Wire-Like PtC=CC=CC=CC=CPt Moieties Surrounded by Double-Helical "Insulation": New Motifs Featuring $P(CH_2)_{20}P$ and $P(CH_2)_4O(CH_2)_2O(CH_2)_4P$ Linkages

Laura de Quadras, Frank Hampel, and J. A. Gladysz^{*}

Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße

42, 91054 Erlangen, Germany

submitted to Chem. Commun.

General Data. Reactions were conducted under N₂ unless noted, but workups of platinum complexes were carried out in air. Commercial chemicals were treated as follows: THF, distilled from Na/benzophenone; CH₂Cl₂, distilled from CaH₂; acetone, distilled from K₂CO₃; HNEt₂, distilled from KOH; hexanes , distilled; toluene, distilled; methanol, distilled; ethanol, distilled; ethyl acetate, distilled; TMEDA (Aldrich) distilled; HO(CH₂)₂CH=CH₂ (Aldrich) distilled from Na, Br(CH₂)₄Br (Acros) distilled; Ru(=CHPh)(PCy₃)₂(Cl)₂ (Aldrich), Ru(=CHPh)(H₂IMes)(PCy₃)-(Cl)₂ (Aldrich), 10% Pd/C (Acros), CuI (Aldrich, 99.999%), ClCH₂CH₂Cl (98% Fluka), CuCl (Aldrich, 99.99%), Pd/C (10% Lancaster), alumina (neutral, Fluka), silica gel 60M (Macherey-Nagel), Celite[®]535 (Fluka), and other materials, used as received.

NMR spectra were recorded on standard 300-400 MHz spectrometers. Mass spectra were recorded on a Micromass Zabspec instrument. IR and UV-visible spectra were recorded on ASI ReactIR-1000 and Shimazu model 3102 spectrometers. DSC and TGA data were recorded on a Mettler-Toledo DSC-821 instrument and treated by standard methods.^{s1} Microanalyses were conducted with a Carlo Erba EA1110 instrument.

trans-(C₆F₅)(Ph₂P(CH₂)₉CH=CH₂)₂PtCl (1a).^{\$2} A Schlenk flask was charged with [Pt(μ -Cl)(C₆F₅)(tht)]₂ (3.000 g, 3.088 mmol),^{\$3} Ph₂P(CH₂)₉CH=CH₂ (4.286 g, 12.68 mmol),^{\$2} and CH₂Cl₂ (150 mL) with stirring. After 20 h, the solvent was removed by rotary evaporation and the residue chromatographed on a silica gel column (20 × 2.5 cm, 70:30 v/v hexanes/CH₂Cl₂). The solvent was removed from the product-containing fractions by oil pump vacuum to give **1a** as a colorless oil (6.280 g, 5.867 mmol; 95%). Calcd for C₅₂H₆₂ClF₅P₂Pt: C, 58.13; H, 5.82. Found: C, 57.84; H, 5.40.

NMR (δ , CDCl₃),^{s4} ¹H 7.50-7.46 (m, 8H of 4 Ph), 7.33-7.29 (m, 4H of 4 Ph), 7.25-7.22 (m, 8H of 4 Ph), 5.79 (ddt, 1H, ${}^{3}J_{\text{HHtrans}} = 17.0 \text{ Hz}$, ${}^{3}J_{\text{HHcis}} = 10.2 \text{ Hz}$, ${}^{3}J_{\text{HH}} = 6.7 \text{ Hz}$, CH=CH₂), 4.97 (br d, 1H, ${}^{3}J_{\text{HHtrans}} = 17.0 \text{ Hz}$, CH=CH_EH_Z), 4.91 (br d, 1H, ${}^{3}J_{\text{HHcis}} = 10.2 \text{ Hz}$, CH=CH_EH_Z), 2.58-2.55 (m, 4H, PCH₂), 2.05-2.01 (m, 4H, CH₂CH=), 1.89-1.87 (m, 4H, PCH₂CH₂) 1.41-1.27 (m, 24H, remaining CH₂); ${}^{13}\text{C}\{{}^{1}\text{H}\}^{s5}$ 139.2 (s, CH=), 133.0 (virtual t, ${}^{2}J_{\text{CP}} = 5.8$, ^{s6} *o* to P), 130.9 (virtual t, ${}^{1}J_{\text{CP}} = 27.4 \text{ Hz}$, ^{s6} *i* to P), 130.2 (s, *p* to P), 127.9 (virtual t, ${}^{3}J_{\text{CP}} = 5.1 \text{ Hz}$, ^{s6} *m* to P), 114.1 (s, CH=CH₂), 33.8 (s, CH₂CH=), 31.4 (virtual t, ${}^{3}J_{\text{CP}} = 7.5 \text{ Hz}$, ^{s6} PCH₂CH₂CH₂), 29.4 (s, double intensity, 2CH₂), 29.2 (s, CH₂), 29.1 (s, CH₂), 28.9 (s, CH₂), 26.0 (virtual t, ${}^{1}J_{\text{CP}} = 17.0 \text{ Hz}$, ^{s6}

PCH₂), 25.6 (s, PCH₂CH₂); ${}^{31}P{}^{1}H{}$ 16.5 (s, ${}^{1}J_{PPt} = 2659 \text{ Hz}).{}^{87}$

IR (cm⁻¹, oil film), 3076 (vw), 2926 (m), 2853 (m), 1502 (s), 1463 (s), 1436 (m), 1104 (m), 1058 (m), 996 (w), 957 (vs), 919 (w), 803 (m), 737 (s), 691 (vs); MS,^{s8} 1073 (M⁺, 5%), 1038 ([M-Cl]⁺, 100%), 870 ([M-Cl-C₆F₅]⁺, 30%).

trans-(C₆F₅)(Ph₂P(CH₂)₉CH=CH₂)₂Pt(C=C)₂H (2a). A Schlenk flask was charged with 1a (0.770 g, 0.717 mmol), CuI (0.027 g, 0.014 mmol), and HNEt₂ (46 mL) with stirring, and cooled to -45 °C. Then H(C=C)₂H (4 mL, 19.6 mmol, \approx 4.9 M in THF)^{S9} was added, and the mixture turned light yellow. The cold bath was allowed to warm to 10 °C over the course of 3 h, and was then removed. After an additional 2.5 h (orange supernatant/white precipitate), the solvent was removed by oil pump vacuum. The tan residue was extracted with toluene (3 × 3 mL). The combined extracts were filtered through an alumina column (4 × 2.5 cm), which was eluted with toluene. The solvent was removed from the filtrate/washings by oil pump vacuum to give 2a as a yellow oil (0.667 g, 0.613 mmol; 80%). Calcd for C₅₆H₆₃F₅P₂Pt: C, 61.81; H, 5.84. Found: C, 61.66; H, 5.99.

NMR (δ , CDCl₃),^{s4} ¹H 7.50-7.46 (m, 8H of 4 Ph), 7.33-7.20 (m, 12H of 4 Ph), 5.79 (ddt, 2H, ³*J*_{HHtrans} = 16.8 Hz, ³*J*_{HHcis} = 10.2 Hz, ³*J*_{HH} = 6.6 Hz, C*H*=CH₂), 4.98 (br d, 2H, ³*J*_{HHtrans} = 16.8 Hz, CH_E*H*_Z), 4.90 (br d, 2H, ³*J*_{HHcis} = 10.2 Hz, C*H*_EH_Z) 2.60-2.54 (m, 4H, PCH₂), 2.02-1.98 (m, 4H, C*H*₂CH=), 1.78 (m, 4H, PCH₂C*H*₂), 1.63 (s, 1H, C=CH), 1.36-1.26 (m, 24H, remaining CH₂); ¹³C{¹H} 145.9 (dm, ¹*J*_{CF} = 225 Hz *o* to Pt), 139.2 (s, CH=CH₂), 136.3 (m, ¹*J*_{CF} = 247 Hz, *m/p* to Pt), 133.0 (virtual t, ²*J*_{CP} = 5.9 Hz,^{s6} *o* to P), 131.6 (virtual t, ¹*J*_{CP} = 27.8 Hz,^{s6} *i* to P), 130.2 (s, *p* to P), 127.9 (virtual t, ³*J*_{CP} = 5.1 Hz,^{s6} *m* to P), 114.1 (s, CH=CH₂), 97.1 (br s, PtC=C), 92.3 (s, PtC=C), 72.3 (s, C=CH), 59.7 (s, C=CH), 33.8 (s, CH₂CH=), 31.2 (virtual t, ³*J*_{CP} = 7.6 Hz,^{s6} PCH₂CH₂CH₂), 29.43 (s, CH₂), 29.41 (s, CH₂), 29.1 (s, CH₂), 28.9 (s, CH₂), 28.2 (virtual t, ¹*J*_{CP} = 13.0 Hz, PCH₂CH₂CH₂); ³¹P{¹H} 14.1 (s, ¹*J*_{PPt} = 2571 Hz).^{s7}

IR (cm⁻¹, oil film), $v_{\equiv CH}$ 3311 (w), $v_{C\equiv C}$ 2151 (m); MS,^{\$8} 1090 (M⁺, 60%), 1039 ([M-C₄H]⁺, 100%), 869 ([M-C₄H-C₆F₅]⁺, 40%).

trans,trans-(C₆F₅)(Ph₂P(CH₂)₉CH=CH₂)₂Pt(C=C)₄Pt(Ph₂P(CH₂)₉CH=CH₂)₂(C₆F₅)

(3a). A two necked flask was charged with 2a (0.350 g, 0.322 mmol), and acetone (15 mL), and fitted with a gas inlet needle and a condenser with circulating -18 °C ethanol. A Schlenk flask was

charged with CuCl (0.050 g, 0.51 mmol), and acetone (15 mL), and TMEDA (0.100 mL, 0.60 mmol) was added with stirring. After 0.5 h, stirring was halted (blue supernatant/yellow-green solid). Then O_2 was bubbled through the two necked flask with stirring and the solution was heated to 65 °C. The blue supernatant was added in portions over 2 h. After 2.5 h, the solvent was removed by rotary evaporation and oil pump vacuum. Toluene was added and the mixture was transferred to an alumina column (4 × 2.5 cm). The column was eluted with toluene until UV monitoring (fluor-escence of spotted TLC plate) showed no absorbing material (ca. 40 mL). The solvent was removed by rotary evaporation. The residue was chromatographed on a silica gel column (20 × 2 cm, 70:30 v/v hexanes/CH₂Cl₂). The solvent was removed from the product-containing fractions by oil pump vacuum to give **3a** as a yellow oil (0.271 g, 0.125 mmol; 77%). Calcd for $C_{112}H_{124}F_{10}P_4Pt_2$: C, 61.87; H, 5.74. Found: C, 61.61; H, 5.74.

NMR (δ , CDCl₃),⁸⁴ ¹H 7.48-7.43 (m, 16H of 8 Ph), 7.32-7.30 (m, 8H of 8 Ph), 7.27-7.23 (m, 16H of 8 Ph), 5.81 (ddt, 4H, ³*J*_{HHtrans} = 17.0 Hz, ³*J*_{HHcis} 10.2 Hz, ³*J*_{HH} = 6.7 Hz, C*H*=CH₂), 4.99 (br d, 2H, ³*J*_{HHtrans} = 17.1 Hz, CH=CH_EH_Z), 4.92 (br d, 2H, ³*J*_{HHcis} = 10.2 Hz, CH=C*H*_EH_Z), 2.63-2.50 (m, 8H, PCH₂), 2.05-2.00 (m, 8H, C*H*₂CH=), 1.73-1.72 (m, 8H, PCH₂C*H*₂), 1.36-1.27 (m, 48H, remaining CH₂); ¹³C{¹H} 146.0 (dm, ¹*J*_{CF} = 226 Hz, *o* to Pt), 139.2 (s, *C*H=CH₂), 136.6 (m, ¹*J*_{CF} = 241 Hz, *m/p* to Pt), 133.0 (virtual t, ²*J*_{CP} = 5.7 Hz,⁸⁶ *o* to P), 131.2 (virtual t, ¹*J*_{CP} = 27.9 Hz,⁸⁶ *i* to P), 130.2 (s, *p* to P), 127.9 (virtual t, ³*J*_{CP} = 5.0 Hz,⁸⁶ *m* to P), 114.1 (s, CH=CH₂), 100.2 (br s, PtC=C), 94.1 (s, PtC=C), 63.7 (s, PtC=CC), 57.9 (s, PtC=CC=C), 33.8 (s, CH₂CH=), 31.3 (virtual t, ³*J*_{CP} = 7.6 Hz,⁸⁶ PCH₂CH₂CH₂), 29.42 (s, CH₂), 29.35 (s, CH₂), 29.14 (s, CH₂), 29.07 (s, CH₂), 28.90 (s, CH₂), 28.12 (virtual t, ¹*J*_{CP} = 18.0 Hz,⁸⁶ PCH₂), 25.4 (br s, PCH₂CH₂CH₂CH₂); ³¹P{¹H} 14.1 (s, ¹*J*_{PPt} = 2564 Hz).⁸⁷

IR (cm⁻¹, oil film), $v_{C=C}$ 2146 (m), 2003 (w); UV-vis (1.25 × 10⁻⁵ M, CH₂Cl₂) nm (ϵ , M⁻¹cm⁻¹), 261 (67000), 292 (73000), 320 (91000), 353 (8000), 379 (3800), 411 (1700); MS,^{s8} 2174 (M⁺, 20%), 1039 ([(C₆F₅)₂P(CH₂)₉CH=CH₂)₂Pt]⁺, 40%), 869 [(Ph₂P(CH₂)₉CH=CH₂)₂Pt]⁺, 100%).

Alkene Metathesis of 3a. A two necked Schlenk flask was charged with Ru(=CHPh)- $(PCy_3)_2(Cl)_2$ (ca. half of 0.009 g, 0.0098 mmol), CH_2Cl_2 (250 mL), and 3a (0.327 g, 0.150 mmol), and fitted with a condenser. The solution was refluxed. After 2 h, the remaining catalyst was added.

After an additional 2 h, the solvent was removed by oil pump vacuum, and CH_2Cl_2 (2 × 3 mL) was added to the oil. The sample was transferred in two portions to an alumina column (3 × 2.5 cm), which was eluted with CH_2Cl_2 until UV monitoring showed no absorbing material (ca. 40 mL). The solvent was removed by oil pump vacuum to give a mixture of cyclized products as a yellow oil (0.305 g, 0.144 mmol; 96%).

NMR (δ , CDCl₃),^{s4} ¹H 7.45-7.43 (m, 16H of 8 Ph), 7.33-7.30 (m, 8H of 8 Ph), 7.26-7.22 (m, 16H of 8 Ph), 5.43-5.30 (m, 4H, CH=CH), 2.70-2.63 (m, 8H, PCH₂), 2.03-1.99 (m, 16H, PCH₂CH₂, CH₂CH=), 1.51-1.29 (m, 48H, remaining CH₂); ³¹P{¹H} 14.5 (major, ¹J_{PPt} = 2567),^{s7} 14.4 (s), 14.2 (s).

MS,^{\$8} 2118 (M⁺, 100%).

trans,trans-(C₆F₅)(Ph₂P(CH₂)₂₀PPh₂)Pt(C=C)₄Pt(Ph₂P(CH₂)₂₀PPh₂)(C₆F₅) (4) and *trans,trans*-(C₆F₅)(Ph₂P(CH₂)₂₀PPh₂)Pt(C=C)₄Pt(Ph₂P(CH₂)₂₀PPh₂)(C₆F₅) (5). A Schlenk flask was charged with metathesized **3a** (0.305 g, 0.144 mmol), Pd/C (0.014 g, 0.009 mmol), Cl-CH₂CH₂Cl (8 mL), and ethanol (5 mL), flushed with H₂, and fitted with a balloon filled with H₂. The mixture was stirred for 14 d. The solvent was removed by oil pump vacuum. The residue was extracted with CH₂Cl₂ and eluted through an alumina column until UV monitoring showed no absorbing material (ca. 40 mL). The solvent was removed by oil pump vacuum to give crude **4**/5 (0.212 g, 69% total). Chromatography on a silica gel column (25 × 2 cm, 80:20 v/v hexanes/CH₂-Cl₂) gave fractions containing **4** (0.0551 g, 0.052 mmol; 17%), a **4**/5 mixture (2:1 by ³¹P NMR; 0.0982 g, 0.0932 mmol; 31%), and **5** (0.0488 g, 0.0461 mmol; 15%). These were isolated as yellow powders following solvent removal by oil pump vacuum.

4: Calcd for $C_{112}H_{120}F_{10}P_4Pt_2$: C, 61.13; H, 5.70. Found: C, 60.82; H, 5.71. Dec pt >190 °C (gradual darkening without melting). DSC: exotherm with T_i , 102.1 °C; T_e , 113.2 °C; T_p , 121.7 °C; T_c , 126.6 °C; T_f , 137.7 °C; endotherm with T_i , 197.7 °C; T_e , 218.7 °C; T_p , 225.2 °C; T_c , 226.9 °C; T_f , 230.5 °C. TGA: weight loss 29%, 272-402 °C.

NMR (δ , CDCl₃),^{s4} ¹H 7.42-7.38 (m, 16H of 8 Ph), 7.30-7.26 (m, 8H of 8 Ph), 7.24-7.19 (m, 16H of 8 Ph), 2.63-2.62 (m, 8H, PCH₂), 1.92 (m, 8H, PCH₂CH₂), 1.52 (m, 8H, PCH₂CH₂CH₂), 1.23-1.13 (m, 60 H, remaining CH₂); ¹³C{¹H}^{s5,s10} 132.7 (virtual t, ²J_{CP} = 5.8 Hz,^{s6} *i* to P), 131.3 (virtual t, ¹J_{CP} = 27.9 Hz,^{s6} *i* to P), 130.1 (s, *p* to P), 127.7 (virtual t, ³J_{CP} = 5.0 Hz,^{s6} *m* to P), 93.4

(s, PtC=C), 68.2 (s, PtC=CC), 57.5 (s, PtC=CC=C), 31.1 (virtual t, ${}^{3}J_{CP} = 7.7 \text{ Hz}, {}^{s6}PCH_{2}CH_{2}CH_{2}$), 29.04 (s, CH₂), 28.94 (s, CH₂), 28.93 (s, CH₂), 28.87 (s, CH₂), 28.68 (s, CH₂), 28.61 (s, CH₂), 27.9 (virtual t, ${}^{1}J_{CP} = 18.1 \text{ Hz}, {}^{s6}PCH_{2}$), 25.5 (br s, PCH₂CH₂); ${}^{31}P{}^{1}H{}$ 14.6 (s, ${}^{1}J_{PPt} = 2569 \text{ Hz}).{}^{s7}$

IR (cm⁻¹, powder film), $v_{C=C}$ 2144 (m), 2001 (w); UV-vis (1.25 × 10⁻⁵ M, CH₂Cl₂) nm (ϵ , M⁻¹cm⁻¹), 263 (87500), 290 (110900), 318 (136100), 352 (6350), 379 (5500), 410 (3000); MS,^{s8} 2121 (M⁺, 100%), 1953 ([M-C₆F₅]⁺, 10%).

5: Calcd for $C_{108}H_{120}F_{10}P_4Pt_2$: C, 61.07; H, 5.70. Found: C, 60.42; H, 5.62. DSC: exotherm with T_i , 144.8 °C; T_e , 154.9 °C; T_c , 173.9 °C; T_f , 211.7 °C; endotherm with T_i , 220.5 °C; T_e , 241.1 °C; T_c , 244.0 °C; T_f , 249.6 °C. TGA: weight loss 34%, 260.7-409.6 °C.

NMR (δ , CDCl₃),^{s4} ¹H 7.45-7.39 (m, 16H of 8Ph), 7.31-2.27 (m, 8H of 8 Ph), 7.24-7.20 (m, 16H of 8 Ph), 2.60-2.55 (m, 8H, PCH₂), 1.87-1.82 (m, 8H, PCH₂CH₂), 1.37-1.21 (m, 64H, remaining CH₂); ¹³C {¹H}^{s5,A} 132.9 (virtual t, ²J_{CP} = 5.8 Hz,^{s6} o to P), 131.6 (virtual t, ¹J_{CP} = 27.8 Hz,^{s6} i to P), 130.2 (s, p to P), 127.9 (virtual t, ³J_{CP} = 5.0 Hz,^{s6} m to P), 94.3 (s, PtC=C), 63.6 (s, Pt-C=CC), 58.5 (3s, PtC=CC=C), 31.2 (virtual t, ³J_{CP} = 7.7 Hz,^{s6} PCH₂CH₂CH₂), 29.7 (s, CH₂), 28.9 (s, CH₂), 28.8 (s, CH₂), 28.6 (s, CH₂), 28.3 (s, CH₂), 27.9 (CH₂), 27.8 (s, CH₂), 25.7 (s, PCH₂-CH₂); ³¹P {¹H} 14.3 (s, ¹J_{PPt} = 2574 Hz).^{s7}

IR (cm⁻¹, powder film), $v_{C=C}$ 2146 (m), 2003 (w); UV-vis (1.25 × 10⁻⁶ M, CH₂Cl₂) nm (ϵ , M⁻¹cm⁻¹), 263 (64500), 291 (75000), 320 (93000), 352 (5300), 379 (4900), 410 (2400); MS,⁸⁸ 2121 (M⁺, 10%), 869 ([(C₆F₅)PtPh₂P(CH₂)₂₀PPh₂]⁺, 100%).

Br(CH₂)₄O(CH₂)₂CH=CH₂. A Schlenk flask was fitted with a condenser and charged with sodium (0.831 g, 36.1 mmol). Then HO(CH₂)₂CH=CH₂ (12.0 mL, 139 mmol) was slowly added with stirring. The mixture was heated at 80 °C until the sodium dissolved (ca. 2 h). Then Br(CH₂)₄Br was added (8.3 mL, 73 mmol), and the mixture was refluxed. After 3 h, the excess alcohol was recovered by distillation (110 °C). The residue was allowed to cool and poured into water (30 mL). The organic layer was separated. The aqueous layer was washed with ether (2 × 10 mL). The combined organic phases were washed with water (2 × 5 mL) and dried (CaCl₂). The solvent was removed by rotary evaporation. The residue was chromatographed on a silica gel column (20 × 2.5 cm, 70:30 v/v hexanes/CH₂Cl₂). The first fraction contained the excess

 $Br(CH_2)_4Br$. The solvent was removed from the second fraction by rotary evaporation and oil pump vacuum to give $Br(CH_2)_4O(CH_2)_2CH=CH_2$ as a colorless oil (4.284 g, 19.92 mmol; 51%).

NMR (δ , CDCl₃), ¹H 5.79 (ddt, 1H, ³*J*_{HHtrans} = 17.1 Hz, ³*J*_{HHcis} = 10.3 Hz, ³*J*_{HH} = 6.8 Hz, C*H*=CH₂), 5.05 (br d, 1H, ³*J*_{HHtrans} = 17.2 Hz, CH_E*H*_Z), 5.00 (br d, 1H, ³*J*_{HHcis} = 10.2 Hz, C*H*_EH_Z), 3.45-3.39 (m, 6H, BrC*H*₂CH₂CH₂C*H*₂OC*H*₂), 2.32-2.27 (m, 2H, C*H*₂CH=CH₂), 1.93-1.88 and 1.70-1.67 (2m, 4H, BrCH₂C*H*₂C*H*₂C*H*₂); ¹³C{¹H} 135.2 (s, CH=CH₂), 116.3 (s, CH=CH₂), 70.1 and 69.7 (2s, CH₂OCH₂), 34.2 and 33.8 (2s, CH₂CH=CH₂ and BrCH₂), 29.7 and 28.2 (2s, BrCH₂CH₂CH₂).

 $Ph_2P(CH_2)_4O(CH_2)_2CH=CH_2$. A Schlenk flask was charged with $Br(CH_2)_4O(CH_2)_2$ -CH=CH₂ (0.929 g, 4.49 mmol) and THF (20 mL), and cooled to 0 °C. Then KPPh₂ (0.5 M in THF, 9.0 mL, 4.5 mmol) was added dropwise with stirring until a red color persisted. A white precipitate formed. The mixture was stirred for 0.5 h at 0 °C, and the cold bath was removed. After 1 h, the solvent was removed by oil pump vacuum. The residue was extracted with CH₂Cl₂. The extract was filtered through a short silica gel column (5 × 2.5 cm), which was rinsed with CH₂Cl₂. The solvent was removed by oil pump vacuum to give $Ph_2P(CH_2)_4O(CH_2)_2CH=CH_2$ as an air sensitive, spectroscopically pure white oil (1.16 g, 3.73 mmol; 83%).

NMR (δ , CDCl₃), ¹H 7.45-7.37 (m, 4H, of 2 Ph), 7.33-7.29 (m, 6H, of 2 Ph), 5.81-5.74 (m, 1H, CH=CH₂), 5.07-4.98 (m, 2H, CH=CH₂), 3.43-3.38 (m, 4H, CH₂OCH₂), 2.34-2.26 (m, 2H, PCH₂), 2.07-2.00 (m, 2H, CH₂CH=), 1.70-1.67 (m, 2H, PCH₂CH₂), 1.54-1.47 (m, 2H, OCH₂CH₂); ¹³C{¹H}^{\$11} 138.8 (d, ¹J_{CP} = 13.0 Hz, *i* to P), 135.3 (s, CH=CH₂), 132.6 (d, ²J_{CP} = 18.4 Hz, *o* to P), 128.4 (s, *p* to P), 128.3 (d, ³J_{CP} = 6.5 Hz, *m* to P), 116.2 (s, CH=CH₂), 70.3 and 70.0 (2 s, CH₂OCH₂), 34.2 (s, CH₂CH=), 31.1 (d, ¹J_{CP} = 13.0 Hz, PCH₂CH₂CH₂), 27.9 (d, ¹J_{CP} = 11.2 Hz, PCH₂), 22.7 (d, ¹J_{CP} = 16.7 Hz, PCH₂CH₂); ³¹P{¹H} –15.8 (s).

trans-(C₆F₅)(Ph₂P(CH₂)₄O(CH₂)₂CH=CH₂)₂PtCl (1b). A Schlenk flask was charged with $[Pt(\mu-Cl)(C_6F_5)(tht)]_2$ (0.721 g, 0.752 mmol)^{s3} and CH₂Cl₂ (30 mL). Then Ph₂P(CH₂)₄O-(CH₂)₂CH=CH₂ (1.032 g, 3.304 mmol) was added with stirring. After 20 h, the solution was filtered through a Celite/decolorizing carbon pad. The solvent was removed by rotary evaporation. The residue was chromatographed on an alumina column (20 × 2.0 cm, 90:10 v/v hexanes/ethyl acetate). The solvent was removed from the product-containing fractions by oil pump vacuum to

give **1b** as a colorless oil (0.795 g, 0.803 mmol; 52%). Calcd for C₄₆H₅₀ClF₅O₂P₂Pt; C, 54.04; H, 4.93. Found: C, 54.10; H, 5.02.

