844141	-0.000002	0.000000
Η	-2.398084	-0.663419	-1.104744
Η	-2.399484	1.288526	-0.021758
Η	-2.398098	-0.625713	1.126511

C- Supporting Tables:

Table S1: The peak assignments in Figures 1, 2, 4 and 5. Note that the m/z shown are for the strongest peak in the cluster if applicable.

m/z.	Assignment	Comments	
152	[Ph ₂ -2H] ⁺	Product of EED	
183	$[PPh_2-2H]^+$	Product of EED of $[(Ph_3PAu)(PMe_3Au)H]^+$ and $[(Ph_3PAu)_2H]^+$	
263	$[HPPh_3]^+$	Product of EED	
459	$AuPPh_3^+$		
477	AuPPh ₃ ⁺ .H ₂ O	Reaction with background	
491	AuPPh ₃ ⁺ .MeOH	Reaction with background	
500	AuPPh ₃ ⁺ .CH ₃ CN	Reaction with background	
516	$(AuPPh_3)(Me_2NCH_2-H)^+$		
560	(AuPPh ₃)(DMG-2H) ⁺		
644	AuPPh ₂ .+	Loss of Ph	
721	$\operatorname{Au}(\operatorname{PPh}_3)_2^+$	Most intense peak in MS of Ph ₃ PAuCl	
919	$(AuPPh_3)_2H^+$		
953	(AuPPh ₃) ₂ Cl ⁺		

977	(AuPPh ₃) ₂ CH ₃ COO ⁺	
1011	$Na(AuPPh_3Cl)_2^+$	
1119	(AuPPh ₃ Cl)(AuPPh ₃ CH ₃ COO)Ag ⁺	
1020	(AuPPh ₃) ₂ [DMG-H] ⁺	
1095	$Ag(AuPPh_3Cl)_2^+$	
1377	(AuPPh ₃) ₃ ⁺	
197	Au^+	Seen in the P(Me) ₃ case only
243	$AuPCH_3^+$	Product of EED
273	AuPMe ₃ ⁺	
330	(AuPMe ₃)(Me ₂ NCH ₂ -H) ⁺	
333	$[Au(PMe_3)_2\text{-}CH_4]^+$	Loss of CH ₄
349	$\operatorname{Au}(\operatorname{PMe}_3)_2^+$	
374	(AuPMe ₃)(DMG-2H) ⁺	
723	$(AuPMe_{3}Cl)_{2}Ag^{+}$	
547	$(AuPMe_3)_2H^+$	
581	(AuPMe ₃) ₂ Cl ⁺	
605	(AuPMe ₃) ₂ (CH ₃ COO) ⁺	
648	(AuPMe ₃) ₂ (DMG-H) ⁺	
471	AuHAuPMe ₃ ⁺	
535	AuPPh ₃ PMe ₃ ⁺	

731	(AuPPh ₃)(AuPMe ₃)(-H) ⁺	
733	(AuPPh ₃)(AuPMe ₃)H ⁺	
767	(AuPPh ₃)(AuPMe ₃)Cl ⁺	
791	(AuPPh ₃)(AuPMe ₃)(CH ₃ COO) ⁺	
834	(AuPPh ₃)(AuPMe ₃)(DMG-H) ⁺	
911	(AuPPh ₃)(AuPMe ₃)Cl.AgCl ⁺	

 $DMG = N,N-Dimethyl glycine; PMe_3 = trimethyl phosphine; PPh_3 = triphenyl phosphine$

					Relative isomer
species	E(B3LYP)	ZPE-	ZPE(Scaled)	E(B3LYP Scaled)	stability (kJ/mol)
$Au_{2}H(PH_{3})_{2}^{+}(C)$	-957.66847	0.062880	0.061660	-957.60681	0
isomer F	-957.62871	0.062160	0.060954	-957.56775	102.5
isomer G*	-957.62330	0.062000	0.060800	-957.56251	116.3
Isomer H	-957.62699	0.061567	0.060373	-957.56661	105.5
TS ($\mathbf{C} \rightarrow \mathbf{G}$)	-957.61368	0.061679	0.060482	-957.55320	140.8
$Au_2H^+(\mathbf{I})$	-271.22467	0.005411	0.005306	-271.21936	
$Au_{2}H(PH_{3})^{+}(\mathbf{J})$	-614.45202	0.034144	0.033482	-614.41854	
$(H_3PAuH)_2(\mathbf{K})$	-958.45986	0.069101	0.067760	-958.39210	
$H_{3}PAuH(L)$	-479.22393	0.033706	0.033052	-479.19088	
AuH (M)	-136.04665	0.004785	0.0046922	-136.041958	
$\operatorname{Au}(\operatorname{PH}_3)_2^+(\mathbf{N})$	-821.57147	0.055732	0.054651	-821.51682	
$\operatorname{Au}(\operatorname{PH}_3)^+(\mathbf{O})$	-478.35010	0.027950	0.027408	-478.32270	
PH ₃	-343.13781	0.024242	0.023772	-343.11404	

Table S2: The calculated B3LYP/6-31G(d) energies (in Hartrees) of the various structures used in the thermochemistry calculations in the text. The basis set used for Au is the LanL2DZ.

* This structure is the minimum energy structure from the output of the IRC calculation in the forward direction.

-Zero point energy from the frequency calculation.

Table S3: Estimated thermochemistry for eqs. 11-13 using the DFT calculated energies from Table S2.

Eq.#	Reactions in text	ΔH (kJ mol ⁻¹)
11	$Au_2H(PH_3)_2^+ \rightarrow PH_3 + Au_2H(PH_3)^+$	194.9
12	$\operatorname{Au}_{2}\operatorname{H}(\operatorname{PH}_{3})_{2}^{+} \rightarrow \operatorname{Au}(\operatorname{PH}_{3}) + + \operatorname{Au}\operatorname{H}(\operatorname{PH}_{3})$	244.8
13	$\operatorname{Au}_{2}\operatorname{H}(\operatorname{PH}_{3})_{2}^{+} \rightarrow \operatorname{AuH} + \operatorname{Au}(\operatorname{PH}_{3})_{2}^{+}$	126.1