Charge-transfer phase transition and zero thermal expansion

in cesium manganese hexacyanoferrates

Tomoyuki Matsuda,^{1,2} Hiroko Tokoro,^{1,2} Kazuhito Hashimoto,¹ and Shin-ichi Ohkoshi*^{1,2}

¹ Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ² Department of Chemistry, School of Science, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Phase transition temperatures of Cs_xMn[Fe(CN)₆]_y·zH₂O:

Sample		$T_{1/2\downarrow}$ / K	$T_{1/2\uparrow}$ / K
⇒ 1.	$Cs^{I}_{1.78}Mn^{II}[Fe^{II}(CN)_{6}]_{0.78}[Fe^{III}(CN)_{6}]_{0.22}+0.35MnO_{2}$	207	225
	$Cs^{I}_{1.6}Mn^{II}[Fe^{II}(CN)_{6}]_{0.6}[Fe^{III}(CN)_{6}]_{0.4}+0.2MnO_{2}$	195	230
$\Rightarrow 2.$	$Cs^{I}_{1.57}Mn^{II}[Fe^{II}(CN)_{6}]_{0.57}[Fe^{III}(CN)_{6}]_{0.43}+0.24MnO_{2}$	190	231
	$Cs_{1.5}^{I}Mn^{II}[Fe^{II}(CN)_{6}]_{0.5}[Fe^{III}(CN)_{6}]_{0.5}+0.2MnO_{2}$	185	230
\Rightarrow 3.	$Cs_{1.51}^{I}Mn^{II}[Fe_{1}^{II}(CN)_{6}]_{0.51}[Fe_{1}^{III}(CN)_{6}]_{0.49}+0.19MnO_{2}$	175	233
	$Cs_{1,3}^{I}Mn^{II}[Fe^{II}(CN)_{6}]_{0.3}[Fe^{III}(CN)_{6}]_{0.7}+0.2MnO_{2}$	175	240
	$Cs_{1,1}^{I}Mn^{II}[Fe^{II}(CN)_{6}]_{0.25}[Fe^{III}(CN)_{6}]_{0.7}$ ·H ₂ O+0.1MnO	2 —	_
⇒4.	$Cs^{I}_{0.94}Mn^{II}[Fe^{II}(CN)_{6}]_{0.21}[Fe^{III}(CN)_{6}]_{0.70} \cdot 0.8H_{2}O$	-(140)*	$-(230)^{*}$

Table S1. The phase transition temperatures of the $Cs_xMn[Fe(CN)_6]_y$: zH_2O at a cooling and warming rates of 0.5 Kmin⁻¹.

* The phase transition temperatures at a cooling rate of -0.01 Kmin⁻¹.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

O 1s XPS spectra:

Fig. S1 (a) O1s XPS spectra for 1 (blue), 2 (green), 3 (red), and 4 (black); (b) O 1s spectra for MnO₂. The peak at 533.3 eV results from water contained in $Cs_xMn[Fe(CN)_6]_y$ ·zH₂O compounds and the substrate.

Fig. S2 (a) IR spectra at 300 K (right) and 100 K (left), (b) $\chi_M T$ -T plots, and (c) XRD patterns at 300 K (upper) and 100 K (lower) of Cs^IMn^{II}[Fe^{II}(CN)₆]·3.5H₂O.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

Weiss temperature:

Fig. S3 The observed $\chi_M^{-1}-T$ plots for 1 (a), 2 (b), 3 (c), and 4 (d). The data between 100 and 150 K for 1, 2 and 3, and the data between 100 and 300 K for 4 at a cooling rate of -0.5 K/min are fitted to Curie-Weiss plots (-).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

Magnetic property for 4:

Fig. S4 Field-cooled magnetization (FCM) obtained as the temperature decreases in an external magnetic field of 10 G for 4: (○) HT phase at a cooling rate of -0.5 K/min; (●) LT phase at a cooling rate of -0.01 K/min.