NMR (δ , CDCl₃),^{s12} ¹H 7.52-7.41 (m, 8H of 4 Ph), 7.34-7.32 (m, 4H, of 4 Ph), 7.27-7.26 (m, 8H of 4 Ph), 5.84-5.76 (m, 2H, CH=CH₂), 5.07 (br d, 2H, ³*J*_{HHtrans} = 17.2 Hz, C*H*_EH_Z), 5.00 (br d, 2H, ³*J*_{HHcis} = 10.2 Hz, CH_E*H*_Z), 3.48-3.45 (m, 8H, C*H*₂OC*H*₂), 2.65-2.64 (m, 4H, PCH₂), 2.35-2.31 (m, 4H, CH₂CH=), 1.98-1.97 (m, 4H, PCH₂CH₂), 1.74-1.73 (m, 4H, PCH₂CH₂CH₂); ¹³C{¹H} 135.7 (s, CH=CH₂), 133.5 (virtual t, ²*J*_{CP} = 5.7 Hz,^{s6} o to P), 131.0 (virtual t, ¹*J*_{CP} = 27.3 Hz,^{s6} *i* to P), 130.7 (s, *p* to P), 128.4 (virtual t, ³*J*_{CP} = 5.0 Hz,^{s6} *m* to P), 116.7 (s, CH=CH₂), 70.6 and 70.5 (2 s, CH₂OCH₂), 34.7 (s, CH₂CH=), 31.5 (virtual t, ²*J*_{CP} = 7.4 Hz,^{s6} PCH₂CH₂CH₂), 26.0 (virtual t, ¹*J*_{CP} = 16.9 Hz,^{s6} PCH₂), 22.7 (s, PCH₂CH₂); ³¹P{¹H} 16.48 (s, ¹*J*_{PPt} = 2658 Hz).^{s7}

IR (cm⁻¹, oil film), 3078 (vw), 3060 (vw), 2935 (w), 2912 (w), 2860 (w), 1640 (w), 1501 (s), 1461 (s), 1436 (ms), 1364 (w), 1104 (s), 1059 (m), 957 (vs), 915 (m), 805 (m), 739 (s), 691 (vs); MS,^{s8} 986 ([M-Cl]⁺, 100), 818 (18) [M-Cl-C₆F₅]⁺, 18%), and other fragments.

trans-(C₆F₅)(Ph₂P(CH₂)₄O(CH₂)₂CH=CH₂)₂Pt(C=C)₂H (2b). A Schlenk flask was charged with 1b (0.765 g, 0.269 mmol), CuI (0.285 g, 0.149 mmol, 0.2 equiv), and HNEt₂ (70 mL) with stirring, and cooled to -45 °C. Then H(C=C)₂H (9 mL, 15.3 mmol, \approx 1.7 M in THF)^{s9} was added via syringe, and the mixture turned yellow. After 3 h, the cold bath was removed. After an additional 1 h, the solvent was removed by oil pump vacuum. The residue was extracted with 50:50 v/v toluene/ethyl acetate. The extract was chromatographed on an alumina column (10 × 2 cm, 50:50 v/v hexanes/ethyl acetate). The solvent was removed from the product-containing fractions by oil pump vacuum to give 2b as a yellow oil (0.752 g, 0.261 mmol; 97%). Calcd for C₅₀H₅₁F₅-O₂P₂Pt: C, 57.97; H, 4.96. Found: C, 58.16; H, 5.06.

NMR (δ , CDCl₃),^{s13} ¹H 7.49-7.46 (m, 8H of 4 Ph), 7.34-7.32 (m, 4H of 4 Ph), 7.28-7.24 (m, 8H of 4 Ph), 5.79 (ddt, 2H, ${}^{3}J_{HHtrans} = 17.1$ Hz, $J_{HHcis} = 10.3$ Hz, ${}^{3}J_{HH} = 6.7$ Hz, $CH=CH_2$), 5.06 (br d, 2H, ${}^{3}J_{HHtrans} = 17.2$ Hz, CH_EH_Z), 4.99 (br d, 2H, ${}^{3}J_{HHcis} = 10.7$ Hz, CH_EH_Z), 3.46-3.42 (m, 8H, CH_2OCH_2), 2.65-2.63 (m, 4H, PCH₂), 2.32-2.29 (m, 4H, $CH_2CH=$), 1.86-1.85 (m, 4H, PCH₂CH₂CH₂), 1.72-1.66 (m, 4H, PCH₂CH₂CH₂), 1.66 (s, 1H, C=CH); ${}^{13}C{}^{1}H{}^{13}$ 135.3 (s, $CH=CH_2$), 133.1 (virtual t, ${}^{2}J_{CP} = 5.9$ Hz,^{s6} *o* to P), 131.0 (virtual t, ${}^{1}J_{CP} = 27.9$ Hz,^{s6} *i* to P), 130.3 (s, *p* to P), 127.9 (virtual t, ${}^{3}J_{CP} = 5.1$ Hz,^{s6} *m* to P), 116.2 (s, CH= CH_2), 92.4 (s, PtC=C), 72.3 (s, C=CH) 70.1

and 70.0 (2 s, CH_2OCH_2), 34.1 (s, $CH_2CH=$), 31.0 (virtual t, ${}^2J_{CP} = 7.4 \text{ Hz}$, ^{s6} PCH₂CH₂CH₂), 27.9 (virtual t, ${}^1J_{CP} = 17.9 \text{ Hz}$, ^{s6} PCH₂), 22.2 (s, PCH₂CH₂); ${}^{31}P{}^{1}H$ 14.0 (s, ${}^1J_{PPt} = 2569 \text{ Hz}$).^{s7}

IR (cm⁻¹, oil film), $v_{\equiv CH}$ 3308 (w), $v_{C\equiv C}$ 2150 (m); MS,^{s8} 1037 (M⁺, 33%), 986 ([M-C₄H]⁺, 100%), and other fragments.

$trans, trans-(C_6F_5)(Ph_2P(CH_2)_4O(CH_2)_2CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)_4O(CH_2)_2-CH=CH_2)_2Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_2P(CH_2)Pt(Ph_$

CH=CH₂)₂(C₆F₅) (3b). A three necked flask was charged with 2b (0.205 g, 0.200 mmol) and acetone (20 mL), and fitted with a gas inlet needle and a condenser. A Schlenk flask was charged with CuCl (0.090 g, 0.091 mmol) and acetone (20 mL), and TMEDA (0.180 mL, 1.08 mmol) was added with stirring. After 0.5 h, stirring was halted (blue supernatant/yellow-green solid). Then O₂ was bubbled through the three necked flask with stirring, and the solution was heated to 60 °C. The blue supernatant was added in portions. After 4 h, the solvent was removed by rotary evaporation and oil pump vacuum. The residue was extracted with ethyl acetate and filtered through an alumina column. The solvent was removed from the filtrate by rotary evaporation to give 2b as a yellow oil (0.177 g, 0.855 mmol; 86%).^{\$14}

NMR (δ , CDCl₃),^{\$13} ¹H 7.48-7.45 (m, 16H of 8 Ph), 7.42-7.38 (m, 8H of 8 Ph), 7.34-7.31 (m, 16H of 8 Ph), 5.80 (ddt, 4H, ³*J*_{HHtrans} = 17.1 Hz, *J*_{HHcis} = 10.3 Hz, ³*J*_{HH} = 6.7 Hz, *CH*=CH₂), 5.06 (br d, 2H, ³*J*_{HHtrans} = 17.2 Hz, CH_E*H*_Z), 4.99 (br d, 2H, ³*J*_{HHcis} = 10.2 Hz, *CH*_EH_Z), 3.43-3.40 (m, 16H, *CH*₂OC*H*₂), 2.61-2.59 (m, 8H, PCH₂), 2.32-2.29 (m, 8H, *C*H₂CH=), 1.85-1.83 (m, 8H, PCH₂C*H*₂), 1.69-1.65 (m, 8H, PCH₂C*H*₂C*H*₂); ¹³C{¹H} 135.4 (s, *C*H=CH₂), 133.0 (virtual t, ²*J*_{CP} = 5.8 Hz,^{\$6} *o* to P), 131.0 (virtual t, ¹*J*_{CP} = 27.9 Hz,^{\$6} *i* to P), 130.3 (s, *p* to P), 127.9 (virtual t, ³*J*_{CP} = 5.0 Hz,^{\$6} *m* to P), 116.2 (s, CH=CH₂), 94.1 (s, PtC=C), 70.1 and 70.0 (2 s, *C*H₂OCH₂), 63.7 (s, PtC=CC=C), 58.1 (s, PtC=CC=C), 34.2 (s, *C*H₂CH=), 30.9 (virtual t, ²*J*_{CP} = 7.5 Hz,^{\$6} PCH₂CH₂CH₂), 27.9 (virtual t, ¹*J*_{CP} = 17.9 Hz,^{\$6} PCH₂), 22.2 (s, PCH₂CH₂); ³¹P{¹H} 14.0 (s, ¹*J*_{PPt} = 2569 Hz).^{\$7}

IR (cm⁻¹, oil film), $v_{C=C}$ 2142 (m), 2001 (w); MS,^{s8} 2068 (M⁺, 40%), 1396 ([(Ph₂PCH₂CH₂CH₂)₂PtC₈Pt(Ph₂PCH₂CH₂CH₂)₂], 100%), 985 ([Pt(C₆F₅)(PPh₂(CH₂)₄O-(CH₂)₂CH=CH₂)₂]⁺, 80%), and other fragments.

Alkene Metathesis of 3b. A. A two necked Schlenk flask was charged with 3b (0.211 g, 0.102 mmol), Ru(=CHPh)(PCy₃)₂(Cl) (ca. half of 0.006 g, 0.006 mmol), and CH₂Cl₂ (150 mL),

and fitted with a condenser. The solution was refluxed. After 2 h, the remaining catalyst was added. After an additional 2 h, the solvent was removed by oil pump vacuum, and CH_2Cl_2 was added to the oil. The sample was filtered through an alumina column (4 × 2 cm), which was eluted with CH_2Cl_2 until UV monitoring showed no absorbing material. A ¹H NMR spectrum showed 44% conversion. The sample was redissolved in CH_2Cl_2 (150 mL), and refluxed with additional $Ru(=CHPh)(PCy_3)_2(Cl)$ (0.012 g, 0.010 mmol; added in three portions over 6 h). An analogous workup and analysis showed 80% conversion. A third cycle (0.006 g, 0.006 mmol of Ru(=CHPh)-(PCy_3)₂(Cl)) gave a mixture of cyclized products as a yellow oil (0.198 g, 0.0972 mmol; 96%).

³¹P{¹H} NMR (δ , CDCl₃) 16.6 (s), 16.5 (s), 16.3 (s), 14.2 (s), 14.12 (s, ¹*J*_{PPt} = 2569 Hz, major),^{s7} 14.05 (s), 14.0 (s).

B. A two necked Schlenk flask was charged with **3b** (0.278 g, 0.134 mmol), Ru(=CHPh)- $(H_2IMes)(PCy_3)(Cl)$ (ca. half of 0.007 g, 0.008 mmol), and CH_2Cl_2 (125 mL), and fitted with a condenser. The solution was refluxed. After 2 h, the remaining catalyst was added. After an additional 3 h, the solvent was removed by oil pump vacuum, and CH_2Cl_2 was added to the oil. The sample was filtered through an alumina column (4 × 2.5 cm), which was eluted with CH_2Cl_2 until UV monitoring showed no absorbing material. The solvent was removed from the filtrate by oil pump vacuum to give a mixture of cyclized products as a yellow oil (0.261 g, 0.130 mmol; 97%).

³¹P{¹H} NMR (δ , CDCl₃) 14.17 (s, ¹J_{PPt} = 2571 Hz, major),^{s7} 14.1, 14.02, 13.98.

$trans, trans-(C_6F_5)(Ph_2P(CH_2)_4O(CH_2)_6O(CH_2)_4PPh_2)Pt(C\equiv C)_4Pt(Ph_2P(CH_2)_4O-CH_2)_4O(CH_2$

(CH₂)₆O(CH₂)₄PPh₂)(C₆F₅) (6). A Schlenk flask was charged with metathesized **3b** (0.261 g, 0.130 mmol), Pd/C (0.028 g, 0.026 mmol), ClCH₂CH₂Cl (15 mL), and ethanol (10 mL), flushed with H₂, and fitted with a balloon filled with H₂. The mixture was stirred for 14 d. The solvent was removed by oil pump vacuum. The residue was extracted with CH₂Cl₂ and filtered through an alumina column. The solvent was removed by oil pump vacuum. The residue was chromatographed on an alumina column (15 × 5 cm, 80:20 v/v hexanes/ethyl acetate). The solvent was removed from the first product-containing fraction by oil pump vacuum to give **6** as a yellow solid (0.070 g, 0.039 mmol; 27%). Calcd for C₉₆H₉₆Pt₂P₄F₁₀O₄: C, 57.14; H, 4.79. Found: C, 56.25; H, 4.65. DSC: endotherm with T_i, 175.4 °C; T_e, 203.7 °C; T_c, 215.1 °C; T_f, 228.1 °C. TGA: weight loss 42%, 265-410 °C.

NMR (δ , CDCl₃),^{\$15} ¹H 7.41-7.37 (m, 16H of 8 Ph), 7.33-7.26 (m, 8H of 8 Ph), 7.26-7.20 (m, 16H of 8 Ph), 3.49 (t, ³*J*_{HH} = 6.5 Hz, 8H, PCH₂CH₂CH₂CH₂O), 3.38 (t, ³*J*_{HH} = 6.7 Hz, 8H, OCH₂CH₂CH₂C), 2.75-2.71 (m, 8H, PCH₂), 2.05-2.03 (m, 8H, PCH₂CH₂), 1.80-1.77 (m, 8H, PCH₂CH₂CH₂), 1.49-1.46 (m, 8H, OCH₂CH₂CH₂), 1.29-1.24 (m, 8H, OCH₂CH₂CH₂); ¹³C{¹H}, 145.8 (dm, ¹*J*_{CF} = 224 Hz, *o* to Pt), 136.4 (dm, ¹*J*_{CF} = 233 Hz, *m/p* to Pt), 132.8 (br s, *o* to P), 131.2 (virtual t, ¹*J*_{CP} = 27.5 Hz,^{\$6} *i* to P), 130.3 (s, *p* to P), 127.9 (br s, *m* to P), 100.1 (s, PtC=C), 94.3 (s, PtC=C), 70.6 (s, PCH₂CH₂CH₂CH₂O), 70.1 (s, OCH₂CH₂CH₂), 63.8 (s, PtC=CC=C), 58.3 (s, PtC=CC=C), 30.8 (virtual t, ²*J*_{CP} = 7.6 Hz,^{\$6} PCH₂CH₂CH₂), 29.4 (s, OCH₂CH₂CH₂), 28.0 (virtual t, ¹*J*_{CP} = 17.5 Hz,^{\$6} PCH₂), 25.4 (s, OCH₂CH₂CH₂), 22.7 (s, PCH₂CH₂); ³¹P{¹H} 14.1 (s, ¹*J*_{PPt} = 2566 Hz).^{\$7}

IR (cm⁻¹, powder film), $v_{C=C}$ 2142 (m), 2001 (w); UV-vis (1.25 × 10⁻⁵ M, CH₂Cl₂) nm (ϵ , M⁻¹cm⁻¹), 263 (8500), 291 (1040000), 320 (127000), 353 (7000), 379 (5900), 411 (3400); MS,^{s8} 2017 (M⁺, 100%).

Cyclic Voltammetry. A BAS CV-50W Voltammetric Analyzer (Cell Stand C3) with the program CV-50W (version 2.0) was employed. Cells were fitted with Pt working and counter electrodes, and a Ag wire pseudoreference electrode. All CH₂Cl₂ solutions were 7.9×10^{-5} M in substrate, 0.1 M in *n*-Bu₄N⁺ BF₄⁻ (crystallized from ethanol/hexane and dried by oil pump vacuum), and prepared under nitrogen. Ferrocene was subsequently added, and calibration voltammograms recorded. The ambient laboratory temperature was 22.5 ± 1 °C.

Crystallography. **A**. A CH_2Cl_2 solution of **4** was layered with ether. After three weeks, yellow prisms of **4** were analyzed using a Nonius KappaCCD area detector as outlined in Table S1. Cell parameters were obtained from 10 frames using a 10° scan and were refined with 18965 reflections. Lorentz, polarization, and absorption corrections^{\$16} were applied. The space groups were determined from systematic absences and subsequent least-squares refinement. The structure was solved by direct methods. The parameters were refined with all data by full-matrix-least-squares on F^2 using SHELXL-97.^{\$17} Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were fixed in idealized positions using a riding model. Scattering factors were taken from the literature.^{\$18} Electron-density and anisotropic displacement plots showed the sp³ chain atoms C8A-C16A to be disordered over multiple orientations. This could not be modeled without

introducing some short hydrogen-hydrogen separations (the best solution with all hydrogen atoms was used for Figure 1). The structure was then solved without hydrogen atoms for C8A-C16A (tabular data below and CIF file). While some very large thermal ellipsoids and geometric distortions remain evident, the gross structure of 4 is undoubtedly correct. B. A CH₂Cl₂ solution of 5 was layered with ethanol. After two weeks, yellow prisms of 5 were analyzed using a Nonius KappaCCD area detector as outlined in Table S7. Cell parameters were obtained from 10 frames using a 10° scan and were refined with 10456 reflections. Lorentz, polarization, and absorption corrections^{\$16} were applied. The space groups were determined from systematic absences and subsequent leastsquares refinement. The structure was solved by direct methods. The parameters were refined with all data by full-matrix-least-squares on F^2 using SHELXL-97.^{s17} Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were fixed in idealized positions using a riding model. Scattering factors were taken from the literature.^{\$18} There is an inversion center at the midpoint between C4 and C4'. C. A CH₂Cl₂ solution of 6 was layered with methanol. After one week, yellow prisms of 6. MeOH were analyzed using a Nonius KappaCCD area detector as outlined in Table S13. Cell parameters were obtained from 10 frames using a 10° scan and were refined with 20654 reflections. Lorentz, polarization, and absorption corrections^{\$16} were applied. The space groups were determined from systematic absences and subsequent least-squares refinement. The structure was solved by direct methods. The parameters were refined with all data by full-matrixleast-squares on F^2 using SHELXL-97.^{\$17} Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were fixed in idealized positions using a riding model. Scattering factors were taken from the literature.^{\$18} The molecule of MeOH was disordered and could only be poorly resolved.

References and Notes

- (s1) Cammenga, H. K.; Epple, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1171; Angew. Chem. 1995, 107, 1284.
- (s2) Bauer, E. B.; Hampel, F.; Gladysz, J. A. Organometallics, 2003, 22, 5567.
- Usón, R.; Forniés, J.; Espinet, P; Alfranca, G. Synth. React. Inorg. Met.-Org. Chem. 1980, 10, 579.

- (s4) All complexes exhibit a characteristic pattern of ¹H and ¹³C signals for the aryl rings and the PCH₂CH₂CH₂ linkages. The signals were assigned by analogy to related platinum complexes.^{9a}
- (s5) The C_6F_5 ¹³C signals were not observed.
- (s6) Hersh, W. H. J. Chem. Educ. 1997, 74, 1485; the J values represent the apparent coupling between adjacent peaks of the triplet.
- (s7) This coupling represents a satellite (d; 195 Pt = 33.8%), an#d is not reflected in the peak multiplicity given.
- (s8) m/z for the most intense peak of the isotope envelope (relative intensity, %).
- (s9) Verkruijsee, H.; Brandsma, L. Synth. Commun. 1991, 21, 657. The THF solution can be stored at -78 °C up to 7 days.
- (s10) The PtC 13 C signal was not observed.
- (s11) The PC_6H_5 ¹³C signals were assigned as described by Mann, B. E. *J. Chem. Soc. Perkin Trans. 2,* **1972**, 30. The resonance with the chemical shift closest to benzene was attributed to the meta carbon, and the least intense phosphorous-coupled resonance was attributed to the ipso carbon.
- (s12) A ${}^{1}H, {}^{13}C{}^{1}H$ COSY spectrum was used to assign the signals.
- (s13) The signals were assigned by analogy to **1b**.
- (s14) A satisfactory microanalysis was not obtained for this compound.
- (s15) 1 H, 1 H COSY and 1 H, 13 C{ 1 H} COSY spectra (500 MHz) were used to assign the signals.
- (s16) (a) "Collect" data collection software, Nonius B.V., 1998. (b) "Scalepack" data processing software: Otwinowski, Z.; Minor, W. in *Methods Enzymol.* 1997, 276, 307.
- (s17) Sheldrick, G. M. SHELX-97, Program for refinement of crystal structures, University of Göttingen, 1997.
- (s18) Cromer, D. T.; Waber, J. T. in *International Tables for X-ray Crystallography*; Ibers, J. A.;
 Hamilton, W. C. Eds.; Kynoch: Birmingham, England, 1974.

Table S1. Crystal data and structure refiner	ment for 4 .	
Empirical formula	$C_{108}H_{120}F_{10}P_4Pt_2$	
Formula weight	2122.10	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 39.9137(6) Å	$\alpha = 90^{\circ}$
	b = 11.1431(2) Å	$\beta = 102.57(3)^{\circ}$
	c = 22.6389(4) Å	$\gamma = 90^{\circ}$
Volume	9827.5(3) Å ³	
Ζ	4	
Density (calculated)	1.434 Mg/m ³	
Absorption coefficient	2.974 mm^{-1}	
F(000)	4296	
Crystal size	$0.20\times0.20\times0.20\ mm^3$	
Θ range for data collection	1.05 to 27.51°	
Index ranges	-51<=h<=51, -12<=k<=	14, -29<=l<=29
Reflections collected	37122	
Independent reflections	21370 [R(int) = 0.0490]	
Reflections $[I \ge 2\sigma(I)]$	14690	
Completeness to $\Theta = 27.51^{\circ}$	94.5%	
Absorption correction	Empirical	
Max. and min. transmission	0.5877 and 0.5877	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	21370 / 7 / 1121	
Goodness-of-fit on F ²	0.974	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0413, $wR2 = 0.09$	43
R indices (all data)	R1 = 0.0763, wR2 = 0.10	88
Largest diff. peak and hole	$1.012 \text{ and } -1.595 \text{ e}\text{\AA}^{-3}$	

	Х	У	Z	U(eq)	
Pt(1)	3956(1)	-11226(1)	5578(1)	24(1)	
P(1)	4012(1)	-11607(1)	4608(1)	26(1)	
C(1B)	3387(1)	-10666(6)	6505(2)	40(1)	
C(1)	3533(1)	-10356(5)	5193(2)	29(1)	
C(1A)	3941(1)	-10266(5)	4133(2)	35(1)	
Pt(2)	1099(1)	-7689(1)	2321(1)	31(1)	
P(2)	3845(1)	-10794(1)	6512(1)	27(1)	
C(2)	3273(1)	-9868(5)	4909(2)	34(1)	
C(2B)	3156(2)	-11649(6)	6185(3)	46(2)	
C(2A)	4087(1)	-9096(4)	4444(2)	32(1)	
P(3)	1026(1)	-9701(1)	2105(1)	36(1)	
C(3)	2978(1)	-9388(5)	4572(2)	34(1)	
C(3B)	2786(2)	-11223(7)	6018(4)	72(2)	
C(3A)	3913(2)	-7985(5)	4117(2)	44(2)	
P(4)	1197(1)	-5730(1)	2639(1)	36(1)	
C(4)	2716(2)	-9031(5)	4263(2)	39(1)	
C(4B)	2543(2)	-12083(8)	5618(5)	126(5)	
C(4A)	4045(2)	-6785(5)	4407(3)	53(2)	
C(5)	2406(2)	-8702(5)	3906(3)	41(2)	
C(5B)	2481(4)	-12030(9)	5026(4)	173(7)	
C(5A)	3997(2)	-6618(6)	5048(3)	49(2)	
C(6)	2130(2)	-8488(5)	3588(3)	39(1)	
C(6B)	2222(3)	-12850(8)	4649(4)	114(4)	
C(6A)	3631(2)	-6655(6)	5115(3)	58(2)	
C(7)	1816(2)	-8268(5)	3229(2)	36(1)	
C(7B)	2269(2)	-12943(8)	3998(4)	97(3)	
C(7A)	3580(2)	-6450(7)	5749(3)	69(2)	
C(8)	1536(2)	-8075(5)	2904(2)	38(1)	
C(8B)	2118(2)	-11979(7)	3617(4)	86(3)	
C(8A)	3241(2)	-6504(16)	5871(4)	198(8)	
C(9B)	2214(2)	-11883(8)	2982(4)	88(3)	
C(9A)	2955(2)	-6150(13)	5511(5)	149(6)	
C(10B)	2582(2)	-11442(8)	3045(4)	83(3)	

Table S2. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å² × 10^3) for 4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(10A)	2615(3)	-5930(13)	5586(6)	147(5)
C(11)	4403(1)	-12163(4)	5951(2)	24(1)
C(11B)	2668(3)	-11297(8)	2439(4)	98(3)
C(11A)	2338(4)	-6448(13)	5100(6)	186(7)
F(12)	4103(1)	-13952(3)	6009(2)	44(1)
C(12)	4404(1)	-13336(5)	6117(2)	29(1)
C(12B)	3021(3)	-10736(8)	2486(4)	92(3)
C(12A)	2314(7)	-7455(11)	5485(6)	480(30)
F(13)	4676(1)	-15125(3)	6546(2)	59(1)
C(13)	4692(2)	-13961(5)	6380(2)	37(2)
C(13B)	3072(2)	-9484(8)	2753(4)	78(2)
C(13A)	1982(5)	-7870(30)	5170(11)	310(20)
F(14)	5296(1)	-14019(3)	6727(2)	63(1)
C(14)	5008(2)	-13420(5)	6474(2)	42(2)
C(14B)	2825(2)	-8550(6)	2431(3)	69(2)
C(14A)	1733(10)	-8740(20)	5229(12)	320(20)
C(15)	5023(2)	-12236(5)	6304(2)	33(1)
F(15)	5330(1)	-11676(3)	6381(2)	50(1)
C(15B)	2917(2)	-7297(7)	2672(4)	76(2)
C(15A)	1555(4)	-9860(20)	5140(7)	228(12)
F(16)	4763(1)	-10489(3)	5884(1)	37(1)
C(16)	4723(1)	-11652(4)	6049(2)	25(1)
C(16B)	2703(2)	-6314(7)	2320(4)	76(2)
C(16A)	1220(6)	-10210(20)	4984(8)	272(12)
C(17B)	2338(2)	-6358(8)	2352(3)	78(3)
C(17A)	980(3)	-10312(15)	4416(4)	159(6)
C(18B)	2118(2)	-5280(7)	2034(3)	63(2)
C(18A)	1098(3)	-10856(11)	3876(4)	123(4)
C(19B)	1727(2)	-5427(6)	2000(3)	48(2)
C(19A)	948(2)	-10140(7)	3304(3)	71(2)
C(20B)	1625(2)	-5206(5)	2604(3)	43(2)
C(20A)	1099(2)	-10656(6)	2792(3)	56(2)
C(21)	3688(1)	-12668(5)	4226(2)	31(1)
C(22)	3668(2)	-12998(5)	3625(2)	45(2)
C(23)	3428(2)	-13795(6)	3351(3)	61(2)
C(24)	3203(2)	-14295(6)	3659(3)	57(2)
C(25)	3216(2)	-13993(5)	4242(3)	49(2)
C(26)	3461(2)	-13172(5)	4532(2)	39(1)

				/
C(31)	4416(1)	-12278(5)	4527(2)	27(1)
C(32)	4443(2)	-13513(5)	4506(2)	36(1)
C(33)	4752(2)	-14036(5)	4479(3)	44(2)
C(34)	5040(2)	-13345(5)	4487(3)	39(1)
C(35)	5014(2)	-12104(5)	4510(2)	38(1)
C(36)	4703(1)	-11578(5)	4531(2)	31(1)
C(41)	4018(2)	-9344(5)	6787(2)	32(1)
C(42)	3892(2)	-8705(5)	7224(3)	52(2)
C(43)	4031(2)	-7591(6)	7411(3)	57(2)
C(44)	4294(2)	-7122(6)	7187(3)	52(2)
C(45)	4421(2)	-7753(5)	6754(3)	48(2)
C(46)	4275(2)	-8848(5)	6555(3)	40(2)
C(51)	4033(1)	-11854(5)	7100(2)	28(1)
C(52)	3896(2)	-12988(5)	7102(2)	35(1)
C(53)	4064(2)	-13853(5)	7492(3)	45(2)
C(54)	4370(2)	-13603(6)	7880(3)	49(2)
C(55)	4505(2)	-12467(6)	7893(3)	48(2)
C(56)	4339(2)	-11600(5)	7501(2)	38(1)
C(61)	663(2)	-7285(5)	1679(2)	34(1)
F(62)	934(1)	-7626(3)	873(2)	61(1)
C(62)	652(2)	-7319(5)	1072(3)	42(2)
F(63)	371(1)	-7115(4)	35(2)	82(1)
C(63)	363(2)	-7064(6)	632(3)	55(2)
F(64)	-216(1)	-6513(5)	371(2)	117(2)
C(64)	63(2)	-6776(7)	800(3)	69(2)
C(65)	59(2)	-6725(8)	1397(3)	68(2)
F(65)	-228(1)	-6424(6)	1569(2)	120(2)
F(66)	330(1)	-6913(4)	2410(2)	62(1)
C(66)	358(2)	-6968(6)	1822(3)	43(2)
C(71)	608(2)	-10103(5)	1638(3)	38(1)
C(72)	566(2)	-10383(5)	1033(3)	47(2)
C(73)	244(2)	-10604(6)	684(3)	62(2)
C(74)	-41(2)	-10529(6)	934(3)	55(2)
C(75)	-7(2)	-10252(6)	1525(3)	56(2)
C(76)	316(2)	-10038(5)	1887(3)	47(2)
C(81)	1334(2)	-10310(5)	1700(3)	42(2)
C(82)	1573(2)	-9573(7)	1540(3)	56(2)
C(83)	1818(2)	-10034(8)	1256(3)	77(2)

C(84)	1815(3)	-11231(10)	1121(4)	99(3)
C(85)	1572(3)	-11984(8)	1278(4)	86(3)
C(86)	1333(2)	-11524(6)	1567(3)	61(2)
C(91)	892(2)	-4649(5)	2232(3)	42(2)
C(92)	852(2)	-4568(5)	1618(3)	51(2)
C(93)	593(2)	-3888(6)	1267(4)	67(2)
C(94)	371(2)	-3291(7)	1559(5)	81(3)
C(95)	414(2)	-3347(7)	2176(4)	76(2)
C(96)	671(2)	-4029(5)	2508(3)	55(2)
C(101)	1176(2)	-5538(6)	3427(3)	46(2)
C(102)	1002(2)	-6377(6)	3701(3)	52(2)
C(103)	986(2)	-6248(7)	4305(3)	65(2)
C(104)	1139(2)	-5310(10)	4637(4)	85(3)
C(105)	1308(3)	-4499(10)	4377(4)	107(4)
C(106)	1328(2)	-4567(7)	3764(3)	77(3)

Pt(1)-C(1)	1.978(5)
Pt(1)-C(11)	2.081(5)
Pt(1)-P(1)	2.2947(13)
Pt(1)-P(2)	2.3031(13)
Pt(1)-Pt(2)	12.781(3)
P(1)-C(31)	1.823(6)
P(1)-C(21)	1.825(5)
P(1)-C(1A)	1.826(5)
C(1B)-C(2B)	1.510(8)
C(1B)-P(2)	1.832(6)
C(1)-C(2)	1.222(7)
C(1A)-C(2A)	1.535(7)
Pt(2)-C(8)	1.992(6)
Pt(2)-C(61)	2.059(5)
Pt(2)-P(3)	2.2995(15)
Pt(2)-P(4)	2.3055(16)
P(2)-C(41)	1.813(5)
P(2)-C(51)	1.815(5)
C(2)-C(3)	1.366(7)
C(2B)-C(3B)	1.522(9)
C(2A)-C(3A)	1.529(7)
P(3)-C(81)	1.817(6)
P(3)-C(71)	1.825(6)
P(3)-C(20A)	1.855(6)
C(3)-C(4)	1.193(7)
C(3B)-C(4B)	1.516(10)
C(3A)-C(4A)	1.531(8)
P(4)-C(101)	1.817(6)
P(4)-C(91)	1.817(6)
P(4)-C(20B)	1.822(6)
C(4)-C(5)	1.371(8)
C(4B)-C(5B)	1.310(13)
C(4A)-C(5A)	1.516(8)
C(5)-C(6)	1.203(8)
C(5B)-C(6B)	1.500(12)
C(5A)-C(6A)	1.503(9)

Table S3. Bond lengths [Å] and angles $[\circ]$ for 4.

C(6)-C(7)	1.358(7)
C(6B)-C(7B)	1.529(12)
C(6A)-C(7A)	1.508(9)
C(7)-C(8)	1.216(7)
C(7B)-C(8B)	1.427(10)
C(7A)-C(8A)	1.442(10)
C(8B)-C(9B)	1.570(11)
C(8A)-C(9A)	1.309(10)
C(9B)-C(10B)	1.526(11)
C(9A)-C(10A)	1.426(11)
C(10B)-C(11B)	1.492(11)
C(10A)-C(11A)	1.495(12)
C(11)-C(12)	1.359(7)
C(11)-C(16)	1.371(7)
C(11B)-C(12B)	1.526(12)
C(11A)-C(12A)	1.436(12)
F(12)-C(12)	1.358(6)
C(12)-C(13)	1.363(8)
C(12B)-C(13B)	1.517(11)
C(12A)-C(13A)	1.439(15)
F(13)-C(13)	1.356(6)
C(13)-C(14)	1.374(9)
C(13B)-C(14B)	1.508(9)
C(13A)-C(14A)	1.411(15)
F(14)-C(14)	1.344(6)
C(14)-C(15)	1.378(8)
C(14B)-C(15B)	1.514(9)
C(14A)-C(15A)	1.433(14)
C(15)-F(15)	1.349(6)
C(15)-C(16)	1.376(7)
C(15B)-C(16B)	1.506(10)
C(15A)-C(16A)	1.36(2)
F(16)-C(16)	1.367(5)
C(16B)-C(17B)	1.474(10)
C(16A)-C(17A)	1.431(18)
C(17B)-C(18B)	1.568(10)
C(17A)-C(18A)	1.529(15)
C(18B)-C(19B)	1.554(8)

C(18A)-C(19A)	1.527(10)
C(19B)-C(20B)	1.528(8)
C(19A)-C(20A)	1.529(10)
C(21)-C(26)	1.375(8)
C(21)-C(22)	1.394(7)
C(22)-C(23)	1.356(8)
C(23)-C(24)	1.370(10)
C(24)-C(25)	1.351(9)
C(25)-C(26)	1.395(8)
C(31)-C(32)	1.383(7)
C(31)-C(36)	1.385(7)
C(32)-C(33)	1.377(8)
C(33)-C(34)	1.381(8)
C(34)-C(35)	1.388(8)
C(35)-C(36)	1.380(8)
C(41)-C(46)	1.368(8)
C(41)-C(42)	1.398(8)
C(42)-C(43)	1.388(8)
C(43)-C(44)	1.363(10)
C(44)-C(45)	1.389(9)
C(45)-C(46)	1.385(7)
C(51)-C(52)	1.376(7)
C(51)-C(56)	1.385(7)
C(52)-C(53)	1.379(7)
C(53)-C(54)	1.369(9)
C(54)-C(55)	1.374(8)
C(55)-C(56)	1.379(7)
C(61)-C(62)	1.365(8)
C(61)-C(66)	1.375(8)
F(62)-C(62)	1.343(7)
C(62)-C(63)	1.381(8)
F(63)-C(63)	1.359(7)
C(63)-C(64)	1.371(10)
F(64)-C(64)	1.342(7)
C(64)-C(65)	1.358(10)
C(65)-F(65)	1.330(8)
C(65)-C(66)	1.384(8)
F(66)-C(66)	1.360(7)

C(71)-C(72)	1.380(8)
C(71)-C(76)	1.402(8)
C(72)-C(73)	1.377(8)
C(73)-C(74)	1.376(10)
C(74)-C(75)	1.350(9)
C(75)-C(76)	1.389(8)
C(81)-C(82)	1.367(9)
C(81)-C(86)	1.386(8)
C(82)-C(83)	1.380(10)
C(83)-C(84)	1.368(11)
C(84)-C(85)	1.386(13)
C(85)-C(86)	1.366(11)
C(91)-C(92)	1.368(8)
C(91)-C(96)	1.372(9)
C(92)-C(93)	1.385(9)
C(93)-C(94)	1.383(11)
C(94)-C(95)	1.372(11)
C(95)-C(96)	1.364(10)
C(101)-C(106)	1.385(9)
C(101)-C(102)	1.390(9)
C(102)-C(103)	1.389(9)
C(103)-C(104)	1.354(10)
C(104)-C(105)	1.337(12)
C(105)-C(106)	1.409(10)
C(1)-Pt(1)-C(11)	177.87(19)
C(1)-Pt(1)-P(1)	85.41(15)
C(11)-Pt(1)-P(1)	92.47(13)
C(1)-Pt(1)-P(2)	89.21(15)
C(11)-Pt(1)-P(2)	92.90(13)
P(1)-Pt(1)-P(2)	174.40(5)
C(1)-Pt(1)-Pt(2)	12.94(14)
C(11)-Pt(1)-Pt(2)	165.34(13)
P(1)-Pt(1)-Pt(2)	76.40(4)
P(2)-Pt(1)-Pt(2)	98.03(4)
C(31)-P(1)-C(21)	103.8(2)
C(31)-P(1)-C(1A)	107.6(2)
C(21)-P(1)-C(1A)	104.4(2)

C(31)-P(1)-Pt(1)	116.37(15)
C(21)-P(1)-Pt(1)	111.52(19)
C(1A)-P(1)-Pt(1)	112.20(17)
C(2B)-C(1B)-P(2)	116.7(4)
C(2)-C(1)-Pt(1)	174.4(5)
C(2A)-C(1A)-P(1)	115.5(3)
C(8)-Pt(2)-C(61)	176.6(2)
C(8)-Pt(2)-P(3)	88.98(16)
C(61)-Pt(2)-P(3)	90.84(15)
C(8)-Pt(2)-P(4)	86.11(17)
C(61)-Pt(2)-P(4)	94.26(15)
P(3)-Pt(2)-P(4)	174.04(5)
C(8)-Pt(2)-Pt(1)	7.41(17)
C(61)-Pt(2)-Pt(1)	170.11(16)
P(3)-Pt(2)-Pt(1)	82.96(4)
P(4)-Pt(2)-Pt(1)	92.38(4)
C(41)-P(2)-C(51)	105.3(2)
C(41)-P(2)-C(1B)	103.7(3)
C(51)-P(2)-C(1B)	108.0(3)
C(41)-P(2)-Pt(1)	111.55(18)
C(51)-P(2)-Pt(1)	113.97(17)
C(1B)-P(2)-Pt(1)	113.57(17)
C(1)-C(2)-C(3)	176.4(6)
C(1B)-C(2B)-C(3B)	110.5(5)
C(3A)-C(2A)-C(1A)	112.3(4)
C(81)-P(3)-C(71)	104.5(3)
C(81)-P(3)-C(20A)	102.0(3)
C(71)-P(3)-C(20A)	107.5(3)
C(81)-P(3)-Pt(2)	113.8(2)
C(71)-P(3)-Pt(2)	114.81(19)
C(20A)-P(3)-Pt(2)	113.0(2)
C(4)-C(3)-C(2)	176.3(7)
C(4B)-C(3B)-C(2B)	114.4(7)
C(2A)-C(3A)-C(4A)	115.0(5)
C(101)-P(4)-C(91)	104.5(3)
C(101)-P(4)-C(20B)	104.5(3)
C(91)-P(4)-C(20B)	107.3(3)
C(101)-P(4)-Pt(2)	112.2(2)

C(91)-P(4)-Pt(2)	114.79(19)
C(20B)-P(4)-Pt(2)	112.8(2)
C(3)-C(4)-C(5)	176.0(7)
C(5B)-C(4B)-C(3B)	122.5(9)
C(5A)-C(4A)-C(3A)	114.5(5)
C(6)-C(5)-C(4)	176.0(7)
C(4B)-C(5B)-C(6B)	120.5(10)
C(6A)-C(5A)-C(4A)	114.9(6)
C(5)-C(6)-C(7)	178.9(7)
C(5B)-C(6B)-C(7B)	112.0(9)
C(5A)-C(6A)-C(7A)	115.2(6)
C(8)-C(7)-C(6)	179.5(7)
C(8B)-C(7B)-C(6B)	114.0(9)
C(8A)-C(7A)-C(6A)	120.1(7)
C(7)-C(8)-Pt(2)	175.0(5)
C(7B)-C(8B)-C(9B)	116.8(9)
C(9A)-C(8A)-C(7A)	126.5(11)
C(10B)-C(9B)-C(8B)	110.9(7)
C(8A)-C(9A)-C(10A)	134.4(12)
C(11B)-C(10B)-C(9B)	111.0(8)
C(9A)-C(10A)-C(11A)	114.6(13)
C(12)-C(11)-C(16)	114.1(5)
C(12)-C(11)-Pt(1)	123.0(4)
C(16)-C(11)-Pt(1)	122.9(4)
C(10B)-C(11B)-C(12B)	112.0(8)
C(12A)-C(11A)-C(10A)	89.5(14)
F(12)-C(12)-C(11)	119.1(5)
F(12)-C(12)-C(13)	116.6(5)
C(11)-C(12)-C(13)	124.3(5)
C(13B)-C(12B)-C(11B)	116.6(8)
C(11A)-C(12A)-C(13A)	97(2)
F(13)-C(13)-C(12)	121.7(6)
F(13)-C(13)-C(14)	118.2(5)
C(12)-C(13)-C(14)	120.1(5)
C(14B)-C(13B)-C(12B)	115.1(7)
C(14A)-C(13A)-C(12A)	140(4)
F(14)-C(14)-C(13)	121.4(5)
F(14)-C(14)-C(15)	120.5(6)

C(13)-C(14)-C(15)	118.1(5)
C(13B)-C(14B)-C(15B)	112.3(7)
C(13A)-C(14A)-C(15A)	157(3)
F(15)-C(15)-C(16)	121.1(5)
F(15)-C(15)-C(14)	120.0(5)
C(16)-C(15)-C(14)	118.9(5)
C(16B)-C(15B)-C(14B)	114.5(7)
C(16A)-C(15A)-C(14A)	136(3)
F(16)-C(16)-C(11)	120.6(4)
F(16)-C(16)-C(15)	114.9(5)
C(11)-C(16)-C(15)	124.5(5)
C(17B)-C(16B)-C(15B)	113.7(7)
C(15A)-C(16A)-C(17A)	133(2)
C(16B)-C(17B)-C(18B)	114.4(7)
C(16A)-C(17A)-C(18A)	119.1(13)
C(19B)-C(18B)-C(17B)	113.5(6)
C(19A)-C(18A)-C(17A)	109.9(10)
C(20B)-C(19B)-C(18B)	113.5(5)
C(18A)-C(19A)-C(20A)	107.5(7)
C(19B)-C(20B)-P(4)	115.0(4)
C(19A)-C(20A)-P(3)	113.8(5)
C(26)-C(21)-C(22)	118.7(5)
C(26)-C(21)-P(1)	120.2(4)
C(22)-C(21)-P(1)	121.1(5)
C(23)-C(22)-C(21)	120.2(6)
C(22)-C(23)-C(24)	120.7(6)
C(25)-C(24)-C(23)	120.4(6)
C(24)-C(25)-C(26)	119.9(6)
C(21)-C(26)-C(25)	120.1(5)
C(32)-C(31)-C(36)	119.3(5)
C(32)-C(31)-P(1)	119.3(4)
C(36)-C(31)-P(1)	121.2(4)
C(33)-C(32)-C(31)	120.1(6)
C(32)-C(33)-C(34)	121.0(6)
C(33)-C(34)-C(35)	119.1(6)
C(36)-C(35)-C(34)	120.0(6)
C(35)-C(36)-C(31)	120.6(5)
C(46)-C(41)-C(42)	118.8(5)

C(46)-C(41)-P(2)	119.2(4)
C(42)-C(41)-P(2)	122.0(5)
C(43)-C(42)-C(41)	119.4(6)
C(44)-C(43)-C(42)	121.2(6)
C(43)-C(44)-C(45)	119.9(6)
C(46)-C(45)-C(44)	118.9(6)
C(41)-C(46)-C(45)	121.9(6)
C(52)-C(51)-C(56)	118.6(5)
C(52)-C(51)-P(2)	120.0(4)
C(56)-C(51)-P(2)	120.9(4)
C(51)-C(52)-C(53)	120.4(6)
C(54)-C(53)-C(52)	120.7(6)
C(53)-C(54)-C(55)	119.5(6)
C(54)-C(55)-C(56)	120.0(6)
C(55)-C(56)-C(51)	120.7(6)
C(62)-C(61)-C(66)	114.1(5)
C(62)-C(61)-Pt(2)	122.8(5)
C(66)-C(61)-Pt(2)	123.1(4)
F(62)-C(62)-C(61)	119.9(5)
F(62)-C(62)-C(63)	116.1(6)
C(61)-C(62)-C(63)	124.0(6)
F(63)-C(63)-C(64)	119.7(6)
F(63)-C(63)-C(62)	120.9(7)
C(64)-C(63)-C(62)	119.4(6)
F(64)-C(64)-C(65)	121.6(7)
F(64)-C(64)-C(63)	119.2(7)
C(65)-C(64)-C(63)	119.1(6)
F(65)-C(65)-C(64)	119.9(6)
F(65)-C(65)-C(66)	120.8(7)
C(64)-C(65)-C(66)	119.3(7)
F(66)-C(66)-C(61)	120.5(5)
F(66)-C(66)-C(65)	115.4(6)
C(61)-C(66)-C(65)	124.0(6)
C(72)-C(71)-C(76)	118.5(5)
C(72)-C(71)-P(3)	121.9(5)
C(76)-C(71)-P(3)	119.3(5)
C(73)-C(72)-C(71)	120.4(7)
C(74)-C(73)-C(72)	120.4(7)

C(75)-C(74)-C(73)	120.4(6)
C(74)-C(75)-C(76)	120.2(7)
C(75)-C(76)-C(71)	120.0(6)
C(82)-C(81)-C(86)	119.9(7)
C(82)-C(81)-P(3)	119.8(5)
C(86)-C(81)-P(3)	120.3(6)
C(81)-C(82)-C(83)	120.4(7)
C(84)-C(83)-C(82)	119.5(9)
C(83)-C(84)-C(85)	120.4(9)
C(86)-C(85)-C(84)	119.7(8)
C(85)-C(86)-C(81)	120.0(8)
C(92)-C(91)-C(96)	119.2(6)
C(92)-C(91)-P(4)	118.4(5)
C(96)-C(91)-P(4)	121.9(5)
C(91)-C(92)-C(93)	121.6(7)
C(94)-C(93)-C(92)	117.8(8)
C(95)-C(94)-C(93)	120.8(8)
C(96)-C(95)-C(94)	120.0(8)
C(95)-C(96)-C(91)	120.6(8)
C(106)-C(101)-C(102)	118.8(6)
C(106)-C(101)-P(4)	121.7(5)
C(102)-C(101)-P(4)	119.5(5)
C(103)-C(102)-C(101)	120.2(7)
C(104)-C(103)-C(102)	121.0(8)
C(105)-C(104)-C(103)	119.2(8)
C(104)-C(105)-C(106)	122.5(8)
C(101)-C(106)-C(105)	118.2(8)

Table S4. Anisotropic displacement parameters (Å² × 10³) for **4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pt(1)	22(1)	31(1)	18(1)	0(1)	3(1)	0(1)
P(1)	28(1)	32(1)	19(1)	-2(1)	4(1)	-3(1)
C(1B)	26(3)	65(4)	29(3)	3(3)	9(2)	2(3)
C(1)	28(3)	37(3)	24(2)	1(2)	7(2)	-5(3)
C(1A)	36(3)	48(4)	22(2)	4(2)	6(2)	8(3)
Pt(2)	22(1)	35(1)	34(1)	3(1)	1(1)	1(1)
P(2)	27(1)	34(1)	19(1)	1(1)	6(1)	1(1)
C(2)	33(3)	44(4)	26(3)	6(2)	8(2)	-1(3)
C(2B)	27(3)	66(4)	48(3)	9(3)	12(3)	2(3)
C(2A)	36(3)	35(3)	25(3)	4(2)	9(2)	2(3)
P(3)	27(1)	35(1)	45(1)	5(1)	2(1)	-1(1)
C(3)	30(3)	44(4)	27(3)	0(2)	5(2)	7(3)
C(3B)	41(4)	82(6)	85(5)	24(4)	0(4)	-18(4)
C(3A)	62(5)	36(3)	32(3)	8(3)	7(3)	4(3)
P(4)	30(1)	40(1)	38(1)	-1(1)	6(1)	1(1)
C(4)	33(3)	47(4)	38(3)	5(3)	9(3)	2(3)
C(4B)	61(6)	100(7)	183(12)	56(8)	-49(7)	-45(6)
C(4A)	72(5)	37(4)	54(4)	9(3)	23(4)	4(4)
C(5)	30(3)	48(4)	44(3)	3(3)	5(3)	0(3)
C(5B)	330(20)	90(7)	67(6)	2(6)	-18(9)	-98(10)
C(5A)	56(5)	35(4)	60(4)	-7(3)	21(3)	-9(3)
C(6)	31(3)	44(4)	38(3)	2(3)	1(3)	2(3)
C(6B)	150(11)	100(7)	89(7)	2(6)	17(7)	-60(7)
C(6A)	61(5)	61(4)	54(4)	4(3)	17(4)	14(4)
C(7)	27(3)	40(3)	39(3)	5(3)	3(3)	3(3)
C(7B)	74(7)	99(7)	106(8)	-1(6)	-9(6)	-14(6)
C(7A)	60(5)	92(6)	56(4)	-15(4)	17(4)	-7(5)
C(8)	38(4)	34(3)	40(3)	5(3)	7(3)	1(3)
C(8B)	74(6)	74(6)	106(7)	13(5)	12(5)	-13(5)
C(8A)	68(7)	460(20)	67(6)	-13(10)	19(6)	103(12)
C(9B)	97(8)	78(6)	77(6)	-8(5)	-9(5)	-12(6)
C(9A)	53(6)	257(16)	148(11)	86(10)	49(7)	33(8)
C(10B)	85(7)	88(6)	75(6)	-10(5)	16(5)	20(5)

C(10A)	96(10)	223(15)	111(9)	-24(9)	-2(8)	42(10)
C(11)	26(3)	27(3)	20(2)	-1(2)	6(2)	3(2)
C(11B)	138(10)	79(6)	80(6)	-20(5)	25(6)	23(7)
C(11A)	230(20)	190(15)	138(13)	-18(11)	39(13)	46(14)
F(12)	48(2)	34(2)	52(2)	-6(2)	15(2)	-11(2)
C(12)	26(3)	33(3)	28(3)	-4(2)	9(2)	-7(3)
C(12B)	117(9)	79(6)	86(6)	3(5)	37(6)	30(6)
C(12A)	1290(90)	86(11)	88(11)	34(9)	180(30)	210(30)
F(13)	85(3)	23(2)	71(2)	12(2)	24(2)	12(2)
C(13)	57(4)	26(3)	32(3)	3(2)	18(3)	12(3)
C(13B)	63(6)	103(7)	73(5)	10(5)	28(4)	16(5)
C(13A)	122(16)	680(70)	145(17)	-160(30)	53(13)	60(30)
F(14)	58(3)	58(2)	65(2)	12(2)	-2(2)	32(2)
C(14)	45(4)	45(4)	32(3)	10(3)	2(3)	14(3)
C(14B)	75(6)	76(6)	56(4)	1(4)	16(4)	26(5)
C(14A)	540(60)	270(30)	159(18)	-118(17)	120(30)	-40(30)
C(15)	29(3)	40(3)	28(3)	2(2)	6(2)	-1(3)
F(15)	26(2)	65(2)	58(2)	3(2)	3(2)	-2(2)
C(15B)	83(7)	85(6)	64(5)	2(4)	24(5)	10(5)
C(15A)	83(10)	480(40)	101(10)	80(17)	-35(8)	39(17)
F(16)	31(2)	35(2)	44(2)	7(1)	9(1)	-4(2)
C(16)	32(3)	19(3)	25(2)	5(2)	8(2)	3(2)
C(16B)	52(5)	103(7)	74(5)	-7(5)	16(4)	1(5)
C(16A)	230(20)	410(30)	145(15)	-58(18)	-25(15)	130(20)
C(17B)	45(5)	120(7)	65(5)	27(5)	4(4)	-5(5)
C(17A)	83(8)	336(19)	60(6)	38(9)	16(6)	-28(10)
C(18B)	60(5)	82(5)	54(4)	-8(4)	27(4)	-20(4)
C(18A)	95(8)	216(12)	58(5)	54(7)	16(5)	19(8)
C(19B)	46(4)	53(4)	46(4)	7(3)	15(3)	-5(3)
C(19A)	61(5)	101(6)	54(4)	27(4)	17(4)	-12(5)
C(20B)	35(3)	41(4)	53(4)	-6(3)	10(3)	-7(3)
C(20A)	57(5)	58(4)	47(4)	19(3)	2(3)	0(4)
C(21)	31(3)	33(3)	26(3)	-1(2)	0(2)	0(3)
C(22)	56(4)	47(4)	31(3)	-9(3)	10(3)	-10(3)
C(23)	73(5)	68(5)	36(3)	-23(3)	-2(3)	-18(4)
C(24)	59(5)	47(4)	55(4)	-15(3)	-8(4)	-16(4)
C(25)	45(4)	51(4)	50(4)	-1(3)	8(3)	-16(3)
C(26)	41(4)	40(3)	35(3)	-2(3)	7(3)	-14(3)

C(31)	32(3)	32(3)	15(2)	-2(2)	1(2)	1(3)
C(32)	29(3)	37(4)	43(3)	2(3)	8(3)	-4(3)
C(33)	49(4)	35(4)	46(3)	8(3)	8(3)	5(3)
C(34)	31(3)	38(4)	48(3)	4(3)	11(3)	10(3)
C(35)	32(3)	48(4)	35(3)	3(3)	9(2)	-4(3)
C(36)	32(3)	30(3)	31(3)	-1(2)	8(2)	0(3)
C(41)	43(4)	27(3)	25(3)	1(2)	7(2)	2(3)
C(42)	79(5)	46(4)	41(3)	-5(3)	33(3)	-9(4)
C(43)	89(6)	45(4)	44(4)	-12(3)	31(4)	-4(4)
C(44)	70(5)	34(4)	49(4)	-11(3)	9(4)	-4(4)
C(45)	58(5)	36(4)	51(4)	-5(3)	16(3)	-6(3)
C(46)	49(4)	33(3)	45(3)	-6(3)	23(3)	1(3)
C(51)	34(3)	29(3)	23(2)	0(2)	8(2)	1(3)
C(52)	41(4)	38(3)	29(3)	4(2)	11(2)	2(3)
C(53)	58(4)	35(4)	46(3)	7(3)	24(3)	8(3)
C(54)	59(5)	60(5)	33(3)	15(3)	20(3)	32(4)
C(55)	43(4)	60(5)	36(3)	4(3)	-2(3)	5(3)
C(56)	41(4)	39(3)	33(3)	1(3)	4(3)	-2(3)
C(61)	28(3)	31(3)	39(3)	0(2)	0(2)	2(3)
F(62)	52(3)	90(3)	43(2)	7(2)	12(2)	18(2)
C(62)	38(4)	43(4)	41(3)	0(3)	2(3)	13(3)
F(63)	88(4)	118(4)	33(2)	-4(2)	-4(2)	30(3)
C(63)	62(5)	59(4)	39(3)	-1(3)	-1(3)	15(4)
F(64)	66(3)	203(6)	64(3)	-5(3)	-26(2)	62(4)
C(64)	50(5)	92(6)	51(4)	-4(4)	-17(4)	33(5)
C(65)	31(4)	104(6)	66(5)	3(4)	5(3)	34(4)
F(65)	42(3)	226(6)	88(3)	3(4)	8(2)	61(4)
F(66)	40(2)	101(3)	45(2)	3(2)	10(2)	17(2)
C(66)	33(3)	52(4)	41(3)	-1(3)	4(3)	4(3)
C(71)	31(3)	32(3)	48(3)	5(3)	0(3)	2(3)
C(72)	39(4)	53(4)	46(3)	11(3)	5(3)	-3(3)
C(73)	50(5)	72(5)	52(4)	11(4)	-12(3)	-9(4)
C(74)	32(4)	53(4)	72(5)	10(4)	-9(3)	-4(3)
C(75)	29(4)	54(4)	83(5)	-3(4)	7(3)	-3(3)
C(76)	41(4)	41(4)	58(4)	0(3)	8(3)	-3(3)
C(81)	33(3)	41(4)	47(3)	0(3)	0(3)	6(3)
C(82)	43(4)	64(5)	64(4)	0(4)	20(3)	5(4)
C(83)	66(6)	97(7)	79(5)	-11(5)	36(4)	2(5)

C(84)	96(8)	127(9)	74(6)	-33(6)	18(6)	44(7)
C(85)	91(8)	62(6)	102(7)	-30(5)	13(6)	23(6)
C(86)	57(5)	42(4)	79(5)	-6(4)	3(4)	10(4)
C(91)	40(4)	31(3)	52(4)	-1(3)	6(3)	-4(3)
C(92)	50(4)	38(4)	61(4)	9(3)	8(3)	-2(3)
C(93)	61(5)	50(5)	81(5)	19(4)	-7(4)	-10(4)
C(94)	54(5)	44(5)	138(8)	36(5)	5(6)	6(4)
C(95)	69(6)	52(5)	109(7)	5(5)	24(5)	14(4)
C(96)	47(4)	37(4)	84(5)	4(3)	21(4)	6(3)
C(101)	37(4)	63(4)	38(3)	-6(3)	8(3)	4(3)
C(102)	42(4)	58(4)	57(4)	1(3)	14(3)	9(4)
C(103)	59(5)	90(6)	55(4)	12(4)	30(4)	20(5)
C(104)	67(6)	146(9)	48(4)	-11(5)	22(4)	3(6)
C(105)	111(9)	150(9)	66(6)	-57(6)	29(6)	-35(8)
C(106)	83(6)	94(6)	61(5)	-35(4)	30(4)	-40(5)

	Х	у	Z	U(eq)	
H(1BA)	3361	-10634	6930	47	
H(1BB)	3304	-9891	6314	47	
H(1AA)	4045	-10400	3778	42	
H(1AB)	3691	-10163	3979	42	
H(2BA)	3173	-12361	6452	56	
H(2BB)	3233	-11886	5814	56	
H(2AA)	4056	-9097	4866	38	
H(2AB)	4336	-9059	4457	38	
H(3BA)	2703	-11092	6395	86	
H(3BB)	2778	-10441	5808	86	
H(3AA)	3664	-8038	4100	52	
H(3AB)	3945	-7994	3696	52	
H(4BA)	2628	-12903	5733	151	
H(4BB)	2318	-12009	5733	151	
H(4AA)	4292	-6715	4408	64	
H(4AB)	3924	-6128	4153	64	
H(5BA)	2702	-12166	4905	207	
H(5BB)	2410	-11197	4908	207	
H(5AA)	4128	-7253	5306	59	
H(5AB)	4098	-5836	5202	59	
H(6BA)	1988	-12547	4645	137	
H(6BB)	2243	-13659	4834	137	
H(6AA)	3533	-7447	4974	69	
H(6AB)	3499	-6038	4847	69	
H(7BA)	2518	-12970	4005	116	
H(7BB)	2167	-13708	3821	116	
H(7AA)	3723	-7047	6014	83	
H(7AB)	3676	-5649	5879	83	
H(8BA)	2185	-11217	3837	104	
H(8BB)	1866	-12051	3552	104	
H(9BA)	2189	-12680	2784	106	
H(9BB)	2054	-11321	2722	106	
H(10A)	2610	-10663	3260	100	

Table S5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10³) for 4.

H(10B)	2742	-12024	3288	100
H(11A)	2492	-10784	2182	118
H(11B)	2662	-12093	2242	118
H(12A)	3194	-11272	2734	110
H(12B)	3069	-10711	2075	110
H(13A)	3052	-9522	3180	93
H(13B)	3309	-9220	2751	93
H(14A)	2591	-8749	2478	82
H(14B)	2825	-8568	1993	82
H(15A)	2892	-7262	3097	91
H(15B)	3161	-7144	2672	91
H(16A)	2799	-5529	2476	91
H(16B)	2719	-6371	1891	91
H(17A)	2324	-6375	2783	93
H(17B)	2238	-7115	2164	93
H(18A)	2198	-4533	2257	76
H(18B)	2156	-5195	1619	76
H(19A)	1600	-4859	1696	57
H(19B)	1657	-6250	1861	57
H(20A)	1638	-4334	2688	51
H(20B)	1794	-5608	2928	51
H(22A)	3824	-12662	3408	54
H(23A)	3415	-14010	2940	73
H(24A)	3036	-14857	3462	68
H(25A)	3058	-14339	4453	59
H(26A)	3471	-12962	4942	46
H(32A)	4248	-14001	4510	44
H(33A)	4767	-14885	4454	52
H(34A)	5254	-13713	4478	46
H(35A)	5209	-11617	4510	45
H(36A)	4687	-10729	4549	37
H(42A)	3713	-9030	7392	63
H(43A)	3942	-7147	7701	68
H(44A)	4389	-6366	7326	62
H(45A)	4605	-7437	6596	57
H(46A)	4356	-9268	6248	48
H(52A)	3685	-13176	6832	42
H(53A)	3966	-14630	7492	53

H(54A)	4488	-14211	8138	59
H(55A)	4713	-12278	8172	58
H(56A)	4436	-10821	7507	46
H(72A)	761	-10424	855	56
H(73A)	217	-10809	270	74
H(74A)	-262	-10672	689	66
H(75A)	-204	-10204	1694	67
H(76A)	339	-9848	2303	57
H(82A)	1571	-8738	1624	67
H(83A)	1988	-9523	1156	93
H(84A)	1980	-11549	918	119
H(85A)	1571	-12816	1186	103
H(86A)	1166	-12037	1676	73
H(92A)	1007	-4989	1427	61
H(93A)	568	-3834	841	81
H(94A)	187	-2836	1328	97
H(95A)	265	-2910	2372	91
H(96A)	698	-4077	2935	66
H(10C)	893	-7041	3474	62
H(10D)	866	-6827	4487	78
H(10E)	1127	-5229	5049	102
H(10F)	1418	-3851	4615	129
H(10G)	1443	-3963	3587	92

Table S6. Torsion angles [°] for **4**.

C(1)-Pt(1)-P(1)-C(31)	170.8(2)
C(11)-Pt(1)-P(1)-C(31)	-9.4(2)
P(2)-Pt(1)-P(1)-C(31)	-173.2(5)
Pt(2)-Pt(1)-P(1)-C(31)	-179.8(2)
C(1)-Pt(1)-P(1)-C(21)	-70.4(2)
C(11)-Pt(1)-P(1)-C(21)	109.3(2)
P(2)-Pt(1)-P(1)-C(21)	-54.4(6)
Pt(2)-Pt(1)-P(1)-C(21)	-61.02(18)
C(1)-Pt(1)-P(1)-C(1A)	46.3(2)
C(11)-Pt(1)-P(1)-C(1A)	-133.9(2)
P(2)-Pt(1)-P(1)-C(1A)	62.3(6)
Pt(2)-Pt(1)-P(1)-C(1A)	55.7(2)
C(11)-Pt(1)-C(1)-C(2)	9(9)
P(1)-Pt(1)-C(1)-C(2)	15(5)
P(2)-Pt(1)-C(1)-C(2)	-163(5)
Pt(2)-Pt(1)-C(1)-C(2)	-30(5)
C(31)-P(1)-C(1A)-C(2A)	-90.6(4)
C(21)-P(1)-C(1A)-C(2A)	159.6(4)
Pt(1)-P(1)-C(1A)-C(2A)	38.7(5)
C(1)-Pt(1)-Pt(2)-C(8)	-15.8(15)
C(11)-Pt(1)-Pt(2)-C(8)	169.5(14)
P(1)-Pt(1)-Pt(2)-C(8)	-149.1(13)
P(2)-Pt(1)-Pt(2)-C(8)	31.6(13)
C(1)-Pt(1)-Pt(2)-C(61)	148.5(11)
C(11)-Pt(1)-Pt(2)-C(61)	-26.2(11)
P(1)-Pt(1)-Pt(2)-C(61)	15.3(9)
P(2)-Pt(1)-Pt(2)-C(61)	-164.0(9)
C(1)-Pt(1)-Pt(2)-P(3)	-159.9(7)
C(11)-Pt(1)-Pt(2)-P(3)	25.4(6)
P(1)-Pt(1)-Pt(2)-P(3)	66.87(6)
P(2)-Pt(1)-Pt(2)-P(3)	-112.48(6)
C(1)-Pt(1)-Pt(2)-P(4)	16.4(7)
C(11)-Pt(1)-Pt(2)-P(4)	-158.3(6)
P(1)-Pt(1)-Pt(2)-P(4)	-116.86(5)
P(2)-Pt(1)-Pt(2)-P(4)	63.79(5)
C(2B)-C(1B)-P(2)-C(41)	168.7(4)

C(2B)-C(1B)-P(2)-C(51)	-80.0(5)
C(2B)-C(1B)-P(2)-Pt(1)	47.4(5)
C(1)-Pt(1)-P(2)-C(41)	-86.5(2)
C(11)-Pt(1)-P(2)-C(41)	93.8(2)
P(1)-Pt(1)-P(2)-C(41)	-102.5(5)
Pt(2)-Pt(1)-P(2)-C(41)	-96.00(19)
C(1)-Pt(1)-P(2)-C(51)	154.5(2)
C(11)-Pt(1)-P(2)-C(51)	-25.2(2)
P(1)-Pt(1)-P(2)-C(51)	138.5(5)
Pt(2)-Pt(1)-P(2)-C(51)	145.0(2)
C(1)-Pt(1)-P(2)-C(1B)	30.3(3)
C(11)-Pt(1)-P(2)-C(1B)	-149.4(3)
P(1)-Pt(1)-P(2)-C(1B)	14.3(6)
Pt(2)-Pt(1)-P(2)-C(1B)	20.8(2)
Pt(1)-C(1)-C(2)-C(3)	36(14)
P(2)-C(1B)-C(2B)-C(3B)	-159.7(5)
P(1)-C(1A)-C(2A)-C(3A)	-158.9(4)
C(8)-Pt(2)-P(3)-C(81)	-68.8(3)
C(61)-Pt(2)-P(3)-C(81)	107.8(3)
P(4)-Pt(2)-P(3)-C(81)	-103.2(6)
Pt(1)-Pt(2)-P(3)-C(81)	-64.4(2)
C(8)-Pt(2)-P(3)-C(71)	170.9(3)
C(61)-Pt(2)-P(3)-C(71)	-12.5(3)
P(4)-Pt(2)-P(3)-C(71)	136.4(6)
Pt(1)-Pt(2)-P(3)-C(71)	175.2(2)
C(8)-Pt(2)-P(3)-C(20A)	47.0(3)
C(61)-Pt(2)-P(3)-C(20A)	-136.4(3)
P(4)-Pt(2)-P(3)-C(20A)	12.6(7)
Pt(1)-Pt(2)-P(3)-C(20A)	51.4(3)
C(1)-C(2)-C(3)-C(4)	7(18)
C(1B)-C(2B)-C(3B)-C(4B)	171.8(7)
C(1A)-C(2A)-C(3A)-C(4A)	179.5(5)
C(8)-Pt(2)-P(4)-C(101)	-65.8(3)
C(61)-Pt(2)-P(4)-C(101)	117.6(3)
P(3)-Pt(2)-P(4)-C(101)	-31.3(6)
Pt(1)-Pt(2)-P(4)-C(101)	-69.8(2)
C(8)-Pt(2)-P(4)-C(91)	175.0(3)
C(61)-Pt(2)-P(4)-C(91)	-1.6(3)
P(3)-Pt(2)-P(4)-C(91)	-150.4(6)
----------------------------	------------
Pt(1)-Pt(2)-P(4)-C(91)	171.1(2)
C(8)-Pt(2)-P(4)-C(20B)	51.8(3)
C(61)-Pt(2)-P(4)-C(20B)	-124.8(3)
P(3)-Pt(2)-P(4)-C(20B)	86.3(6)
Pt(1)-Pt(2)-P(4)-C(20B)	47.8(2)
C(2)-C(3)-C(4)-C(5)	22(18)
C(2B)-C(3B)-C(4B)-C(5B)	-90.1(14)
C(2A)-C(3A)-C(4A)-C(5A)	-60.9(8)
C(3)-C(4)-C(5)-C(6)	-5(18)
C(3B)-C(4B)-C(5B)-C(6B)	-176.1(10)
C(3A)-C(4A)-C(5A)-C(6A)	-60.6(8)
C(4)-C(5)-C(6)-C(7)	1(45)
C(4B)-C(5B)-C(6B)-C(7B)	-161.4(13)
C(4A)-C(5A)-C(6A)-C(7A)	-178.2(6)
C(5)-C(6)-C(7)-C(8)	-78(100)
C(5B)-C(6B)-C(7B)-C(8B)	-81.9(12)
C(5A)-C(6A)-C(7A)-C(8A)	-178.0(10)
C(6)-C(7)-C(8)-Pt(2)	-44(99)
C(61)-Pt(2)-C(8)-C(7)	24(9)
P(3)-Pt(2)-C(8)-C(7)	111(6)
P(4)-Pt(2)-C(8)-C(7)	-73(6)
Pt(1)-Pt(2)-C(8)-C(7)	75(6)
C(6B)-C(7B)-C(8B)-C(9B)	169.0(8)
C(6A)-C(7A)-C(8A)-C(9A)	-35(2)
C(7B)-C(8B)-C(9B)-C(10B)	-72.9(10)
C(7A)-C(8A)-C(9A)-C(10A)	-166.5(15)
C(8B)-C(9B)-C(10B)-C(11B)	-177.4(7)
C(8A)-C(9A)-C(10A)-C(11A)	-134(2)
C(1)-Pt(1)-C(11)-C(12)	-88(6)
P(1)-Pt(1)-C(11)-C(12)	-94.7(4)
P(2)-Pt(1)-C(11)-C(12)	83.8(4)
Pt(2)-Pt(1)-C(11)-C(12)	-54.5(8)
C(1)-Pt(1)-C(11)-C(16)	91(6)
P(1)-Pt(1)-C(11)-C(16)	85.0(4)
P(2)-Pt(1)-C(11)-C(16)	-96.6(4)
Pt(2)-Pt(1)-C(11)-C(16)	125.1(5)
C(9B)-C(10B)-C(11B)-C(12B)	174.2(7)

C(9A)-C(10A)-C(11A)-C(12A)	98.4(14)
C(16)-C(11)-C(12)-F(12)	-176.3(4)
Pt(1)-C(11)-C(12)-F(12)	3.4(6)
C(16)-C(11)-C(12)-C(13)	2.4(7)
Pt(1)-C(11)-C(12)-C(13)	-177.9(4)
C(10B)-C(11B)-C(12B)-C(13B)	-61.5(11)
C(10A)-C(11A)-C(12A)-C(13A)	162.1(16)
F(12)-C(12)-C(13)-F(13)	-2.6(7)
C(11)-C(12)-C(13)-F(13)	178.7(5)
F(12)-C(12)-C(13)-C(14)	176.5(5)
C(11)-C(12)-C(13)-C(14)	-2.2(8)
C(11B)-C(12B)-C(13B)-C(14B)	-57.2(11)
C(11A)-C(12A)-C(13A)-C(14A)	-174(4)
F(13)-C(13)-C(14)-F(14)	-0.3(8)
C(12)-C(13)-C(14)-F(14)	-179.4(5)
F(13)-C(13)-C(14)-C(15)	-180.0(5)
C(12)-C(13)-C(14)-C(15)	0.9(8)
C(12B)-C(13B)-C(14B)-C(15B)	-173.1(7)
C(12A)-C(13A)-C(14A)-C(15A)	-95(8)
F(14)-C(14)-C(15)-F(15)	1.3(8)
C(13)-C(14)-C(15)-F(15)	-179.1(5)
F(14)-C(14)-C(15)-C(16)	-179.8(5)
C(13)-C(14)-C(15)-C(16)	-0.1(8)
C(13B)-C(14B)-C(15B)-C(16B)	173.3(7)
C(13A)-C(14A)-C(15A)-C(16A)	-132(9)
C(12)-C(11)-C(16)-F(16)	177.7(4)
Pt(1)-C(11)-C(16)-F(16)	-2.0(6)
C(12)-C(11)-C(16)-C(15)	-1.5(7)
Pt(1)-C(11)-C(16)-C(15)	178.8(4)
F(15)-C(15)-C(16)-F(16)	0.2(7)
C(14)-C(15)-C(16)-F(16)	-178.7(4)
F(15)-C(15)-C(16)-C(11)	179.4(5)
C(14)-C(15)-C(16)-C(11)	0.5(8)
C(14B)-C(15B)-C(16B)-C(17B)	65.7(10)
C(14A)-C(15A)-C(16A)-C(17A)	81(4)
C(15B)-C(16B)-C(17B)-C(18B)	175.1(6)
C(15A)-C(16A)-C(17A)-C(18A)	43(4)
C(16B)-C(17B)-C(18B)-C(19B)	172.5(6)

C(16A)-C(17A)-C(18A)-C(19A)	-138.8(16)
C(17B)-C(18B)-C(19B)-C(20B)	75.3(8)
C(17A)-C(18A)-C(19A)-C(20A)	175.2(8)
C(18B)-C(19B)-C(20B)-P(4)	-165.1(5)
C(101)-P(4)-C(20B)-C(19B)	172.3(5)
C(91)-P(4)-C(20B)-C(19B)	-77.2(5)
Pt(2)-P(4)-C(20B)-C(19B)	50.2(5)
C(18A)-C(19A)-C(20A)-P(3)	-167.1(6)
C(81)-P(3)-C(20A)-C(19A)	163.8(5)
C(71)-P(3)-C(20A)-C(19A)	-86.6(6)
Pt(2)-P(3)-C(20A)-C(19A)	41.2(6)
C(31)-P(1)-C(21)-C(26)	123.1(5)
C(1A)-P(1)-C(21)-C(26)	-124.3(5)
Pt(1)-P(1)-C(21)-C(26)	-2.9(5)
C(31)-P(1)-C(21)-C(22)	-56.0(5)
C(1A)-P(1)-C(21)-C(22)	56.6(5)
Pt(1)-P(1)-C(21)-C(22)	178.0(4)
C(26)-C(21)-C(22)-C(23)	0.4(9)
P(1)-C(21)-C(22)-C(23)	179.5(5)
C(21)-C(22)-C(23)-C(24)	-0.5(11)
C(22)-C(23)-C(24)-C(25)	0.5(12)
C(23)-C(24)-C(25)-C(26)	-0.3(11)
C(22)-C(21)-C(26)-C(25)	-0.3(9)
P(1)-C(21)-C(26)-C(25)	-179.3(5)
C(24)-C(25)-C(26)-C(21)	0.2(10)
C(21)-P(1)-C(31)-C(32)	-31.1(4)
C(1A)-P(1)-C(31)-C(32)	-141.4(4)
Pt(1)-P(1)-C(31)-C(32)	91.8(4)
C(21)-P(1)-C(31)-C(36)	153.8(4)
C(1A)-P(1)-C(31)-C(36)	43.5(4)
Pt(1)-P(1)-C(31)-C(36)	-83.3(4)
C(36)-C(31)-C(32)-C(33)	-1.1(8)
P(1)-C(31)-C(32)-C(33)	-176.3(4)
C(31)-C(32)-C(33)-C(34)	1.6(8)
C(32)-C(33)-C(34)-C(35)	-1.4(8)
C(33)-C(34)-C(35)-C(36)	0.9(8)
C(34)-C(35)-C(36)-C(31)	-0.5(8)
C(32)-C(31)-C(36)-C(35)	0.6(7)

P(1)-C(31)-C(36)-C(35)	175.7(4)
C(51)-P(2)-C(41)-C(46)	103.1(5)
C(1B)-P(2)-C(41)-C(46)	-143.6(5)
Pt(1)-P(2)-C(41)-C(46)	-20.9(5)
C(51)-P(2)-C(41)-C(42)	-77.8(5)
C(1B)-P(2)-C(41)-C(42)	35.5(5)
Pt(1)-P(2)-C(41)-C(42)	158.1(4)
C(46)-C(41)-C(42)-C(43)	-0.1(9)
P(2)-C(41)-C(42)-C(43)	-179.1(5)
C(41)-C(42)-C(43)-C(44)	-1.6(11)
C(42)-C(43)-C(44)-C(45)	1.4(11)
C(43)-C(44)-C(45)-C(46)	0.5(10)
C(42)-C(41)-C(46)-C(45)	1.9(9)
P(2)-C(41)-C(46)-C(45)	-179.0(5)
C(44)-C(45)-C(46)-C(41)	-2.2(9)
C(41)-P(2)-C(51)-C(52)	164.8(4)
C(1B)-P(2)-C(51)-C(52)	54.5(5)
Pt(1)-P(2)-C(51)-C(52)	-72.6(5)
C(41)-P(2)-C(51)-C(56)	-23.9(5)
C(1B)-P(2)-C(51)-C(56)	-134.1(5)
Pt(1)-P(2)-C(51)-C(56)	98.7(5)
C(56)-C(51)-C(52)-C(53)	-0.7(8)
P(2)-C(51)-C(52)-C(53)	170.8(4)
C(51)-C(52)-C(53)-C(54)	-0.5(9)
C(52)-C(53)-C(54)-C(55)	2.1(9)
C(53)-C(54)-C(55)-C(56)	-2.4(10)
C(54)-C(55)-C(56)-C(51)	1.2(10)
C(52)-C(51)-C(56)-C(55)	0.3(9)
P(2)-C(51)-C(56)-C(55)	-171.1(5)
C(8)-Pt(2)-C(61)-C(62)	12(4)
P(3)-Pt(2)-C(61)-C(62)	-74.6(5)
P(4)-Pt(2)-C(61)-C(62)	108.5(5)
Pt(1)-Pt(2)-C(61)-C(62)	-23.5(13)
C(8)-Pt(2)-C(61)-C(66)	-168(3)
P(3)-Pt(2)-C(61)-C(66)	104.9(5)
P(4)-Pt(2)-C(61)-C(66)	-72.0(5)
Pt(1)-Pt(2)-C(61)-C(66)	155.9(7)
C(66)-C(61)-C(62)-F(62)	-179.5(5)

Pt(2)-C(61)-C(62)-F(62)	0.0(8)
C(66)-C(61)-C(62)-C(63)	-0.2(9)
Pt(2)-C(61)-C(62)-C(63)	179.4(5)
F(62)-C(62)-C(63)-F(63)	-0.7(10)
C(61)-C(62)-C(63)-F(63)	180.0(6)
F(62)-C(62)-C(63)-C(64)	178.2(7)
C(61)-C(62)-C(63)-C(64)	-1.1(11)
F(63)-C(63)-C(64)-F(64)	-2.0(12)
C(62)-C(63)-C(64)-F(64)	179.1(7)
F(63)-C(63)-C(64)-C(65)	-179.8(7)
C(62)-C(63)-C(64)-C(65)	1.3(13)
F(64)-C(64)-C(65)-F(65)	0.9(14)
C(63)-C(64)-C(65)-F(65)	178.7(8)
F(64)-C(64)-C(65)-C(66)	-177.9(7)
C(63)-C(64)-C(65)-C(66)	-0.2(13)
C(62)-C(61)-C(66)-F(66)	179.2(5)
Pt(2)-C(61)-C(66)-F(66)	-0.3(8)
C(62)-C(61)-C(66)-C(65)	1.4(10)
Pt(2)-C(61)-C(66)-C(65)	-178.2(6)
F(65)-C(65)-C(66)-F(66)	2.0(11)
C(64)-C(65)-C(66)-F(66)	-179.2(7)
F(65)-C(65)-C(66)-C(61)	179.9(7)
C(64)-C(65)-C(66)-C(61)	-1.2(13)
C(81)-P(3)-C(71)-C(72)	-20.9(6)
C(20A)-P(3)-C(71)-C(72)	-128.8(5)
Pt(2)-P(3)-C(71)-C(72)	104.5(5)
C(81)-P(3)-C(71)-C(76)	164.1(5)
C(20A)-P(3)-C(71)-C(76)	56.2(5)
Pt(2)-P(3)-C(71)-C(76)	-70.5(5)
C(76)-C(71)-C(72)-C(73)	-0.6(9)
P(3)-C(71)-C(72)-C(73)	-175.6(5)
C(71)-C(72)-C(73)-C(74)	1.0(10)
C(72)-C(73)-C(74)-C(75)	-0.8(11)
C(73)-C(74)-C(75)-C(76)	0.1(11)
C(74)-C(75)-C(76)-C(71)	0.3(10)
C(72)-C(71)-C(76)-C(75)	-0.1(9)
P(3)-C(71)-C(76)-C(75)	175.1(5)
C(71)-P(3)-C(81)-C(82)	124.2(5)

C(20A)-P(3)-C(81)-C(82)	-123.9(5)
Pt(2)-P(3)-C(81)-C(82)	-1.8(6)
C(71)-P(3)-C(81)-C(86)	-57.3(5)
C(20A)-P(3)-C(81)-C(86)	54.5(6)
Pt(2)-P(3)-C(81)-C(86)	176.6(4)
C(86)-C(81)-C(82)-C(83)	-1.3(10)
P(3)-C(81)-C(82)-C(83)	177.1(5)
C(81)-C(82)-C(83)-C(84)	1.8(12)
C(82)-C(83)-C(84)-C(85)	-1.3(14)
C(83)-C(84)-C(85)-C(86)	0.4(15)
C(84)-C(85)-C(86)-C(81)	0.1(13)
C(82)-C(81)-C(86)-C(85)	0.3(10)
P(3)-C(81)-C(86)-C(85)	-178.1(6)
C(101)-P(4)-C(91)-C(92)	179.2(5)
C(20B)-P(4)-C(91)-C(92)	68.6(5)
Pt(2)-P(4)-C(91)-C(92)	-57.5(6)
C(101)-P(4)-C(91)-C(96)	-9.2(6)
C(20B)-P(4)-C(91)-C(96)	-119.8(5)
Pt(2)-P(4)-C(91)-C(96)	114.1(5)
C(96)-C(91)-C(92)-C(93)	-0.8(10)
P(4)-C(91)-C(92)-C(93)	171.1(5)
C(91)-C(92)-C(93)-C(94)	-0.3(10)
C(92)-C(93)-C(94)-C(95)	1.8(12)
C(93)-C(94)-C(95)-C(96)	-2.2(13)
C(94)-C(95)-C(96)-C(91)	1.1(12)
C(92)-C(91)-C(96)-C(95)	0.4(10)
P(4)-C(91)-C(96)-C(95)	-171.1(5)
C(91)-P(4)-C(101)-C(106)	-75.6(6)
C(20B)-P(4)-C(101)-C(106)	37.0(7)
Pt(2)-P(4)-C(101)-C(106)	159.4(6)
C(91)-P(4)-C(101)-C(102)	103.9(6)
C(20B)-P(4)-C(101)-C(102)	-143.5(5)
Pt(2)-P(4)-C(101)-C(102)	-21.1(6)
C(106)-C(101)-C(102)-C(103)	-1.1(10)
P(4)-C(101)-C(102)-C(103)	179.4(5)
C(101)-C(102)-C(103)-C(104)	0.0(11)
C(102)-C(103)-C(104)-C(105)	0.0(14)
C(103)-C(104)-C(105)-C(106)	1.1(16)

C(102)-C(101)-C(106)-C(105)	2.1(12)
P(4)-C(101)-C(106)-C(105)	-178.4(7)
C(104)-C(105)-C(106)-C(101)	-2.2(16)

Table S7. Crystal data and structure refiner	nent for 5 .	
Empirical formula	$C_{108}H_{120}F_{10}P_4Pt_2$	
Formula weight	2122.10	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.4000(2) Å	$\alpha = 83.968(1)^{\circ}$
	b = 14.3770(3) Å	$\beta = 80.358(1)^{\circ}$
	c = 15.1140(3) Å	$\gamma = 80.128 \ (1)^{\circ}$
Volume	2398.55(8) Å ³	
Ζ	1	
Density (calculated)	1.469 Mg/m ³	
Absorption coefficient	3.047 mm^{-1}	
F(000)	1074	
Crystal size	$0.20\times0.15\times0.10\ mm^3$	
Θ range for data collection	1.91 to 27.52°	
Index ranges	-14<=h<=14, -18<=k<=18, -19<=l<=19	
Reflections collected	20633	
Independent reflections	10992 [R(int) = 0.0250]	
Reflections $[I \ge 2\sigma(I)]$	9513	
Completeness to $\Theta = 27.52^{\circ}$	99.5%	
Absorption correction	Empirical (Scalepack)	
Max. and min. transmission	0.7504 and 0.5809	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	10992 / 0 / 559	
Goodness-of-fit on F ²	1.019	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0303, $wR2 = 0.0712$	
R indices (all data)	R1 = 0.0395, $wR2 = 0.0748$	
Largest diff. peak and hole	1.619 and -1.191 eÅ ⁻³	

	Х	у	Z	U(eq)	
Pt(1)	1903(1)	-2136(1)	1412(1)	29(1)	
P(1)	29(1)	-2178(1)	1037(1)	30(1)	
C(1)	1203(3)	-1695(2)	2610(2)	33(1)	
P(2)	3792(1)	-2226(1)	1816(1)	31(1)	
C(2)	843(3)	-1292(2)	3297(2)	37(1)	
C(3)	478(3)	-775(3)	4031(2)	42(1)	
C(4)	167(3)	-279(3)	4653(2)	45(1)	
C(11)	2697(3)	-2451(2)	134(2)	33(1)	
F(12)	2792(2)	-4114(2)	382(2)	62(1)	
C(12)	3037(3)	-3340(3)	-176(2)	43(1)	
F(13)	3995(2)	-4408(2)	-1263(2)	83(1)	
C(13)	3656(3)	-3512(3)	-1028(3)	54(1)	
F(14)	4575(3)	-2921(2)	-2434(2)	89(1)	
C(14)	3950(4)	-2762(3)	-1608(2)	56(1)	
F(15)	3967(3)	-1125(2)	-1894(2)	82(1)	
C(15)	3644(3)	-1866(3)	-1339(2)	52(1)	
F(16)	2757(2)	-823(2)	-265(2)	55(1)	
C(16)	3016(3)	-1727(3)	-493(2)	41(1)	
C(21)	-1276(3)	-1424(2)	1615(2)	40(1)	
C(22)	-1826(3)	-1841(3)	2532(2)	47(1)	
C(23)	-2837(3)	-1127(3)	3007(3)	52(1)	
C(24)	-2407(4)	-308(3)	3331(3)	62(1)	
C(25)	-3377(4)	368(3)	3867(3)	57(1)	
C(26)	-2872(4)	1214(4)	4106(3)	68(1)	
C(27)	-3783(4)	1938(3)	4605(3)	66(1)	
C(28)	-3233(5)	2684(4)	4946(3)	76(1)	
C(29)	-2470(5)	3263(3)	4250(3)	72(1)	
C(30)	-2100(5)	4089(3)	4626(3)	71(1)	
C(31)	-1137(4)	3790(3)	5236(3)	69(1)	
C(32)	116(4)	3585(4)	4720(3)	68(1)	
C(33)	1092(4)	3207(3)	5304(3)	66(1)	
C(34)	2371(5)	3237(3)	4827(3)	70(1)	
C(35)	2698(4)	2744(3)	3952(3)	60(1)	

Table S8. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for **5**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(36)	2768(4)	1676(3)	4084(3)	57(1)
C(37)	3051(4)	1211(3)	3196(3)	51(1)
C(38)	3336(3)	141(3)	3314(3)	47(1)
C(39)	3517(3)	-348(3)	2439(2)	45(1)
C(40)	3934(3)	-1406(2)	2619(2)	39(1)
C(41)	-375(3)	-3356(2)	1279(2)	36(1)
C(42)	131(4)	-3983(3)	1916(3)	61(1)
C(43)	-272(4)	-4834(3)	2176(4)	80(2)
C(44)	-1173(4)	-5073(3)	1792(4)	71(1)
C(45)	-1691(5)	-4459(3)	1168(4)	74(1)
C(46)	-1283(4)	-3608(3)	907(3)	64(1)
C(51)	-81(3)	-1859(2)	-146(2)	34(1)
C(52)	329(3)	-2508(3)	-791(2)	43(1)
C(53)	317(4)	-2222(3)	-1698(3)	55(1)
C(54)	-101(3)	-1301(3)	-1967(3)	54(1)
C(55)	-524(3)	-660(3)	-1337(3)	49(1)
C(56)	-518(3)	-932(2)	-430(2)	39(1)
C(61)	5030(3)	-2172(2)	887(2)	37(1)
C(62)	5498(3)	-2988(3)	435(2)	44(1)
C(63)	6354(3)	-2939(3)	-332(3)	52(1)
C(64)	6767(3)	-2095(3)	-630(3)	57(1)
C(65)	6338(3)	-1303(3)	-180(3)	53(1)
C(66)	5471(3)	-1333(3)	575(2)	45(1)
C(71)	4220(3)	-3363(2)	2428(2)	39(1)
C(72)	5305(4)	-3564(3)	2764(3)	57(1)
C(73)	5581(5)	-4414(4)	3272(3)	73(1)
C(74)	4802(5)	-5058(3)	3435(3)	70(1)
C(75)	3762(4)	-4879(3)	3084(4)	74(1)
C(76)	3452(4)	-4027(3)	2581(3)	60(1)

Pt(1)-C(1)1.976(3) Pt(1)-C(11) 2.052(3) Pt(1)-P(1)2.3123(8) Pt(1)-P(2)2.3144(8)12.7798(3) Pt(1)-Pt(1)#1 P(1)-C(41) 1.814(3) P(1)-C(51) 1.818(3) P(1)-C(21) 1.834(3) C(1)-C(2)1.218(4) P(2)-C(61) 1.822(3) P(2)-C(40) 1.822(3) 1.824(3) P(2)-C(71) C(2)-C(3)1.367(5) C(3)-C(4)1.209(5) C(4)-C(4)#1 1.351(7) C(11)-C(12) 1.378(5) C(11)-C(16) 1.386(5) F(12)-C(12) 1.362(4) C(12)-C(13) 1.386(5) F(13)-C(13) 1.347(5) C(13)-C(14) 1.368(6) F(14)-C(14) 1.350(4) C(14)-C(15) 1.362(6) F(15)-C(15) 1.349(5) C(15)-C(16) 1.373(5) F(16)-C(16) 1.351(4) C(21)-C(22) 1.528(5) C(22)-C(23) 1.539(5) C(23)-C(24) 1.505(6) C(24)-C(25) 1.524(5) C(25)-C(26) 1.530(6) C(26)-C(27) 1.504(6) C(27)-C(28) 1.505(7)C(28)-C(29) 1.523(7) C(29)-C(30) 1.518(7) C(30)-C(31) 1.528(7)

Table S9. Bond lengths [Å] and angles [°] for 5.

C(31)-C(32)	1.505(6)
C(32)-C(33)	1.527(7)
C(33)-C(34)	1.520(6)
C(34)-C(35)	1.527(6)
C(35)-C(36)	1.517(6)
C(36)-C(37)	1.525(5)
C(37)-C(38)	1.514(5)
C(38)-C(39)	1.530(5)
C(39)-C(40)	1.524(5)
C(41)-C(46)	1.373(5)
C(41)-C(42)	1.378(5)
C(42)-C(43)	1.376(6)
C(43)-C(44)	1.368(7)
C(44)-C(45)	1.361(7)
C(45)-C(46)	1.379(6)
C(51)-C(52)	1.388(5)
C(51)-C(56)	1.391(5)
C(52)-C(53)	1.392(5)
C(53)-C(54)	1.371(6)
C(54)-C(55)	1.366(6)
C(55)-C(56)	1.386(5)
C(61)-C(66)	1.392(5)
C(61)-C(62)	1.400(5)
C(62)-C(63)	1.389(5)
C(63)-C(64)	1.381(6)
C(64)-C(65)	1.363(6)
C(65)-C(66)	1.381(5)
C(71)-C(76)	1.380(5)
C(71)-C(72)	1.388(5)
C(72)-C(73)	1.391(6)
C(73)-C(74)	1.366(7)
C(74)-C(75)	1.353(7)
C(75)-C(76)	1.396(6)
C(1)-Pt(1)-C(11)	173.60(12)
C(1)-Pt(1)-P(1)	92.55(9)
C(11)-Pt(1)-P(1)	90.16(9)
C(1)-Pt(1)-P(2)	88.16(9)

C(11)-Pt(1)-P(2)	89.61(9)
P(1)-Pt(1)-P(2)	175.33(3)
C(1)-Pt(1)-Pt(1)#1	10.60(9)
C(11)-Pt(1)-Pt(1)#1	163.00(9)
P(1)-Pt(1)-Pt(1)#1	96.503(19)
P(2)-Pt(1)-Pt(1)#1	85.00(2)
C(41)-P(1)-C(51)	105.94(15)
C(41)-P(1)-C(21)	103.14(15)
C(51)-P(1)-C(21)	103.07(16)
C(41)-P(1)-Pt(1)	111.18(11)
C(51)-P(1)-Pt(1)	114.15(10)
C(21)-P(1)-Pt(1)	118.08(11)
C(2)-C(1)-Pt(1)	169.6(3)
C(61)-P(2)-C(40)	107.76(16)
C(61)-P(2)-C(71)	103.44(15)
C(40)-P(2)-C(71)	101.17(16)
C(61)-P(2)-Pt(1)	115.71(11)
C(40)-P(2)-Pt(1)	116.52(11)
C(71)-P(2)-Pt(1)	110.51(12)
C(1)-C(2)-C(3)	175.2(4)
C(4)-C(3)-C(2)	176.8(4)
C(3)-C(4)-C(4)#1	179.3(5)
C(12)-C(11)-C(16)	113.8(3)
C(12)-C(11)-Pt(1)	126.7(3)
C(16)-C(11)-Pt(1)	119.4(2)
F(12)-C(12)-C(11)	119.5(3)
F(12)-C(12)-C(13)	116.5(3)
C(11)-C(12)-C(13)	123.9(4)
F(13)-C(13)-C(14)	121.0(3)
F(13)-C(13)-C(12)	120.0(4)
C(14)-C(13)-C(12)	119.0(4)
F(14)-C(14)-C(15)	120.7(4)
F(14)-C(14)-C(13)	119.5(4)
C(15)-C(14)-C(13)	119.8(3)
F(15)-C(15)-C(14)	120.3(3)
F(15)-C(15)-C(16)	120.4(4)
C(14)-C(15)-C(16)	119.3(4)
F(16)-C(16)-C(15)	116.2(3)

F(16)-C(16)-C(11)	119.6(3)
C(15)-C(16)-C(11)	124.1(3)
C(22)-C(21)-P(1)	115.3(3)
C(21)-C(22)-C(23)	111.7(3)
C(24)-C(23)-C(22)	114.3(3)
C(23)-C(24)-C(25)	115.4(3)
C(24)-C(25)-C(26)	111.5(4)
C(27)-C(26)-C(25)	115.0(4)
C(28)-C(27)-C(26)	113.6(4)
C(27)-C(28)-C(29)	116.9(4)
C(30)-C(29)-C(28)	113.5(4)
C(29)-C(30)-C(31)	113.6(4)
C(32)-C(31)-C(30)	113.1(4)
C(33)-C(32)-C(31)	114.6(4)
C(32)-C(33)-C(34)	114.5(4)
C(33)-C(34)-C(35)	114.7(4)
C(36)-C(35)-C(34)	113.9(4)
C(35)-C(36)-C(37)	112.5(4)
C(38)-C(37)-C(36)	113.2(3)
C(37)-C(38)-C(39)	114.3(3)
C(40)-C(39)-C(38)	109.9(3)
C(39)-C(40)-P(2)	120.0(2)
C(46)-C(41)-C(42)	118.2(3)
C(46)-C(41)-P(1)	120.9(3)
C(42)-C(41)-P(1)	120.5(3)
C(43)-C(42)-C(41)	120.7(4)
C(44)-C(43)-C(42)	120.1(4)
C(45)-C(44)-C(43)	120.0(4)
C(44)-C(45)-C(46)	119.7(4)
C(41)-C(46)-C(45)	121.3(4)
C(52)-C(51)-C(56)	118.4(3)
C(52)-C(51)-P(1)	121.6(3)
C(56)-C(51)-P(1)	119.9(3)
C(51)-C(52)-C(53)	120.1(4)
C(54)-C(53)-C(52)	120.6(4)
C(55)-C(54)-C(53)	119.7(4)
C(54)-C(55)-C(56)	120.5(4)
C(55)-C(56)-C(51)	120.6(3)

C(66)-C(61)-C(62)	118.9(3)
C(66)-C(61)-P(2)	122.2(3)
C(62)-C(61)-P(2)	118.7(3)
C(63)-C(62)-C(61)	119.7(4)
C(62)-C(63)-C(64)	120.0(4)
C(65)-C(64)-C(63)	120.6(4)
C(64)-C(65)-C(66)	120.2(4)
C(65)-C(66)-C(61)	120.5(4)
C(76)-C(71)-C(72)	119.2(4)
C(76)-C(71)-P(2)	120.1(3)
C(72)-C(71)-P(2)	120.7(3)
C(71)-C(72)-C(73)	119.6(4)
C(74)-C(73)-C(72)	120.7(4)
C(75)-C(74)-C(73)	119.9(4)
C(74)-C(75)-C(76)	120.8(5)
C(71)-C(76)-C(75)	119.7(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x, -y, -z+1

Table	S10.	Anisotropic	displacement	parameters	$(Å^2 \times 10^3)$	for 5 .	The	anisotropic	displacement
factor	expor	nent takes the	e form: $-2\pi^2$ [ł	$a^2a^{*2}U^{11} + .$	+ 2hka*b	*U ¹²]			

Pr(1) $29(1)$ $29(1)$ $28(1)$ $-4(1)$ $-4(1)$ $-6(1)$ P(1) $30(1)$ $29(1)$ $32(1)$ $-3(1)$ $-5(1)$ $-7(1)$ C(1) $31(2)$ $32(2)$ $36(2)$ $-7(1)$ $-6(1)$ $-2(1)$ P(2) $29(1)$ $33(1)$ $30(1)$ $0(1)$ $-5(1)$ $-7(1)$ C(2) $32(2)$ $45(2)$ $34(2)$ $-5(2)$ $-7(1)$ $-5(1)$ C(3) $35(2)$ $55(2)$ $37(2)$ $-9(2)$ $-7(1)$ $-7(2)$ C(4) $39(2)$ $60(2)$ $37(2)$ $-14(2)$ $-8(2)$ $-6(2)$ C(11) $28(2)$ $40(2)$ $33(2)$ $-7(1)$ $-7(1)$ $-6(1)$ F(12) $72(2)$ $42(1)$ $70(2)$ $-19(1)$ $20(1)$ $-23(1)$ C(12) $36(2)$ $51(2)$ $46(2)$ $-14(2)$ $0(2)$ $-16(2)$ F(13) $80(2)$ $82(2)$ $90(2)$ $-56(2)$ $31(2)$ $-32(2)$ C(13) $43(2)$ $68(3)$ $57(2)$ $-35(2)$ $7(2)$ $-19(2)$ F(14) $86(2)$ $136(3)$ $42(1)$ $-33(2)$ $21(1)$ $-29(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $-17(2)$ $4(2)$ $-18(2)$ F(15) $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ C(15) $48(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(25)<		U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
P(1) $30(1)$ $29(1)$ $32(1)$ $-3(1)$ $-5(1)$ $-7(1)$ C(1) $31(2)$ $32(2)$ $36(2)$ $-7(1)$ $-6(1)$ $-2(1)$ P(2) $29(1)$ $33(1)$ $30(1)$ $0(1)$ $-5(1)$ $-7(1)$ C(2) $32(2)$ $45(2)$ $34(2)$ $-5(2)$ $-7(1)$ $-5(1)$ C(3) $35(2)$ $55(2)$ $37(2)$ $-9(2)$ $-7(1)$ $-7(2)$ C(4) $39(2)$ $60(2)$ $37(2)$ $-14(2)$ $-8(2)$ $-6(2)$ C(11) $28(2)$ $40(2)$ $33(2)$ $-7(1)$ $-7(1)$ $-6(1)$ F(12) $72(2)$ $42(1)$ $70(2)$ $-19(1)$ $20(1)$ $-23(1)$ C(12) $36(2)$ $51(2)$ $46(2)$ $-14(2)$ $0(2)$ $-16(2)$ F(13) $80(2)$ $82(2)$ $90(2)$ $-56(2)$ $31(2)$ $-32(2)$ C(13) $43(2)$ $68(3)$ $57(2)$ $-35(2)$ $7(2)$ $-19(2)$ F(14) $86(2)$ $136(3)$ $42(1)$ $-33(2)$ $21(1)$ $-29(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(14) $86(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(14) $86(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(15) $88(2)$ $70(3)$ $34(2)$ $9(2)$ $-10(1)$ $-2(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $9(2)$ $-10(1)$ $-2(2)$ C(15)<	Pt(1)	29(1)	29(1)	28(1)	-4(1)	-4(1)	-6(1)	
C(1) $31(2)$ $32(2)$ $36(2)$ $-7(1)$ $-6(1)$ $-2(1)$ P(2) $29(1)$ $33(1)$ $30(1)$ $0(1)$ $-5(1)$ $-7(1)$ C(2) $32(2)$ $45(2)$ $34(2)$ $-5(2)$ $-7(1)$ $-5(1)$ C(3) $35(2)$ $55(2)$ $37(2)$ $-9(2)$ $-7(1)$ $-7(2)$ C(4) $39(2)$ $60(2)$ $37(2)$ $-14(2)$ $-8(2)$ $-6(2)$ C(11) $28(2)$ $40(2)$ $33(2)$ $-7(1)$ $-7(1)$ $-6(1)$ F(12) $72(2)$ $42(1)$ $70(2)$ $-19(1)$ $20(1)$ $-23(1)$ C(12) $36(2)$ $51(2)$ $46(2)$ $-14(2)$ $0(2)$ $-16(2)$ F(13) $80(2)$ $82(2)$ $90(2)$ $-56(2)$ $31(2)$ $-32(2)$ C(13) $43(2)$ $68(3)$ $57(2)$ $-35(2)$ $7(2)$ $-19(2)$ F(14) $86(2)$ $136(3)$ $42(1)$ $-33(2)$ $21(1)$ $-29(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $-17(2)$ $4(2)$ $-18(2)$ F(15) $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(15) $88(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(15) $88(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(21) </td <td>P(1)</td> <td>30(1)</td> <td>29(1)</td> <td>32(1)</td> <td>-3(1)</td> <td>-5(1)</td> <td>-7(1)</td> <td></td>	P(1)	30(1)	29(1)	32(1)	-3(1)	-5(1)	-7(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)	31(2)	32(2)	36(2)	-7(1)	-6(1)	-2(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)	29(1)	33(1)	30(1)	0(1)	-5(1)	-7(1)	
C(3) $35(2)$ $55(2)$ $37(2)$ $-9(2)$ $-7(1)$ $-7(2)$ C(4) $39(2)$ $60(2)$ $37(2)$ $-14(2)$ $-8(2)$ $-6(2)$ C(11) $28(2)$ $40(2)$ $33(2)$ $-7(1)$ $-7(1)$ $-6(1)$ F(12) $72(2)$ $42(1)$ $70(2)$ $-19(1)$ $20(1)$ $-23(1)$ C(12) $36(2)$ $51(2)$ $46(2)$ $-14(2)$ $0(2)$ $-16(2)$ F(13) $80(2)$ $82(2)$ $90(2)$ $-56(2)$ $31(2)$ $-32(2)$ C(13) $43(2)$ $68(3)$ $57(2)$ $-35(2)$ $7(2)$ $-19(2)$ F(14) $86(2)$ $136(3)$ $42(1)$ $-33(2)$ $21(1)$ $-29(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $-17(2)$ $4(2)$ $-18(2)$ F(15) $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ C(15) $48(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(16) $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ C(21) $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ C(22) $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $2(2)$ $-14(2)$ C(23) $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ C(24) $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ <	C(2)	32(2)	45(2)	34(2)	-5(2)	-7(1)	-5(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	35(2)	55(2)	37(2)	-9(2)	-7(1)	-7(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	39(2)	60(2)	37(2)	-14(2)	-8(2)	-6(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	28(2)	40(2)	33(2)	-7(1)	-7(1)	-6(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(12)	72(2)	42(1)	70(2)	-19(1)	20(1)	-23(1)	
F(13) $80(2)$ $82(2)$ $90(2)$ $-56(2)$ $31(2)$ $-32(2)$ $C(13)$ $43(2)$ $68(3)$ $57(2)$ $-35(2)$ $7(2)$ $-19(2)$ $F(14)$ $86(2)$ $136(3)$ $42(1)$ $-33(2)$ $21(1)$ $-29(2)$ $C(14)$ $47(2)$ $90(3)$ $34(2)$ $-17(2)$ $4(2)$ $-18(2)$ $F(15)$ $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ $C(15)$ $48(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ $F(16)$ $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ $C(16)$ $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ $C(21)$ $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ $C(22)$ $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $2(2)$ $-13(2)$ $C(23)$ $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ $C(24)$ $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ $C(24)$ $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ $C(25)$ $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ $C(26)$ $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ $C(27)$ $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ $C(28)$ $93(4)$ $63(3)$ $68(3)$ $-9(2)$ -2	C(12)	36(2)	51(2)	46(2)	-14(2)	0(2)	-16(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(13)	80(2)	82(2)	90(2)	-56(2)	31(2)	-32(2)	
F(14) $86(2)$ $136(3)$ $42(1)$ $-33(2)$ $21(1)$ $-29(2)$ C(14) $47(2)$ $90(3)$ $34(2)$ $-17(2)$ $4(2)$ $-18(2)$ F(15) $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ C(15) $48(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(16) $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ C(21) $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ C(22) $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ C(23) $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ C(24) $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ C(25) $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ C(26) $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ C(27) $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ C(28) $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ C(29) $83(3)$ $63(3)$ $65(3)$ $-3(2)$ $-14(3)$ $1(2)$ C(30) $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-3(2)$ $-3(2)$ C(31) $75(3)$ $55(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ C(C(13)	43(2)	68(3)	57(2)	-35(2)	7(2)	-19(2)	
C(14) $47(2)$ $90(3)$ $34(2)$ $-17(2)$ $4(2)$ $-18(2)$ F(15) $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ C(15) $48(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(16) $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ C(21) $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ C(22) $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ C(23) $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ C(24) $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ C(25) $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ C(26) $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ C(27) $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ C(28) $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ C(29) $83(3)$ $63(3)$ $65(3)$ $4(2)$ $-17(2)$ $3(2)$ C(30) $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-14(3)$ $1(2)$ C(31) $75(3)$ $55(3)$ $73(2)$ $-3(2)$ $-3(2)$ C(32) $78(3)$ $65(3)$ $55(3)$ $-3(2)$ $-3(2)$ C(31) $75(3)$ $55(3)$	F(14)	86(2)	136(3)	42(1)	-33(2)	21(1)	-29(2)	
F(15) $88(2)$ $93(2)$ $47(1)$ $25(1)$ $10(1)$ $-5(2)$ C(15) $48(2)$ $70(3)$ $34(2)$ $9(2)$ $-6(2)$ $-9(2)$ F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(16) $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ C(21) $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ C(22) $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ C(23) $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ C(24) $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ C(25) $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ C(26) $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ C(27) $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ C(28) $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ C(29) $83(3)$ $63(3)$ $65(3)$ $4(2)$ $-17(2)$ $3(2)$ C(30) $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-14(3)$ $1(2)$ C(31) $75(3)$ $56(3)$ $70(3)$ $-3(2)$ $-3(2)$ $-3(2)$ C(32) $78(3)$ $65(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ C(33) $82(3)$ $57(3)$ $55(3)$ $-3(2)$ $-3(2)$ $-8(2)$ C(34) </td <td>C(14)</td> <td>47(2)</td> <td>90(3)</td> <td>34(2)</td> <td>-17(2)</td> <td>4(2)</td> <td>-18(2)</td> <td></td>	C(14)	47(2)	90(3)	34(2)	-17(2)	4(2)	-18(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(15)	88(2)	93(2)	47(1)	25(1)	10(1)	-5(2)	
F(16) $60(1)$ $42(1)$ $53(1)$ $9(1)$ $2(1)$ $0(1)$ C(16) $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ C(21) $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ C(22) $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ C(23) $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ C(24) $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ C(25) $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ C(26) $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ C(27) $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ C(28) $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ C(29) $83(3)$ $63(3)$ $65(3)$ $4(2)$ $-17(2)$ $3(2)$ C(30) $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-14(3)$ $1(2)$ C(31) $75(3)$ $56(3)$ $70(3)$ $-3(2)$ $-3(2)$ $-3(2)$ C(33) $82(3)$ $57(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ C(34) $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ C(35) $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(15)	48(2)	70(3)	34(2)	9(2)	-6(2)	-9(2)	
C(16) $37(2)$ $50(2)$ $36(2)$ $0(2)$ $-10(1)$ $-2(2)$ $C(21)$ $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ $C(22)$ $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ $C(23)$ $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ $C(24)$ $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ $C(25)$ $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ $C(26)$ $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ $C(27)$ $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ $C(28)$ $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ $C(29)$ $83(3)$ $63(3)$ $65(3)$ $4(2)$ $-17(2)$ $3(2)$ $C(30)$ $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-14(3)$ $1(2)$ $C(31)$ $75(3)$ $56(3)$ $70(3)$ $-3(2)$ $-3(2)$ $-3(2)$ $C(33)$ $82(3)$ $57(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ $C(34)$ $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	F(16)	60(1)	42(1)	53(1)	9(1)	2(1)	0(1)	
C(21) $34(2)$ $43(2)$ $42(2)$ $-7(2)$ $-3(1)$ $-8(1)$ $C(22)$ $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ $C(23)$ $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ $C(24)$ $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ $C(25)$ $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ $C(26)$ $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ $C(27)$ $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ $C(28)$ $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ $C(29)$ $83(3)$ $63(3)$ $65(3)$ $4(2)$ $-17(2)$ $3(2)$ $C(30)$ $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-14(3)$ $1(2)$ $C(31)$ $75(3)$ $56(3)$ $70(3)$ $-3(2)$ $-3(2)$ $-3(2)$ $C(33)$ $82(3)$ $57(3)$ $55(3)$ $-3(2)$ $-3(2)$ $-8(2)$ $C(34)$ $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(16)	37(2)	50(2)	36(2)	0(2)	-10(1)	-2(2)	
C(22) $41(2)$ $56(2)$ $45(2)$ $-11(2)$ $4(2)$ $-13(2)$ $C(23)$ $40(2)$ $66(3)$ $49(2)$ $-11(2)$ $2(2)$ $-14(2)$ $C(24)$ $42(2)$ $75(3)$ $71(3)$ $-26(2)$ $-13(2)$ $-2(2)$ $C(25)$ $52(2)$ $68(3)$ $49(2)$ $-9(2)$ $-12(2)$ $5(2)$ $C(26)$ $59(3)$ $82(3)$ $64(3)$ $-22(2)$ $-18(2)$ $6(2)$ $C(27)$ $67(3)$ $72(3)$ $53(2)$ $-2(2)$ $-12(2)$ $4(2)$ $C(28)$ $93(4)$ $63(3)$ $68(3)$ $-9(2)$ $-2(3)$ $-8(3)$ $C(29)$ $83(3)$ $63(3)$ $65(3)$ $4(2)$ $-17(2)$ $3(2)$ $C(30)$ $77(3)$ $58(3)$ $76(3)$ $-3(2)$ $-14(3)$ $1(2)$ $C(31)$ $75(3)$ $56(3)$ $70(3)$ $-3(2)$ $-14(3)$ $1(2)$ $C(33)$ $82(3)$ $57(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ $C(34)$ $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(21)	34(2)	43(2)	42(2)	-7(2)	-3(1)	-8(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	41(2)	56(2)	45(2)	-11(2)	4(2)	-13(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	40(2)	66(3)	49(2)	-11(2)	2(2)	-14(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	42(2)	75(3)	71(3)	-26(2)	-13(2)	-2(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	52(2)	68(3)	49(2)	-9(2)	-12(2)	5(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	59(3)	82(3)	64(3)	-22(2)	-18(2)	6(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	67(3)	72(3)	53(2)	-2(2)	-12(2)	4(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28)	93(4)	63(3)	68(3)	-9(2)	-2(3)	-8(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	83(3)	63(3)	65(3)	4(2)	-17(2)	3(2)	
C(31) $75(3)$ $56(3)$ $70(3)$ $-3(2)$ $2(2)$ $-3(2)$ $C(32)$ $78(3)$ $65(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ $C(33)$ $82(3)$ $57(3)$ $55(3)$ $-3(2)$ $-3(2)$ $-8(2)$ $C(34)$ $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(30)	77(3)	58(3)	76(3)	-3(2)	-14(3)	1(2)	
C(32) $78(3)$ $65(3)$ $55(3)$ $0(2)$ $1(2)$ $-10(2)$ $C(33)$ $82(3)$ $57(3)$ $55(3)$ $-3(2)$ $-3(2)$ $-8(2)$ $C(34)$ $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(31)	75(3)	56(3)	70(3)	-3(2)	2(2)	-3(2)	
C(33) $82(3)$ $57(3)$ $55(3)$ $-3(2)$ $-3(2)$ $-8(2)$ $C(34)$ $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(32)	78(3)	65(3)	55(3)	0(2)	1(2)	-10(2)	
C(34) $83(3)$ $49(2)$ $78(3)$ $-7(2)$ $-11(3)$ $-13(2)$ $C(35)$ $65(3)$ $45(2)$ $66(3)$ $-5(2)$ $2(2)$ $-10(2)$	C(33)	82(3)	57(3)	55(3)	-3(2)	-3(2)	-8(2)	
C(35) 65(3) 45(2) 66(3) -5(2) 2(2) -10(2)	C(34)	83(3)	49(2)	78(3)	-7(2)	-11(3)	-13(2)	
	C(35)	65(3)	45(2)	66(3)	-5(2)	2(2)	-10(2)	

C(36)	70(3)	46(2)	56(2)	-8(2)	-7(2)	-14(2)
C(37)	54(2)	48(2)	51(2)	-3(2)	-7(2)	-14(2)
C(38)	49(2)	44(2)	50(2)	-8(2)	-4(2)	-16(2)
C(39)	49(2)	43(2)	46(2)	2(2)	-13(2)	-14(2)
C(40)	36(2)	44(2)	39(2)	-5(2)	-9(1)	-11(1)
C(41)	36(2)	31(2)	43(2)	-1(1)	-10(1)	-9(1)
C(42)	52(2)	59(3)	78(3)	26(2)	-30(2)	-22(2)
C(43)	76(3)	61(3)	105(4)	42(3)	-39(3)	-26(2)
C(44)	77(3)	39(2)	102(4)	10(2)	-18(3)	-25(2)
C(45)	85(3)	54(3)	99(4)	11(3)	-40(3)	-37(2)
C(46)	75(3)	48(2)	83(3)	16(2)	-43(2)	-28(2)
C(51)	30(2)	37(2)	36(2)	1(1)	-8(1)	-10(1)
C(52)	42(2)	45(2)	43(2)	-3(2)	-13(2)	0(2)
C(53)	57(2)	65(3)	41(2)	-8(2)	-11(2)	-1(2)
C(54)	50(2)	73(3)	39(2)	9(2)	-13(2)	-16(2)
C(55)	47(2)	42(2)	61(2)	17(2)	-22(2)	-17(2)
C(56)	34(2)	32(2)	53(2)	1(2)	-14(2)	-9(1)
C(61)	29(2)	48(2)	34(2)	4(1)	-10(1)	-7(1)
C(62)	33(2)	57(2)	43(2)	-2(2)	-5(2)	-7(2)
C(63)	38(2)	74(3)	41(2)	-6(2)	-3(2)	-2(2)
C(64)	34(2)	90(3)	41(2)	9(2)	-2(2)	-8(2)
C(65)	43(2)	67(3)	48(2)	12(2)	-5(2)	-18(2)
C(66)	40(2)	50(2)	45(2)	7(2)	-9(2)	-11(2)
C(71)	40(2)	38(2)	35(2)	2(1)	-4(1)	0(1)
C(72)	52(2)	54(2)	66(3)	6(2)	-27(2)	0(2)
C(73)	79(3)	68(3)	66(3)	5(2)	-31(3)	21(3)
C(74)	82(3)	47(2)	61(3)	16(2)	4(2)	16(2)
C(75)	65(3)	47(2)	95(4)	23(2)	6(3)	-3(2)
C(76)	48(2)	47(2)	78(3)	15(2)	-6(2)	-6(2)

	Х	у	Z	U(eq)	
H(21A)	-1030	-815	1698	47	
H(21B)	-1907	-1286	1222	47	
H(22A)	-1188	-2031	2916	57	
H(22B)	-2155	-2415	2451	57	
H(23A)	-3413	-875	2585	62	
H(23B)	-3276	-1465	3528	62	
H(24A)	-2023	57	2802	74	
H(24B)	-1779	-564	3711	74	
H(25A)	-3718	24	4428	69	
H(25B)	-4036	599	3509	69	
H(26A)	-2230	975	4477	82	
H(26B)	-2496	1531	3542	82	
H(27A)	-4358	2250	4201	79	
H(27B)	-4244	1609	5123	79	
H(28A)	-2726	2370	5397	91	
H(28B)	-3893	3126	5264	91	
H(29A)	-1736	2843	3997	86	
H(29B)	-2930	3510	3751	86	
H(30A)	-2821	4447	4971	85	
H(30B)	-1792	4521	4118	85	
H(31A)	-1167	4300	5634	83	
H(31B)	-1320	3217	5621	83	
H(32A)	123	3116	4284	82	
H(32B)	318	4174	4373	82	
H(33A)	1016	2543	5524	79	
H(33B)	950	3581	5836	79	
H(34A)	2938	2938	5242	84	
H(34B)	2485	3907	4693	84	
H(35A)	2090	3002	3556	72	
H(35B)	3487	2894	3640	72	
H(36A)	1989	1522	4413	68	
H(36B)	3399	1411	4458	68	
H(37A)	2352	1390	2869	61	

Table S11. Hydrogen coordinates (× 10^4) and isotropic displacement parameters (Å² × 10^3) for 5.

H(37B)	3747	1457	2821	61
H(38A)	2670	-98	3735	56
H(38B)	4076	-36	3594	56
H(39A)	2751	-244	2191	54
H(39B)	4127	-72	1991	54
H(1A)	3487	-1608	3208	46
H(1B)	4794	-1492	2690	46
H(42A)	765	-3826	2179	74
H(43A)	76	-5256	2622	95
H(44A)	-1436	-5667	1962	86
H(45A)	-2332	-4616	912	89
H(46A)	-1637	-3188	462	77
H(52A)	618	-3148	-612	52
H(53A)	600	-2669	-2136	65
H(54A)	-95	-1109	-2588	64
H(55A)	-825	-24	-1521	59
H(56A)	-814	-480	2	46
H(62A)	5230	-3572	651	53
H(63A)	6656	-3486	-651	63
H(64A)	7355	-2066	-1153	68
H(65A)	6636	-728	-387	64
H(66A)	5174	-778	884	54
H(72A)	5856	-3123	2648	68
H(73A)	6318	-4549	3509	87
H(74A)	4991	-5630	3793	83
H(75A)	3237	-5339	3181	88
H(76A)	2714	-3905	2344	72

Table S12. Torsion angles [°] for **5**.

C(1)-Pt(1)-P(1)-C(41)	-94.99(15)
C(11)-Pt(1)-P(1)-C(41)	90.81(15)
P(2)-Pt(1)-P(1)-C(41)	3.6(4)
Pt(1)#1-Pt(1)-P(1)-C(41)	-104.86(12)
C(1)-Pt(1)-P(1)-C(51)	145.24(15)
C(11)-Pt(1)-P(1)-C(51)	-28.96(15)
P(2)-Pt(1)-P(1)-C(51)	-116.2(3)
Pt(1)#1-Pt(1)-P(1)-C(51)	135.37(12)
C(1)-Pt(1)-P(1)-C(21)	23.89(16)
C(11)-Pt(1)-P(1)-C(21)	-150.31(16)
P(2)-Pt(1)-P(1)-C(21)	122.5(3)
Pt(1)#1-Pt(1)-P(1)-C(21)	14.02(13)
C(11)-Pt(1)-C(1)-C(2)	1(2)
P(1)-Pt(1)-C(1)-C(2)	-113.9(16)
P(2)-Pt(1)-C(1)-C(2)	70.8(16)
Pt(1)#1-Pt(1)-C(1)-C(2)	-1.6(12)
C(1)-Pt(1)-P(2)-C(61)	-157.31(16)
C(11)-Pt(1)-P(2)-C(61)	16.68(16)
P(1)-Pt(1)-P(2)-C(61)	103.9(3)
Pt(1)#1-Pt(1)-P(2)-C(61)	-147.18(13)
C(1)-Pt(1)-P(2)-C(40)	-29.11(16)
C(11)-Pt(1)-P(2)-C(40)	144.89(16)
P(1)-Pt(1)-P(2)-C(40)	-127.9(3)
Pt(1)#1-Pt(1)-P(2)-C(40)	-18.97(13)
C(1)-Pt(1)-P(2)-C(71)	85.59(15)
C(11)-Pt(1)-P(2)-C(71)	-100.42(15)
P(1)-Pt(1)-P(2)-C(71)	-13.2(4)
Pt(1)#1-Pt(1)-P(2)-C(71)	95.72(11)
Pt(1)-C(1)-C(2)-C(3)	3(6)
C(1)-C(2)-C(3)-C(4)	11(10)
C(2)-C(3)-C(4)-C(4)#1	-57(58)
C(1)-Pt(1)-C(11)-C(12)	159.3(10)
P(1)-Pt(1)-C(11)-C(12)	-85.7(3)
P(2)-Pt(1)-C(11)-C(12)	89.7(3)
Pt(1)#1-Pt(1)-C(11)-C(12)	161.0(2)
C(1)-Pt(1)-C(11)-C(16)	-16.1(12)

P(1)-Pt(1)-C(11)-C(16)	99.0(3)
P(2)-Pt(1)-C(11)-C(16)	-85.7(3)
Pt(1)#1-Pt(1)-C(11)-C(16)	-14.4(5)
C(16)-C(11)-C(12)-F(12)	179.0(3)
Pt(1)-C(11)-C(12)-F(12)	3.4(5)
C(16)-C(11)-C(12)-C(13)	0.9(5)
Pt(1)-C(11)-C(12)-C(13)	-174.7(3)
F(12)-C(12)-C(13)-F(13)	-0.8(5)
C(11)-C(12)-C(13)-F(13)	177.4(3)
F(12)-C(12)-C(13)-C(14)	-178.5(3)
C(11)-C(12)-C(13)-C(14)	-0.3(6)
F(13)-C(13)-C(14)-F(14)	0.9(6)
C(12)-C(13)-C(14)-F(14)	178.6(4)
F(13)-C(13)-C(14)-C(15)	-177.0(4)
C(12)-C(13)-C(14)-C(15)	0.6(6)
F(14)-C(14)-C(15)-F(15)	-0.3(6)
C(13)-C(14)-C(15)-F(15)	177.7(4)
F(14)-C(14)-C(15)-C(16)	-179.5(3)
C(13)-C(14)-C(15)-C(16)	-1.5(6)
F(15)-C(15)-C(16)-F(16)	-0.1(5)
C(14)-C(15)-C(16)-F(16)	179.1(3)
F(15)-C(15)-C(16)-C(11)	-177.0(3)
C(14)-C(15)-C(16)-C(11)	2.2(6)
C(12)-C(11)-C(16)-F(16)	-178.6(3)
Pt(1)-C(11)-C(16)-F(16)	-2.6(4)
C(12)-C(11)-C(16)-C(15)	-1.8(5)
Pt(1)-C(11)-C(16)-C(15)	174.1(3)
C(41)-P(1)-C(21)-C(22)	39.2(3)
C(51)-P(1)-C(21)-C(22)	149.3(3)
Pt(1)-P(1)-C(21)-C(22)	-83.8(3)
P(1)-C(21)-C(22)-C(23)	174.7(3)
C(21)-C(22)-C(23)-C(24)	-70.3(5)
C(22)-C(23)-C(24)-C(25)	-175.5(4)
C(23)-C(24)-C(25)-C(26)	-175.7(4)
C(24)-C(25)-C(26)-C(27)	177.8(4)
C(25)-C(26)-C(27)-C(28)	171.6(4)
C(26)-C(27)-C(28)-C(29)	57.8(6)
C(27)-C(28)-C(29)-C(30)	171.7(4)

C(28)-C(29)-C(30)-C(31)	72.6(6)
C(29)-C(30)-C(31)-C(32)	80.7(6)
C(30)-C(31)-C(32)-C(33)	-175.3(4)
C(31)-C(32)-C(33)-C(34)	-165.1(4)
C(32)-C(33)-C(34)-C(35)	-54.4(6)
C(33)-C(34)-C(35)-C(36)	-68.1(6)
C(34)-C(35)-C(36)-C(37)	177.9(4)
C(35)-C(36)-C(37)-C(38)	170.1(4)
C(36)-C(37)-C(38)-C(39)	175.0(3)
C(37)-C(38)-C(39)-C(40)	173.8(3)
C(38)-C(39)-C(40)-P(2)	161.4(2)
C(61)-P(2)-C(40)-C(39)	79.0(3)
C(71)-P(2)-C(40)-C(39)	-172.8(3)
Pt(1)-P(2)-C(40)-C(39)	-53.0(3)
C(51)-P(1)-C(41)-C(46)	-38.6(4)
C(21)-P(1)-C(41)-C(46)	69.4(4)
Pt(1)-P(1)-C(41)-C(46)	-163.1(3)
C(51)-P(1)-C(41)-C(42)	148.6(3)
C(21)-P(1)-C(41)-C(42)	-103.5(3)
Pt(1)-P(1)-C(41)-C(42)	24.0(3)
C(46)-C(41)-C(42)-C(43)	-0.5(7)
P(1)-C(41)-C(42)-C(43)	172.5(4)
C(41)-C(42)-C(43)-C(44)	0.9(8)
C(42)-C(43)-C(44)-C(45)	-1.5(9)
C(43)-C(44)-C(45)-C(46)	1.7(9)
C(42)-C(41)-C(46)-C(45)	0.7(7)
P(1)-C(41)-C(46)-C(45)	-172.3(4)
C(44)-C(45)-C(46)-C(41)	-1.3(8)
C(41)-P(1)-C(51)-C(52)	-41.3(3)
C(21)-P(1)-C(51)-C(52)	-149.3(3)
Pt(1)-P(1)-C(51)-C(52)	81.3(3)
C(41)-P(1)-C(51)-C(56)	142.6(3)
C(21)-P(1)-C(51)-C(56)	34.6(3)
Pt(1)-P(1)-C(51)-C(56)	-94.8(3)
C(56)-C(51)-C(52)-C(53)	1.1(5)
P(1)-C(51)-C(52)-C(53)	-175.1(3)
C(51)-C(52)-C(53)-C(54)	-0.1(6)
C(52)-C(53)-C(54)-C(55)	-0.9(6)

C(53)-C(54)-C(55)-C(56)	1.0(6)
C(54) C(55) C(56) C(51)	1.0(0)
C(54) - C(53) - C(50) - C(51)	0.0(3)
P(1) C(51) C(56) C(55)	-1.0(3)
$\Gamma(1)$ - $C(51)$ - $C(50)$ - $C(55)$	1/3.2(3)
C(40)-P(2)-C(61)-C(60)	-35.0(3)
C(71)-P(2)-C(61)-C(66)	-142.2(3)
Pt(1)-P(2)-C(61)-C(66)	96.9(3)
C(40)-P(2)-C(61)-C(62)	148.8(3)
C(71)-P(2)-C(61)-C(62)	42.2(3)
Pt(1)-P(2)-C(61)-C(62)	-78.8(3)
C(66)-C(61)-C(62)-C(63)	-2.4(5)
P(2)-C(61)-C(62)-C(63)	173.4(3)
C(61)-C(62)-C(63)-C(64)	1.9(6)
C(62)-C(63)-C(64)-C(65)	-0.2(6)
C(63)-C(64)-C(65)-C(66)	-0.8(6)
C(64)-C(65)-C(66)-C(61)	0.3(6)
C(62)-C(61)-C(66)-C(65)	1.4(5)
P(2)-C(61)-C(66)-C(65)	-174.3(3)
C(61)-P(2)-C(71)-C(76)	-123.9(3)
C(40)-P(2)-C(71)-C(76)	124.6(3)
Pt(1)-P(2)-C(71)-C(76)	0.5(3)
C(61)-P(2)-C(71)-C(72)	57.7(3)
C(40)-P(2)-C(71)-C(72)	-53.9(3)
Pt(1)-P(2)-C(71)-C(72)	-177.9(3)
C(76)-C(71)-C(72)-C(73)	-2.1(6)
P(2)-C(71)-C(72)-C(73)	176.4(3)
C(71)-C(72)-C(73)-C(74)	0.8(7)
C(72)-C(73)-C(74)-C(75)	1.4(7)
C(73)-C(74)-C(75)-C(76)	-2.2(8)
C(72)-C(71)-C(76)-C(75)	1.3(6)
P(2)-C(71)-C(76)-C(75)	-177.2(3)
C(74)-C(75)-C(76)-C(71)	0.9(7)

Symmetry transformations used to generate equivalent atoms:

#1 -x, -y, -z+1

Table S13. Crystal data and structure refinement for 6.MeOH.

Empirical formula	$C_{97}H_{100}F_{10}O_5P_4Pt_2$	
Formula weight	2049.83	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	a = 21.4114(3) Å	$\alpha = 90^{\circ}$
	b = 17.9695(3) Å	$\beta = 101.855(1)^{\circ}$
	c = 24.2342(3) Å	$\gamma = 90^{\circ}$
Volume	9125.3(2) Å ³	
Ζ	4	
Density (calculated)	1.492 Mg/m ³	
Absorption coefficient	3.204 mm^{-1}	
F(000)	4112	
Crystal size	$0.15\times0.15\times0.15\ mm^3$	
Θ range for data collection	2.06 to 27.49°	
Index ranges	-27<=h<=27, -23<=k<=2	23, -31<=l<=31
Reflections collected	39762	
Independent reflections	20905 [R(int) = 0.0497]	
Reflections $[I \ge 2\sigma(I)]$	13238	
Completeness to $\Theta = 27.49^{\circ}$	99.7%	
Absorption correction	Empirical (Scalepack)	
Max. and min. transmission	0.6450 and 0.6450	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	20905 / 0 / 1063	
Goodness-of-fit on F ²	0.966	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0421, wR2 = 0.084	48
R indices (all data)	R1 = 0.0886, wR2 = 0.097	79
Largest diff. peak and hole	1.123 and $-0.956 \text{ e}\text{\AA}^{-3}$	

	Х	У	Z	U(eq)	
Pt(1)	8253(1)	-6960(1)	866(1)	40(1)	
P(1)	8039(1)	-6649(1)	1729(1)	49(1)	
C(1)	8171(2)	-5902(3)	643(2)	47(1)	
C(1B)	7887(2)	-6802(3)	-562(2)	48(1)	
C(1A)	8499(3)	-5820(3)	2009(3)	62(2)	
Pt(2)	6665(1)	-749(1)	-1560(1)	35(1)	
P(2)	8494(1)	-7195(1)	2(1)	40(1)	
C(2)	8080(3)	-5267(3)	472(2)	48(1)	
C(2B)	7195(3)	-6967(3)	-542(3)	65(2)	
C(2A)	8372(3)	-5498(3)	2549(2)	73(2)	
P(3)	6095(1)	-565(1)	-857(1)	37(1)	
C(3)	7930(3)	-4575(3)	249(2)	48(1)	
C(3A)	8879(4)	-4905(4)	2784(3)	100(3)	
C(3B)	6722(3)	-6476(4)	-955(3)	80(2)	
P(4)	7164(1)	-1115(1)	-2268(1)	44(1)	
C(4)	7789(3)	-3977(3)	32(2)	50(1)	
C(4A)	8986(3)	-4314(4)	2381(3)	86(2)	
C(4B)	6717(4)	-5702(4)	-743(3)	99(3)	
C(5)	7614(3)	-3338(3)	-246(2)	51(1)	
O(5A)	8401(2)	-3916(3)	2205(2)	91(1)	
O(5B)	6250(2)	-5300(3)	-1139(2)	96(2)	
C(6)	7444(2)	-2790(3)	-541(2)	47(1)	
C(6B)	6210(4)	-4519(4)	-1021(4)	114(3)	
C(6A)	8339(4)	-3490(6)	1688(4)	115(3)	
C(7)	7243(2)	-2180(3)	-867(2)	47(1)	
C(7A)	8765(4)	-2856(5)	1735(4)	116(3)	
C(7B)	5841(5)	-4423(5)	-504(4)	130(4)	
C(8)	7050(2)	-1636(3)	-1140(2)	43(1)	
C(8B)	5651(4)	-3632(4)	-479(4)	111(3)	
C(8A)	8652(4)	-2424(6)	1150(5)	158(5)	
C(9B)	5304(4)	-3484(5)	5(4)	105(3)	
C(9A)	9095(6)	-1946(7)	1071(4)	154(5)	
C(10B)	5690(4)	-3651(5)	571(4)	103(3)	

Table S14. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å² × 10^3) for **6**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(10A)	8957(5)	-1534(5)	516(3)	121(3)
C(11)	8281(2)	-8076(3)	1056(2)	41(1)
C(11A)	9038(3)	-1996(4)	12(3)	77(2)
C(11B)	6292(4)	-3199(4)	709(3)	88(2)
C(12)	8822(3)	-8488(3)	1230(3)	59(2)
F(12)	9401(2)	-8151(2)	1289(2)	96(1)
O(12A)	9042(2)	-1498(2)	-449(2)	67(1)
O(12B)	6136(2)	-2422(2)	711(2)	72(1)
F(13)	9374(2)	-9628(2)	1464(3)	134(2)
C(13)	8822(3)	-9246(3)	1325(3)	75(2)
C(13A)	9099(3)	-1860(3)	-958(3)	61(2)
C(13B)	6698(3)	-1990(3)	859(3)	61(2)
C(14)	8257(3)	-9612(3)	1265(3)	63(2)
F(14)	8246(2)	-10348(2)	1370(2)	101(1)
C(14B)	6503(3)	-1185(3)	864(2)	55(1)
C(14A)	9080(2)	-1283(3)	-1406(3)	60(2)
C(15)	7704(3)	-9227(3)	1105(3)	57(2)
F(15)	7138(2)	-9584(2)	1037(2)	98(1)
C(15B)	6115(3)	-887(3)	305(2)	50(1)
C(15A)	8420(2)	-928(3)	-1620(2)	59(2)
F(16)	7158(2)	-8128(2)	836(2)	84(1)
C(16)	7728(2)	-8486(3)	997(2)	47(1)
C(16B)	6500(2)	-876(3)	-159(2)	43(1)
C(16A)	7992(2)	-1419(3)	-2035(2)	54(1)
C(21)	8263(3)	-7373(3)	2249(2)	60(2)
C(22)	7826(3)	-7934(3)	2317(3)	69(2)
C(23)	8042(4)	-8573(4)	2634(3)	88(2)
C(24)	8682(5)	-8640(4)	2866(3)	102(3)
C(25)	9101(5)	-8065(5)	2820(4)	123(3)
C(26)	8895(4)	-7448(4)	2493(3)	92(2)
C(31)	7211(3)	-6393(3)	1713(3)	57(2)
C(32)	6974(3)	-6340(4)	2212(3)	81(2)
C(33)	6359(4)	-6045(5)	2190(4)	98(3)
C(34)	5980(4)	-5822(4)	1699(4)	98(3)
C(35)	6213(4)	-5882(4)	1202(4)	94(2)
C(36)	6826(3)	-6160(4)	1217(3)	69(2)
C(41)	9225(2)	-6731(3)	-100(2)	46(1)
C(42)	9618(3)	-6398(3)	357(3)	62(2)

C(43)	10158(3)	-6030(4)	277(4)	90(2)
C(44)	10291(4)	-5970(4)	-245(5)	97(3)
C(45)	9908(3)	-6298(4)	-700(4)	87(2)
C(46)	9370(3)	-6697(3)	-628(3)	60(2)
C(51)	8602(2)	-8164(3)	-165(2)	44(1)
C(52)	8092(3)	-8637(3)	-342(2)	55(1)
C(53)	8192(3)	-9391(3)	-425(3)	63(2)
C(54)	8792(3)	-9668(3)	-338(3)	72(2)
C(55)	9304(3)	-9209(3)	-163(3)	87(2)
C(56)	9210(3)	-8469(3)	-84(3)	71(2)
C(61)	6260(2)	177(3)	-2002(2)	38(1)
F(62)	6924(2)	1015(2)	-1398(1)	65(1)
C(62)	6455(2)	896(3)	-1858(2)	45(1)
F(63)	6404(2)	2209(2)	-1966(2)	93(1)
C(63)	6209(3)	1529(3)	-2134(3)	63(2)
C(64)	5734(3)	1444(4)	-2614(3)	77(2)
F(64)	5473(2)	2044(2)	-2913(2)	123(2)
C(65)	5523(3)	737(4)	-2792(3)	72(2)
F(65)	5061(2)	651(3)	-3256(2)	108(2)
F(66)	5552(2)	-538(2)	-2671(1)	68(1)
C(66)	5789(3)	143(3)	-2472(2)	53(1)
C(71)	5373(2)	-1124(3)	-1023(2)	40(1)
C(72)	4819(2)	-944(3)	-840(2)	52(1)
C(73)	4281(3)	-1375(4)	-979(3)	61(2)
C(74)	4274(3)	-2009(4)	-1299(3)	65(2)
C(75)	4833(3)	-2209(3)	-1467(3)	68(2)
C(76)	5375(3)	-1775(3)	-1337(2)	57(2)
C(81)	5833(2)	386(3)	-776(2)	44(1)
C(82)	6176(3)	861(3)	-375(2)	52(1)
C(83)	6005(4)	1598(3)	-362(3)	70(2)
C(84)	5500(4)	1868(3)	-730(3)	76(2)
C(85)	5146(3)	1415(4)	-1134(3)	71(2)
C(86)	5320(3)	668(3)	-1157(3)	58(2)
C(91)	7132(2)	-421(3)	-2825(2)	48(1)
C(92)	6750(3)	-530(3)	-3350(2)	55(1)
C(93)	6669(3)	36(3)	-3753(3)	70(2)
C(94)	6979(4)	705(4)	-3624(3)	89(2)
C(95)	7364(4)	804(4)	-3102(3)	84(2)

C(96)	7447(3)	246(3)	-2702(3)	67(2)	
C(101)	6788(3)	-1951(3)	-2619(2)	49(1)	
C(102)	7102(3)	-2425(3)	-2927(2)	61(2)	
C(103)	6800(4)	-3051(3)	-3186(3)	71(2)	
C(104)	6192(4)	-3221(4)	-3161(3)	78(2)	
C(105)	5873(3)	-2769(4)	-2861(3)	84(2)	
C(106)	6172(3)	-2128(3)	-2586(3)	66(2)	
O(200)	5193(4)	-5591(7)	-1872(6)	281(7)	
C(200)	5581(10)	-5463(15)	-2352(6)	430(20)	

Pt(1)-C(1)	1.975(5)
Pt(1)-C(11)	2.056(5)
Pt(1)-P(2)	2.2969(13)
Pt(1)-P(1)	2.2984(14)
Pt(1)-Pt(2)	12.7478(3)
P(1)-C(21)	1.808(6)
P(1)-C(31)	1.824(6)
P(1)-C(1A)	1.838(6)
C(1)-C(2)	1.216(7)
C(1B)-C(2B)	1.523(7)
C(1B)-P(2)	1.823(5)
C(1A)-C(2A)	1.506(8)
Pt(2)-C(8)	1.979(5)
Pt(2)-C(61)	2.069(5)
Pt(2)-P(4)	2.2954(13)
Pt(2)-P(3)	2.3149(12)
P(2)-C(51)	1.812(5)
P(2)-C(41)	1.835(5)
C(2)-C(3)	1.367(7)
C(2B)-C(3B)	1.546(8)
C(2A)-C(3A)	1.544(9)
P(3)-C(71)	1.819(5)
P(3)-C(81)	1.822(5)
P(3)-C(16B)	1.824(5)
C(3)-C(4)	1.207(7)
C(3A)-C(4A)	1.492(10)
C(3B)-C(4B)	1.484(9)
P(4)-C(91)	1.828(5)
P(4)-C(101)	1.830(6)
P(4)-C(16A)	1.831(5)
C(4)-C(5)	1.346(7)
C(4A)-O(5A)	1.429(8)
C(4B)-O(5B)	1.431(7)
C(5)-C(6)	1.227(7)
O(5A)-C(6A)	1.451(9)
O(5B)-C(6B)	1.438(8)

Table S15. Bond lengths [Å] and angles $[\circ]$ for **6**.

C(6)-C(7)	1.368(7)
C(6B)-C(7B)	1.624(12)
C(6A)-C(7A)	1.449(11)
C(7)-C(8)	1.205(7)
C(7A)-C(8A)	1.591(12)
C(7B)-C(8B)	1.484(10)
C(8B)-C(9B)	1.534(11)
C(8A)-C(9A)	1.320(12)
C(9B)-C(10B)	1.481(11)
C(9A)-C(10A)	1.512(11)
C(10B)-C(11B)	1.502(10)
C(10A)-C(11A)	1.515(10)
C(11)-C(12)	1.366(7)
C(11)-C(16)	1.376(7)
C(11A)-O(12A)	1.434(7)
C(11B)-O(12B)	1.437(7)
C(12)-F(12)	1.360(6)
C(12)-C(13)	1.381(8)
O(12A)-C(13A)	1.421(7)
O(12B)-C(13B)	1.416(7)
F(13)-C(13)	1.349(6)
C(13)-C(14)	1.360(8)
C(13A)-C(14A)	1.495(8)
C(13B)-C(14B)	1.506(7)
C(14)-F(14)	1.348(6)
C(14)-C(15)	1.356(8)
C(14B)-C(15B)	1.533(7)
C(14A)-C(15A)	1.541(7)
C(15)-F(15)	1.351(6)
C(15)-C(16)	1.362(7)
C(15B)-C(16B)	1.524(6)
C(15A)-C(16A)	1.499(7)
F(16)-C(16)	1.363(6)
C(21)-C(26)	1.367(9)
C(21)-C(22)	1.408(8)
C(22)-C(23)	1.404(9)
C(23)-C(24)	1.375(10)
C(24)-C(25)	1.388(11)

C(25)-C(26)	1.382(10)
C(31)-C(36)	1.377(8)
C(31)-C(32)	1.406(8)
C(32)-C(33)	1.411(10)
C(33)-C(34)	1.355(11)
C(34)-C(35)	1.400(11)
C(35)-C(36)	1.398(9)
C(41)-C(46)	1.377(7)
C(41)-C(42)	1.382(8)
C(42)-C(43)	1.380(8)
C(43)-C(44)	1.357(11)
C(44)-C(45)	1.366(11)
C(45)-C(46)	1.398(8)
C(51)-C(52)	1.380(7)
C(51)-C(56)	1.390(7)
C(52)-C(53)	1.393(7)
C(53)-C(54)	1.352(8)
C(54)-C(55)	1.368(9)
C(55)-C(56)	1.365(8)
C(61)-C(66)	1.360(7)
C(61)-C(62)	1.381(7)
F(62)-C(62)	1.355(6)
C(62)-C(63)	1.369(7)
F(63)-C(63)	1.328(7)
C(63)-C(64)	1.387(9)
C(64)-F(64)	1.354(7)
C(64)-C(65)	1.388(9)
C(65)-F(65)	1.344(7)
C(65)-C(66)	1.372(8)
F(66)-C(66)	1.374(6)
C(71)-C(72)	1.386(7)
C(71)-C(76)	1.396(7)
C(72)-C(73)	1.372(7)
C(73)-C(74)	1.377(8)
C(74)-C(75)	1.389(8)
C(75)-C(76)	1.381(8)
C(81)-C(86)	1.378(7)
C(81)-C(82)	1.385(7)

C(82)-C(83)	1.377(7)
C(83)-C(84)	1.344(9)
C(84)-C(85)	1.374(9)
C(85)-C(86)	1.396(8)
C(91)-C(96)	1.377(8)
C(91)-C(92)	1.379(7)
C(92)-C(93)	1.395(7)
C(93)-C(94)	1.378(9)
C(94)-C(95)	1.373(10)
C(95)-C(96)	1.382(9)
C(101)-C(106)	1.375(8)
C(101)-C(102)	1.393(7)
C(102)-C(103)	1.381(8)
C(103)-C(104)	1.351(9)
C(104)-C(105)	1.363(9)
C(105)-C(106)	1.417(8)
O(200)-C(200)	1.580(19)
C(1)-Pt(1)-C(11)	176.0(2)
C(1)-Pt(1)-P(2)	87.21(15)
C(11)-Pt(1)-P(2)	91.30(14)
C(1)-Pt(1)-P(1)	89.55(15)
C(11)-Pt(1)-P(1)	92.05(14)
P(2)-Pt(1)-P(1)	176.31(5)
C(1)-Pt(1)-Pt(2)	14.16(15)
C(11)-Pt(1)-Pt(2)	161.86(13)
P(2)-Pt(1)-Pt(2)	80.16(3)
P(1)-Pt(1)-Pt(2)	97.04(4)
C(21)-P(1)-C(31)	108.3(3)
C(21)-P(1)-C(1A)	106.3(3)
C(31)-P(1)-C(1A)	104.3(3)
C(21)-P(1)-Pt(1)	112.7(2)
C(31)-P(1)-Pt(1)	114.7(2)
C(1A)-P(1)-Pt(1)	110.0(2)
C(2)-C(1)-Pt(1)	174.7(5)
C(2B)-C(1B)-P(2)	116.6(4)
C(2A)-C(1A)-P(1)	117.0(4)
C(8)-Pt(2)-C(61)	179.8(2)

C(8)-Pt(2)-P(4)	86.90(13)
C(61)-Pt(2)-P(4)	93.07(13)
C(8)-Pt(2)-P(3)	87.83(13)
C(61)-Pt(2)-P(3)	92.17(12)
P(4)-Pt(2)-P(3)	171.02(5)
C(8)-Pt(2)-Pt(1)	9.40(14)
C(61)-Pt(2)-Pt(1)	170.39(13)
P(4)-Pt(2)-Pt(1)	88.46(3)
P(3)-Pt(2)-Pt(1)	85.19(3)
C(51)-P(2)-C(1B)	108.0(2)
C(51)-P(2)-C(41)	104.8(2)
C(1B)-P(2)-C(41)	102.6(2)
C(51)-P(2)-Pt(1)	116.29(16)
C(1B)-P(2)-Pt(1)	110.71(17)
C(41)-P(2)-Pt(1)	113.38(18)
C(1)-C(2)-C(3)	175.1(6)
C(1B)-C(2B)-C(3B)	112.4(5)
C(1A)-C(2A)-C(3A)	110.2(6)
C(71)-P(3)-C(81)	106.0(2)
C(71)-P(3)-C(16B)	104.8(2)
C(81)-P(3)-C(16B)	106.6(2)
C(71)-P(3)-Pt(2)	108.18(16)
C(81)-P(3)-Pt(2)	115.66(15)
C(16B)-P(3)-Pt(2)	114.69(16)
C(4)-C(3)-C(2)	177.4(6)
C(4A)-C(3A)-C(2A)	116.2(6)
C(4B)-C(3B)-C(2B)	111.2(6)
C(91)-P(4)-C(101)	105.7(2)
C(91)-P(4)-C(16A)	108.5(2)
C(101)-P(4)-C(16A)	101.7(2)
C(91)-P(4)-Pt(2)	113.83(17)
C(101)-P(4)-Pt(2)	110.80(17)
C(16A)-P(4)-Pt(2)	115.17(18)
C(3)-C(4)-C(5)	175.8(6)
O(5A)-C(4A)-C(3A)	108.0(6)
O(5B)-C(4B)-C(3B)	107.1(6)
C(6)-C(5)-C(4)	174.4(6)
C(4A)-O(5A)-C(6A)	116.2(6)

C(4B)-O(5B)-C(6B)	114.9(6)
C(5)-C(6)-C(7)	178.9(6)
O(5B)-C(6B)-C(7B)	108.4(7)
O(5A)-C(6A)-C(7A)	113.7(7)
C(8)-C(7)-C(6)	177.3(6)
C(6A)-C(7A)-C(8A)	109.7(8)
C(8B)-C(7B)-C(6B)	108.4(8)
C(7)-C(8)-Pt(2)	175.1(4)
C(7B)-C(8B)-C(9B)	112.2(8)
C(9A)-C(8A)-C(7A)	117.7(9)
C(10B)-C(9B)-C(8B)	114.0(7)
C(8A)-C(9A)-C(10A)	115.7(11)
C(9B)-C(10B)-C(11B)	112.7(7)
C(9A)-C(10A)-C(11A)	114.5(8)
C(12)-C(11)-C(16)	113.6(5)
C(12)-C(11)-Pt(1)	125.6(4)
C(16)-C(11)-Pt(1)	120.8(4)
O(12A)-C(11A)-C(10A)	107.8(5)
O(12B)-C(11B)-C(10B)	109.6(6)
F(12)-C(12)-C(11)	119.2(5)
F(12)-C(12)-C(13)	116.9(5)
C(11)-C(12)-C(13)	123.8(5)
C(13A)-O(12A)-C(11A)	114.0(5)
C(13B)-O(12B)-C(11B)	110.3(5)
F(13)-C(13)-C(14)	119.7(6)
F(13)-C(13)-C(12)	120.9(6)
C(14)-C(13)-C(12)	119.4(5)
O(12A)-C(13A)-C(14A)	108.6(5)
O(12B)-C(13B)-C(14B)	107.8(5)
F(14)-C(14)-C(15)	120.4(5)
F(14)-C(14)-C(13)	120.3(5)
C(15)-C(14)-C(13)	119.2(5)
C(13B)-C(14B)-C(15B)	115.4(5)
C(13A)-C(14A)-C(15A)	114.7(5)
F(15)-C(15)-C(14)	120.1(5)
F(15)-C(15)-C(16)	120.6(5)
C(14)-C(15)-C(16)	119.3(5)
C(16B)-C(15B)-C(14B)	112.3(4)

112.0(5)
116.7(5)
124.6(5)
118.6(4)
117.6(4)
116.7(4)
120.1(6)
118.0(5)
120.6(5)
119.8(7)
118.9(7)
120.6(7)
120.5(8)
119.9(7)
118.3(6)
119.9(5)
121.3(5)
119.5(7)
122.0(8)
118.6(8)
120.3(8)
121.4(7)
120.5(5)
120.4(4)
119.0(4)
119.1(6)
120.7(8)
120.8(7)
119.5(7)
119.3(6)
117.4(5)
122.1(4)
120.4(4)
120.6(5)
120.3(6)
120.1(6)
120.0(6)
121.6(6)

112.7(5)
123.9(4)
123.3(4)
114.7(5)
119.3(4)
126.0(6)
123.3(6)
119.3(6)
117.5(6)
120.8(7)
119.3(7)
119.8(6)
122.2(7)
120.1(6)
117.7(6)
126.2(6)
119.3(5)
114.5(5)
118.0(5)
123.0(4)
119.0(4)
121.3(6)
121.1(5)
118.0(5)
121.5(6)
120.0(5)
118.6(5)
119.6(4)
121.5(4)
120.2(6)
120.9(6)
120.7(6)
119.0(6)
120.6(6)
119.7(5)
119.4(4)
120.7(4)
120.5(6)
C(94)-C(93)-C(92)

C(95)-C(94)-C(93)
C(94)-C(95)-C(96)
C(91)-C(96)-C(95)
C(106)-C(101)-C(102)
C(106)-C(101)-P(4)
C(102)-C(101)-P(4)
C(103)-C(102)-C(101)
C(104)-C(103)-C(102)
C(103)-C(104)-C(105)
C(104)-C(105)-C(106)
C(101)-C(106)-C(105)

Table S16. Anisotropic displacement parameters (Å² × 10³) for **6**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Pt(1)	52(1)	29(1)	39(1)	3(1)	6(1)	2(1)	
P(1)	64(1)	42(1)	42(1)	-1(1)	10(1)	-5(1)	
C(1)	60(3)	44(3)	37(3)	0(2)	11(2)	9(3)	
C(1B)	55(3)	39(3)	49(3)	2(2)	6(2)	11(2)	
C(1A)	67(4)	51(4)	65(4)	-1(3)	5(3)	2(3)	
Pt(2)	38(1)	36(1)	33(1)	5(1)	10(1)	5(1)	
P(2)	49(1)	30(1)	39(1)	3(1)	5(1)	2(1)	
C(2)	66(3)	37(3)	42(3)	0(2)	10(3)	3(3)	
C(2B)	57(3)	55(4)	73(4)	8(3)	-7(3)	3(3)	
C(2A)	109(5)	59(4)	45(4)	-9(3)	3(3)	3(4)	
P(3)	38(1)	36(1)	38(1)	4(1)	12(1)	5(1)	
C(3)	62(3)	41(3)	40(3)	-3(2)	7(2)	8(3)	
C(3A)	132(7)	62(5)	75(5)	-24(4)	-47(5)	20(4)	
C(3B)	64(4)	67(4)	100(6)	-13(4)	-4(4)	8(3)	
P(4)	47(1)	51(1)	35(1)	2(1)	13(1)	6(1)	
C(4)	71(4)	34(3)	45(3)	2(2)	11(3)	5(3)	
C(4A)	68(4)	78(5)	101(6)	-20(4)	-11(4)	-7(4)	
C(4B)	103(6)	87(6)	87(6)	-18(4)	-22(4)	40(5)	
C(5)	65(3)	34(3)	55(4)	1(3)	17(3)	10(3)	
O(5A)	100(4)	87(4)	86(4)	11(3)	19(3)	5(3)	
O(5B)	92(3)	76(3)	103(4)	-10(3)	-19(3)	33(3)	
C(6)	57(3)	37(3)	49(3)	0(3)	16(3)	7(3)	
C(6B)	141(8)	66(5)	119(7)	-9(5)	-9(6)	25(5)	
C(6A)	119(7)	133(8)	92(7)	28(6)	18(5)	-3(6)	
C(7)	53(3)	42(3)	48(3)	2(3)	18(3)	7(3)	
C(7A)	120(7)	113(7)	118(8)	38(6)	32(6)	-2(6)	
C(7B)	136(8)	99(7)	148(9)	-49(6)	14(7)	29(6)	
C(8)	45(3)	47(3)	41(3)	3(2)	20(2)	4(2)	
C(8B)	122(7)	82(6)	116(7)	-11(5)	-7(6)	28(5)	
C(8A)	95(7)	148(10)	209(13)	101(9)	-20(7)	-34(6)	
C(9B)	109(6)	80(6)	124(8)	-25(5)	21(6)	4(5)	
C(9A)	182(11)	189(12)	103(8)	53(8)	57(8)	77(10)	
C(10B)	101(6)	83(6)	121(8)	-4(5)	15(5)	-4(5)	

C(10A)	188(9)	117(7)	68(5)	28(5)	55(6)	56(7)
C(11)	47(3)	36(3)	39(3)	2(2)	4(2)	1(2)
C(11A)	82(5)	67(4)	79(5)	27(4)	10(4)	11(4)
C(11B)	103(6)	62(4)	103(6)	1(4)	32(5)	14(4)
C(12)	47(3)	46(3)	80(4)	14(3)	2(3)	-3(3)
F(12)	47(2)	69(2)	158(4)	31(2)	-10(2)	-4(2)
O(12A)	82(3)	53(2)	66(3)	3(2)	16(2)	10(2)
O(12B)	77(3)	53(3)	89(3)	7(2)	22(2)	1(2)
F(13)	81(3)	72(3)	229(6)	51(3)	-12(3)	24(2)
C(13)	64(4)	52(4)	102(6)	18(4)	0(4)	24(3)
C(13A)	59(3)	56(4)	69(4)	-7(3)	14(3)	-1(3)
C(13B)	58(3)	64(4)	59(4)	15(3)	10(3)	-2(3)
C(14)	76(4)	30(3)	81(5)	16(3)	10(3)	1(3)
F(14)	124(3)	37(2)	138(4)	23(2)	18(3)	1(2)
C(14B)	70(4)	60(4)	35(3)	2(3)	13(3)	-14(3)
C(14A)	38(3)	74(4)	71(4)	2(3)	16(3)	2(3)
C(15)	61(3)	40(3)	71(4)	-2(3)	17(3)	-12(3)
F(15)	80(2)	52(2)	161(4)	9(2)	22(3)	-26(2)
C(15B)	61(3)	50(3)	44(3)	6(2)	25(3)	3(3)
C(15A)	50(3)	69(4)	60(4)	-4(3)	20(3)	1(3)
F(16)	46(2)	56(2)	145(4)	17(2)	9(2)	-4(2)
C(16)	45(3)	42(3)	52(3)	4(2)	8(2)	-1(3)
C(16B)	54(3)	43(3)	34(3)	7(2)	11(2)	4(2)
C(16A)	50(3)	64(4)	50(3)	-11(3)	16(3)	3(3)
C(21)	87(4)	57(4)	35(3)	6(3)	6(3)	3(3)
C(22)	97(5)	57(4)	54(4)	2(3)	21(3)	-6(4)
C(23)	125(7)	63(5)	77(5)	12(4)	25(5)	-5(4)
C(24)	140(8)	71(5)	84(6)	31(4)	0(5)	5(5)
C(25)	137(8)	102(7)	104(7)	34(5)	-39(6)	-3(6)
C(26)	107(6)	66(5)	85(5)	31(4)	-23(4)	-7(4)
C(31)	63(4)	51(3)	60(4)	-6(3)	16(3)	-5(3)
C(32)	87(5)	80(5)	81(5)	-3(4)	29(4)	-6(4)
C(33)	96(6)	101(6)	110(7)	-24(5)	46(5)	5(5)
C(34)	82(5)	82(6)	127(8)	-9(5)	14(5)	10(4)
C(35)	81(5)	93(6)	108(7)	5(5)	17(5)	8(4)
C(36)	55(4)	72(4)	81(5)	7(4)	14(3)	6(3)
C(41)	54(3)	32(3)	52(3)	4(2)	11(3)	2(2)
C(42)	61(4)	53(4)	74(4)	-14(3)	16(3)	-6(3)

C(43)	65(4)	68(5)	141(8)	-20(5)	31(5)	-19(4)
C(44)	74(5)	57(5)	172(10)	1(5)	53(6)	-13(4)
C(45)	78(5)	71(5)	124(7)	48(5)	49(5)	18(4)
C(46)	61(4)	59(4)	61(4)	14(3)	15(3)	6(3)
C(51)	58(3)	37(3)	35(3)	3(2)	6(2)	7(2)
C(52)	61(3)	40(3)	61(4)	-1(3)	4(3)	2(3)
C(53)	82(4)	36(3)	70(4)	-4(3)	13(3)	-9(3)
C(54)	100(5)	34(3)	78(5)	-6(3)	9(4)	17(3)
C(55)	79(5)	42(4)	132(7)	-9(4)	7(4)	21(3)
C(56)	58(4)	46(3)	102(5)	-10(3)	3(3)	7(3)
C(61)	39(3)	43(3)	34(3)	8(2)	11(2)	5(2)
F(62)	72(2)	54(2)	68(2)	-4(2)	13(2)	-15(2)
C(62)	49(3)	42(3)	49(3)	11(2)	19(3)	-1(2)
F(63)	107(3)	37(2)	147(4)	17(2)	49(3)	-2(2)
C(63)	71(4)	39(3)	88(5)	15(3)	35(4)	4(3)
C(64)	78(5)	60(4)	98(6)	41(4)	30(4)	19(4)
F(64)	125(4)	91(3)	154(4)	81(3)	31(3)	46(3)
C(65)	63(4)	88(5)	59(4)	28(4)	2(3)	19(4)
F(65)	92(3)	129(4)	86(3)	41(3)	-22(2)	21(3)
F(66)	69(2)	66(2)	59(2)	-2(2)	-10(2)	-1(2)
C(66)	57(3)	47(3)	56(4)	8(3)	15(3)	5(3)
C(71)	40(3)	43(3)	39(3)	9(2)	11(2)	-1(2)
C(72)	45(3)	59(4)	52(3)	7(3)	12(3)	2(3)
C(73)	43(3)	72(4)	68(4)	13(3)	15(3)	-3(3)
C(74)	48(3)	73(4)	72(4)	14(3)	7(3)	-16(3)
C(75)	75(4)	56(4)	73(5)	-11(3)	15(3)	-18(3)
C(76)	55(3)	52(3)	68(4)	0(3)	22(3)	-3(3)
C(81)	46(3)	41(3)	49(3)	9(2)	22(2)	8(2)
C(82)	68(4)	41(3)	49(3)	-2(3)	17(3)	-5(3)
C(83)	106(5)	40(3)	71(5)	-4(3)	36(4)	-5(4)
C(84)	110(6)	38(3)	98(6)	3(4)	66(5)	8(4)
C(85)	66(4)	58(4)	97(5)	28(4)	37(4)	21(3)
C(86)	52(3)	51(3)	72(4)	12(3)	17(3)	10(3)
C(91)	54(3)	58(3)	36(3)	2(2)	21(2)	1(3)
C(92)	78(4)	50(3)	38(3)	3(3)	13(3)	5(3)
C(93)	112(5)	57(4)	42(4)	10(3)	17(3)	12(4)
C(94)	151(7)	70(5)	55(5)	12(4)	42(5)	-4(5)
C(95)	128(6)	63(4)	71(5)	2(4)	40(5)	-28(4)

C(96)	86(4)	64(4)	56(4)	2(3)	26(3)	-20(3)
C(101)	70(4)	45(3)	34(3)	3(2)	14(3)	16(3)
C(102)	75(4)	64(4)	45(3)	8(3)	13(3)	11(3)
C(103)	105(5)	50(4)	52(4)	-6(3)	5(4)	18(4)
C(104)	103(6)	53(4)	74(5)	-14(3)	9(4)	-9(4)
C(105)	90(5)	67(4)	91(5)	-24(4)	13(4)	-23(4)
C(106)	75(4)	57(4)	69(4)	-13(3)	23(3)	-4(3)
O(200)	117(6)	343(15)	350(17)	-145(13)	-28(8)	-8(8)
C(200)	330(30)	830(60)	135(13)	-240(20)	81(15)	30(30)

	Х	у	Z	U(eq)	
H(1BA)	7944	-6255	-558	58	
H(1BR)	7967	-6986	-926	58	
H(1AA)	8958	-5946	2069	20 74	
H(1AB)	8416	-5427	1716	74	
H(2BA)	7130	-6883	-154	78	
H(2BR)	7103	-7497	-637	78 78	
H(2AA)	8382	-5900	2830	88	
H(2AB)	7942	-5269	2478	88	
H(3AA)	8754	-4662	3111	120	
H(3AB)	9290	-5162	2924	120	
H(3BA)	6844	-6473	-1327	96	
H(3BR)	6287	-6690	-1005	96	
H(4AA)	9327	-3971	2566	104	
H(4AB)	9118	-4541	2050	104	
$H(4B\Delta)$	6605	-5698	-366	118	
H(4BR)	7143	-5472	-711	118	
H(6BA)	5975	-4256	-1360	136	
H(6BB)	664A	-4303	-1900	136	
H(6AA)	7893	-3312	1574	138	
H(6AB)	8424	-3312	1386	138	
H(7AA)	0713	-3022	1838	130	
$H(7\Delta B)$	8684	-2518	2035	139	
$H(7B\Delta)$	5458	-4746	-565	156	
H(7BB)	6125	-4740	-144	156	
H(8BA)	5368	-4307	-840	130	
H(8BB)	6036	-3472	-428	134	
H(8AA)	8600	-2708	-428	194	
H(8AR)	8243	-2798	1106	190	
$H(0\mathbf{P}\mathbf{A})$	5175	-2151	7	190	
$H(0\mathbf{P}\mathbf{R})$	J1/J A011	-2734	-1 56	120	
	4711	-3/07 2210	-30 1101	120	
П(УАА) Ц(ОАР)	9302	-2219	1101	183	
П(УАБ)	9130	-13/0	1380	183	
H(10A)	5802	-418/	592	124	

Table S17. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10³) for **6**.

H(10B)	5431	-3552	858	124
H(10C)	9245	-1098	545	145
H(10D)	8514	-1345	449	145
H(11A)	9443	-2279	102	92
H(11B)	8681	-2355	-87	92
H(11C)	6542	-3346	1084	105
H(11D)	6556	-3295	426	105
H(13A)	8745	-2217	-1072	73
H(13B)	9507	-2137	-901	73
H(13C)	6973	-2066	581	73
H(13D)	6942	-2138	1235	73
H(14A)	6893	-879	974	66
H(14B)	6248	-1120	1159	66
H(14C)	9224	-1514	-1730	72
H(14D)	9388	-884	-1256	72
H(15A)	5732	-1202	184	60
H(15B)	5970	-375	364	60
H(15C)	8216	-830	-1296	70
H(15D)	8474	-445	-1802	70
H(16A)	6661	-1386	-196	52
H(16B)	6876	-552	-32	52
H(16C)	7989	-1920	-1866	64
H(16D)	8183	-1470	-2373	64
H(22A)	7386	-7881	2150	82
H(23A)	7751	-8952	2686	105
H(24A)	8838	-9083	3060	122
H(25A)	9533	-8097	3015	148
H(26A)	9191	-7076	2438	110
H(32A)	7226	-6503	2560	97
H(33A)	6206	-6000	2530	118
H(34A)	5566	-5630	1693	118
H(35A)	5954	-5733	853	113
H(36A)	6980	-6190	877	83
H(42A)	9518	-6421	720	75
H(43A)	10440	-5816	591	108
H(44A)	10656	-5697	-295	117
H(45A)	10006	-6256	-1064	104
H(46A)	9107	-6941	-938	72

H(52A)	7669	-8447	-407	66	
H(53A)	7838	-9712	-544	75	
H(54A)	8858	-10182	-399	86	
H(55A)	9725	-9406	-96	104	
H(56A)	9570	-8154	30	85	
H(72A)	4812	-513	-615	62	
H(73A)	3906	-1233	-852	73	
H(74A)	3898	-2302	-1401	78	
H(75A)	4842	-2654	-1677	81	
H(76A)	5751	-1919	-1461	68	
H(82A)	6531	677	-109	62	
H(83A)	6246	1920	-88	84	
H(84A)	5387	2377	-712	91	
H(85A)	4789	1607	-1394	85	
H(86A)	5082	352	-1437	69	
H(92A)	6539	-993	-3439	66	
H(93A)	6402	-39	-4113	84	
H(94A)	6926	1095	-3895	107	
H(95A)	7579	1265	-3015	101	
H(96A)	7718	322	-2343	80	
H(10E)	7527	-2317	-2960	73	
H(10F)	7027	-3371	-3387	85	
H(10G)	5990	-3649	-3349	94	
H(10H)	5447	-2885	-2837	100	
H(10I)	5946	-1818	-2378	79	
H(20D)	5444	-5510	-1558	422	
H(20A)	5302	-5314	-2697	643	
H(20B)	5923	-5111	-2257	643	
H(20C)	5752	-5947	-2399	643	

Table S18. Torsion angles [°] for **6**.

C(1)-Pt(1)-P(1)-C(21)	-163.2(3)
C(11)-Pt(1)-P(1)-C(21)	20.5(3)
P(2)-Pt(1)-P(1)-C(21)	-134.9(8)
Pt(2)-Pt(1)-P(1)-C(21)	-175.3(2)
C(1)-Pt(1)-P(1)-C(31)	72.3(3)
C(11)-Pt(1)-P(1)-C(31)	-104.0(2)
P(2)-Pt(1)-P(1)-C(31)	100.6(8)
Pt(2)-Pt(1)-P(1)-C(31)	60.2(2)
C(1)-Pt(1)-P(1)-C(1A)	-44.8(3)
C(11)-Pt(1)-P(1)-C(1A)	138.8(2)
P(2)-Pt(1)-P(1)-C(1A)	-16.5(8)
Pt(2)-Pt(1)-P(1)-C(1A)	-56.9(2)
C(11)-Pt(1)-C(1)-C(2)	-4(7)
P(2)-Pt(1)-C(1)-C(2)	65(5)
P(1)-Pt(1)-C(1)-C(2)	-117(5)
Pt(2)-Pt(1)-C(1)-C(2)	5(5)
C(21)-P(1)-C(1A)-C(2A)	-63.0(5)
C(31)-P(1)-C(1A)-C(2A)	51.3(5)
Pt(1)-P(1)-C(1A)-C(2A)	174.7(4)
C(1)-Pt(1)-Pt(2)-C(8)	27.2(10)
C(11)-Pt(1)-Pt(2)-C(8)	-154.8(9)
P(2)-Pt(1)-Pt(2)-C(8)	-91.9(8)
P(1)-Pt(1)-Pt(2)-C(8)	85.7(8)
C(1)-Pt(1)-Pt(2)-C(61)	-153.2(10)
C(11)-Pt(1)-Pt(2)-C(61)	24.9(9)
P(2)-Pt(1)-Pt(2)-C(61)	87.8(8)
P(1)-Pt(1)-Pt(2)-C(61)	-94.7(8)
C(1)-Pt(1)-Pt(2)-P(4)	107.5(6)
C(11)-Pt(1)-Pt(2)-P(4)	-74.4(4)
P(2)-Pt(1)-Pt(2)-P(4)	-11.55(5)
P(1)-Pt(1)-Pt(2)-P(4)	166.03(5)
C(1)-Pt(1)-Pt(2)-P(3)	-78.8(6)
C(11)-Pt(1)-Pt(2)-P(3)	99.2(4)
P(2)-Pt(1)-Pt(2)-P(3)	162.11(5)
P(1)-Pt(1)-Pt(2)-P(3)	-20.32(5)
C(2B)-C(1B)-P(2)-C(51)	79.9(5)

C(2B)-C(1B)-P(2)-C(41)	-169.8(4)
C(2B)-C(1B)-P(2)-Pt(1)	-48.5(4)
C(1)-Pt(1)-P(2)-C(51)	-176.1(2)
C(11)-Pt(1)-P(2)-C(51)	0.2(2)
P(1)-Pt(1)-P(2)-C(51)	155.5(8)
Pt(2)-Pt(1)-P(2)-C(51)	-163.72(19)
C(1)-Pt(1)-P(2)-C(1B)	-52.3(2)
C(11)-Pt(1)-P(2)-C(1B)	123.9(2)
P(1)-Pt(1)-P(2)-C(1B)	-80.7(8)
Pt(2)-Pt(1)-P(2)-C(1B)	-39.96(18)
C(1)-Pt(1)-P(2)-C(41)	62.4(2)
C(11)-Pt(1)-P(2)-C(41)	-121.3(2)
P(1)-Pt(1)-P(2)-C(41)	34.0(8)
Pt(2)-Pt(1)-P(2)-C(41)	74.74(17)
Pt(1)-C(1)-C(2)-C(3)	7(11)
P(2)-C(1B)-C(2B)-C(3B)	167.5(4)
P(1)-C(1A)-C(2A)-C(3A)	169.3(4)
C(8)-Pt(2)-P(3)-C(71)	-85.5(2)
C(61)-Pt(2)-P(3)-C(71)	94.3(2)
P(4)-Pt(2)-P(3)-C(71)	-31.4(4)
Pt(1)-Pt(2)-P(3)-C(71)	-76.47(16)
C(8)-Pt(2)-P(3)-C(81)	155.8(2)
C(61)-Pt(2)-P(3)-C(81)	-24.4(2)
P(4)-Pt(2)-P(3)-C(81)	-150.1(3)
Pt(1)-Pt(2)-P(3)-C(81)	164.85(19)
C(8)-Pt(2)-P(3)-C(16B)	31.1(2)
C(61)-Pt(2)-P(3)-C(16B)	-149.1(2)
P(4)-Pt(2)-P(3)-C(16B)	85.2(3)
Pt(1)-Pt(2)-P(3)-C(16B)	40.13(19)
C(1)-C(2)-C(3)-C(4)	-39(18)
C(1A)-C(2A)-C(3A)-C(4A)	51.3(8)
C(1B)-C(2B)-C(3B)-C(4B)	-74.3(8)
C(8)-Pt(2)-P(4)-C(91)	-170.2(2)
C(61)-Pt(2)-P(4)-C(91)	10.0(2)
P(3)-Pt(2)-P(4)-C(91)	135.6(3)
Pt(1)-Pt(2)-P(4)-C(91)	-179.48(19)
C(8)-Pt(2)-P(4)-C(101)	70.8(2)
C(61)-Pt(2)-P(4)-C(101)	-108.9(2)

P(3)-Pt(2)-P(4)-C(101)	16.7(4)
Pt(1)-Pt(2)-P(4)-C(101)	61.56(18)
C(8)-Pt(2)-P(4)-C(16A)	-43.9(3)
C(61)-Pt(2)-P(4)-C(16A)	136.3(3)
P(3)-Pt(2)-P(4)-C(16A)	-98.1(4)
Pt(1)-Pt(2)-P(4)-C(16A)	-53.2(2)
C(2)-C(3)-C(4)-C(5)	6(20)
C(2A)-C(3A)-C(4A)-O(5A)	61.4(8)
C(2B)-C(3B)-C(4B)-O(5B)	-177.8(6)
C(3)-C(4)-C(5)-C(6)	-11(13)
C(3A)-C(4A)-O(5A)-C(6A)	-160.6(7)
C(3B)-C(4B)-O(5B)-C(6B)	-175.9(7)
C(4)-C(5)-C(6)-C(7)	105(36)
C(4B)-O(5B)-C(6B)-C(7B)	-75.6(9)
C(4A)-O(5A)-C(6A)-C(7A)	-68.1(10)
C(5)-C(6)-C(7)-C(8)	23(46)
O(5A)-C(6A)-C(7A)-C(8A)	-179.3(8)
O(5B)-C(6B)-C(7B)-C(8B)	-165.5(7)
C(6)-C(7)-C(8)-Pt(2)	-23(18)
C(61)-Pt(2)-C(8)-C(7)	-63(60)
P(4)-Pt(2)-C(8)-C(7)	-145(6)
P(3)-Pt(2)-C(8)-C(7)	27(6)
Pt(1)-Pt(2)-C(8)-C(7)	-46(5)
C(6B)-C(7B)-C(8B)-C(9B)	-179.3(7)
C(6A)-C(7A)-C(8A)-C(9A)	-164.0(11)
C(7B)-C(8B)-C(9B)-C(10B)	60.6(10)
C(7A)-C(8A)-C(9A)-C(10A)	-178.3(9)
C(8B)-C(9B)-C(10B)-C(11B)	59.9(10)
C(8A)-C(9A)-C(10A)-C(11A)	-74.8(13)
C(1)-Pt(1)-C(11)-C(12)	146(3)
P(2)-Pt(1)-C(11)-C(12)	78.2(5)
P(1)-Pt(1)-C(11)-C(12)	-100.3(5)
Pt(2)-Pt(1)-C(11)-C(12)	139.5(4)
C(1)-Pt(1)-C(11)-C(16)	-32(3)
P(2)-Pt(1)-C(11)-C(16)	-99.7(4)
P(1)-Pt(1)-C(11)-C(16)	81.9(4)
Pt(2)-Pt(1)-C(11)-C(16)	-38.4(7)
C(9A)-C(10A)-C(11A)-O(12A)	-166.5(8)

C(9B)-C(10B)-C(11B)-O(12B)	61.8(9)
C(16)-C(11)-C(12)-F(12)	178.2(5)
Pt(1)-C(11)-C(12)-F(12)	0.2(8)
C(16)-C(11)-C(12)-C(13)	1.5(9)
Pt(1)-C(11)-C(12)-C(13)	-176.5(5)
C(10A)-C(11A)-O(12A)-C(13A)	-178.6(6)
C(10B)-C(11B)-O(12B)-C(13B)	178.1(6)
F(12)-C(12)-C(13)-F(13)	-0.7(10)
C(11)-C(12)-C(13)-F(13)	176.0(6)
F(12)-C(12)-C(13)-C(14)	-179.2(6)
C(11)-C(12)-C(13)-C(14)	-2.4(11)
C(11A)-O(12A)-C(13A)-C(14A)	178.5(5)
C(11B)-O(12B)-C(13B)-C(14B)	-178.9(5)
F(13)-C(13)-C(14)-F(14)	3.2(11)
C(12)-C(13)-C(14)-F(14)	-178.3(6)
F(13)-C(13)-C(14)-C(15)	-177.6(6)
C(12)-C(13)-C(14)-C(15)	0.9(11)
O(12B)-C(13B)-C(14B)-C(15B)	-59.2(6)
O(12A)-C(13A)-C(14A)-C(15A)	-71.9(6)
F(14)-C(14)-C(15)-F(15)	-1.5(10)
C(13)-C(14)-C(15)-F(15)	179.3(6)
F(14)-C(14)-C(15)-C(16)	-179.4(6)
C(13)-C(14)-C(15)-C(16)	1.3(10)
C(13B)-C(14B)-C(15B)-C(16B)	-65.2(6)
C(13A)-C(14A)-C(15A)-C(16A)	-79.4(6)
F(15)-C(15)-C(16)-F(16)	1.9(8)
C(14)-C(15)-C(16)-F(16)	179.8(5)
F(15)-C(15)-C(16)-C(11)	179.7(5)
C(14)-C(15)-C(16)-C(11)	-2.4(9)
C(12)-C(11)-C(16)-C(15)	1.0(8)
Pt(1)-C(11)-C(16)-C(15)	179.0(4)
C(12)-C(11)-C(16)-F(16)	178.7(5)
Pt(1)-C(11)-C(16)-F(16)	-3.2(7)
C(14B)-C(15B)-C(16B)-P(3)	177.9(4)
C(71)-P(3)-C(16B)-C(15B)	-52.1(4)
C(81)-P(3)-C(16B)-C(15B)	60.0(4)
Pt(2)-P(3)-C(16B)-C(15B)	-170.6(3)
C(14A)-C(15A)-C(16A)-P(4)	173.6(4)

C(91)-P(4)-C(16A)-C(15A)	81.6(5)
C(101)-P(4)-C(16A)-C(15A)	-167.2(4)
Pt(2)-P(4)-C(16A)-C(15A)	-47.3(5)
C(31)-P(1)-C(21)-C(26)	-154.6(5)
C(1A)-P(1)-C(21)-C(26)	-43.0(6)
Pt(1)-P(1)-C(21)-C(26)	77.5(6)
C(31)-P(1)-C(21)-C(22)	38.1(6)
C(1A)-P(1)-C(21)-C(22)	149.7(5)
Pt(1)-P(1)-C(21)-C(22)	-89.8(5)
C(26)-C(21)-C(22)-C(23)	-0.5(9)
P(1)-C(21)-C(22)-C(23)	166.6(5)
C(21)-C(22)-C(23)-C(24)	-0.7(10)
C(22)-C(23)-C(24)-C(25)	4.1(13)
C(23)-C(24)-C(25)-C(26)	-6.5(15)
C(22)-C(21)-C(26)-C(25)	-1.8(11)
P(1)-C(21)-C(26)-C(25)	-169.2(7)
C(24)-C(25)-C(26)-C(21)	5.2(14)
C(21)-P(1)-C(31)-C(36)	-148.0(5)
C(1A)-P(1)-C(31)-C(36)	99.1(5)
Pt(1)-P(1)-C(31)-C(36)	-21.2(6)
C(21)-P(1)-C(31)-C(32)	39.7(6)
C(1A)-P(1)-C(31)-C(32)	-73.2(6)
Pt(1)-P(1)-C(31)-C(32)	166.5(4)
C(36)-C(31)-C(32)-C(33)	-0.9(10)
P(1)-C(31)-C(32)-C(33)	171.5(5)
C(31)-C(32)-C(33)-C(34)	1.4(12)
C(32)-C(33)-C(34)-C(35)	-0.7(13)
C(33)-C(34)-C(35)-C(36)	-0.5(12)
C(32)-C(31)-C(36)-C(35)	-0.3(10)
P(1)-C(31)-C(36)-C(35)	-172.8(5)
C(34)-C(35)-C(36)-C(31)	1.1(11)
C(51)-P(2)-C(41)-C(46)	64.7(5)
C(1B)-P(2)-C(41)-C(46)	-48.0(5)
Pt(1)-P(2)-C(41)-C(46)	-167.5(4)
C(51)-P(2)-C(41)-C(42)	-117.2(4)
C(1B)-P(2)-C(41)-C(42)	130.0(4)
Pt(1)-P(2)-C(41)-C(42)	10.6(5)
C(46)-C(41)-C(42)-C(43)	-0.1(9)

P(2)-C(41)-C(42)-C(43)	-178.1(5)
C(41)-C(42)-C(43)-C(44)	2.5(10)
C(42)-C(43)-C(44)-C(45)	-2.7(12)
C(43)-C(44)-C(45)-C(46)	0.4(11)
C(42)-C(41)-C(46)-C(45)	-2.2(8)
P(2)-C(41)-C(46)-C(45)	175.9(4)
C(44)-C(45)-C(46)-C(41)	2.0(9)
C(1B)-P(2)-C(51)-C(52)	-46.6(5)
C(41)-P(2)-C(51)-C(52)	-155.4(4)
Pt(1)-P(2)-C(51)-C(52)	78.6(5)
C(1B)-P(2)-C(51)-C(56)	137.5(5)
C(41)-P(2)-C(51)-C(56)	28.6(5)
Pt(1)-P(2)-C(51)-C(56)	-97.4(5)
C(56)-C(51)-C(52)-C(53)	0.9(8)
P(2)-C(51)-C(52)-C(53)	-175.1(4)
C(51)-C(52)-C(53)-C(54)	-0.5(9)
C(52)-C(53)-C(54)-C(55)	0.6(10)
C(53)-C(54)-C(55)-C(56)	-1.1(11)
C(54)-C(55)-C(56)-C(51)	1.5(12)
C(52)-C(51)-C(56)-C(55)	-1.4(10)
P(2)-C(51)-C(56)-C(55)	174.7(6)
C(8)-Pt(2)-C(61)-C(66)	-13(58)
P(4)-Pt(2)-C(61)-C(66)	69.6(4)
P(3)-Pt(2)-C(61)-C(66)	-103.1(4)
Pt(1)-Pt(2)-C(61)-C(66)	-29.3(11)
C(8)-Pt(2)-C(61)-C(62)	169(100)
P(4)-Pt(2)-C(61)-C(62)	-108.6(4)
P(3)-Pt(2)-C(61)-C(62)	78.7(4)
Pt(1)-Pt(2)-C(61)-C(62)	152.5(6)
C(66)-C(61)-C(62)-F(62)	-179.8(4)
Pt(2)-C(61)-C(62)-F(62)	-1.5(6)
C(66)-C(61)-C(62)-C(63)	1.2(8)
Pt(2)-C(61)-C(62)-C(63)	179.6(4)
F(62)-C(62)-C(63)-F(63)	-0.9(8)
C(61)-C(62)-C(63)-F(63)	178.1(5)
F(62)-C(62)-C(63)-C(64)	179.0(5)
C(61)-C(62)-C(63)-C(64)	-2.0(9)
F(63)-C(63)-C(64)-F(64)	0.6(9)

C(62)-C(63)-C(64)-F(64)	-179.3(5)
F(63)-C(63)-C(64)-C(65)	-179.6(6)
C(62)-C(63)-C(64)-C(65)	0.5(9)
F(64)-C(64)-C(65)-F(65)	-0.3(10)
C(63)-C(64)-C(65)-F(65)	179.9(6)
F(64)-C(64)-C(65)-C(66)	-178.6(6)
C(63)-C(64)-C(65)-C(66)	1.5(10)
C(62)-C(61)-C(66)-C(65)	1.1(8)
Pt(2)-C(61)-C(66)-C(65)	-177.2(5)
C(62)-C(61)-C(66)-F(66)	179.2(4)
Pt(2)-C(61)-C(66)-F(66)	0.9(7)
F(65)-C(65)-C(66)-C(61)	179.2(5)
C(64)-C(65)-C(66)-C(61)	-2.5(10)
F(65)-C(65)-C(66)-F(66)	1.0(9)
C(64)-C(65)-C(66)-F(66)	179.3(5)
C(81)-P(3)-C(71)-C(72)	-28.9(5)
C(16B)-P(3)-C(71)-C(72)	83.7(5)
Pt(2)-P(3)-C(71)-C(72)	-153.5(4)
C(81)-P(3)-C(71)-C(76)	152.6(4)
C(16B)-P(3)-C(71)-C(76)	-94.8(4)
Pt(2)-P(3)-C(71)-C(76)	28.0(5)
C(76)-C(71)-C(72)-C(73)	-2.2(8)
P(3)-C(71)-C(72)-C(73)	179.3(4)
C(71)-C(72)-C(73)-C(74)	0.9(9)
C(72)-C(73)-C(74)-C(75)	1.3(9)
C(73)-C(74)-C(75)-C(76)	-2.2(9)
C(74)-C(75)-C(76)-C(71)	0.8(9)
C(72)-C(71)-C(76)-C(75)	1.4(8)
P(3)-C(71)-C(76)-C(75)	179.9(4)
C(71)-P(3)-C(81)-C(86)	-43.5(5)
C(16B)-P(3)-C(81)-C(86)	-154.8(4)
Pt(2)-P(3)-C(81)-C(86)	76.4(4)
C(71)-P(3)-C(81)-C(82)	143.1(4)
C(16B)-P(3)-C(81)-C(82)	31.8(5)
Pt(2)-P(3)-C(81)-C(82)	-97.0(4)
C(86)-C(81)-C(82)-C(83)	-0.1(8)
P(3)-C(81)-C(82)-C(83)	173.3(4)
C(81)-C(82)-C(83)-C(84)	0.7(9)

C(82)-C(83)-C(84)-C(85)	-0.6(10)
C(83)-C(84)-C(85)-C(86)	-0.2(9)
C(82)-C(81)-C(86)-C(85)	-0.6(8)
P(3)-C(81)-C(86)-C(85)	-174.2(4)
C(84)-C(85)-C(86)-C(81)	0.8(9)
C(101)-P(4)-C(91)-C(96)	-172.5(4)
C(16A)-P(4)-C(91)-C(96)	-64.0(5)
Pt(2)-P(4)-C(91)-C(96)	65.7(5)
C(101)-P(4)-C(91)-C(92)	13.7(5)
C(16A)-P(4)-C(91)-C(92)	122.2(4)
Pt(2)-P(4)-C(91)-C(92)	-108.1(4)
C(96)-C(91)-C(92)-C(93)	-1.3(8)
P(4)-C(91)-C(92)-C(93)	172.5(5)
C(91)-C(92)-C(93)-C(94)	0.5(9)
C(92)-C(93)-C(94)-C(95)	0.2(11)
C(93)-C(94)-C(95)-C(96)	-0.2(11)
C(92)-C(91)-C(96)-C(95)	1.3(9)
P(4)-C(91)-C(96)-C(95)	-172.6(5)
C(94)-C(95)-C(96)-C(91)	-0.6(11)
C(91)-P(4)-C(101)-C(106)	-102.1(5)
C(16A)-P(4)-C(101)-C(106)	144.6(5)
Pt(2)-P(4)-C(101)-C(106)	21.6(5)
C(91)-P(4)-C(101)-C(102)	77.5(5)
C(16A)-P(4)-C(101)-C(102)	-35.8(5)
Pt(2)-P(4)-C(101)-C(102)	-158.7(4)
C(106)-C(101)-C(102)-C(103)	-0.3(8)
P(4)-C(101)-C(102)-C(103)	-180.0(4)
C(101)-C(102)-C(103)-C(104)	1.3(9)
C(102)-C(103)-C(104)-C(105)	-1.5(11)
C(103)-C(104)-C(105)-C(106)	0.7(11)
C(102)-C(101)-C(106)-C(105)	-0.4(9)
P(4)-C(101)-C(106)-C(105)	179.3(5)
C(104)-C(105)-C(106)-C(101)	0.2(11)