Electronic Supporting information

Novel Selective Quinoline-based Fluorescent Probes for Zn²⁺

Da-Yu Wu, Li-Xia Xie, Chang-Li Zhang, Chun-Ying Duan*, Yong-Gang Zhao, and Zi-Jian Guo* Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China, duancy@nju.edu.cn

Index

Figure S1. Fluorescence emission spectra at 293 K in DMSO-H₂O (80:20), conducting the free sensor QB1-2, and their respective zinc complexes.

Figure S2. Luminescent titrations of receptor QB1 and QB2 with increasing concentration of Zn^{2+} .

Figure S3. Job plot showing fluorescent intensity changes at 495 nm with increasing concentration of Zn^{2+} and Benesi-Hildebrand plot for QB1- Zn^{2+} system.

Figure S4. Job plot showing fluorescent intensity changes at 495 nm with increasing concentration of Zn^{2+} and Benesi-Hildebrand plot for QB2- Zn^{2+} system. **Figure S5.** Selectivity of QB1 and QB2 for Zn^{2+} over the metal ions of interest.

Figure S6. The dependence of intensity in the emission spectra upon different pH.

Figure S1. Fluorescence emission spectra at 293 K in DMSO-H₂O (80:20) (a) QB1 $(1.0 \times 10^{-4} \text{ mol/L})$ only and zinc perchlorate $(2.0 \times 10^{-3} \text{ mol/L})$ was added, respectively. (b) QB2 $(1.0 \times 10^{-5} \text{ mol/L})$ only and zinc perchlorate $(1.5 \times 10^{-4} \text{ mol/L})$ was added, respectively. The dashed line corresponds to the free chemosensors only and the solid line to the zinc complexes.

Figure S2. Luminescent titrations of receptors QB1 at 1.0×10^{-4} mol/L (a) and QB2 at 1.0×10^{-5} mol/L (b) with increasing concentration of Zn²⁺. Excitation wavelength was 420 nm with 4 nm slit widths, and spectra were corrected.

Figure S3. (a) Fluorescent intensity changes at 495 nm *vs* the equivalent molar ratio of Zn^{2+} added (Excitation wavelength at 420 nm with the concentration of QB1 being 1.0×10^{-4} M. (b) Plot for QB1-Zn²⁺ system with K_{ass} being calculated as 4.08×10^{9} M⁻³.

Figure S4. (a) Fluorescent intensity changes at 495 nm *vs* the equivalent molar ratio of Zn^{2+} added (Excitation wavelength at 420 nm with the concentration of QB2 being 1.0×10^{-5} M. (b) Plot for QB2-Zn²⁺ system with *K*_{ass} being calculated as 1.27×10^{14} M⁻³.

Here, the linear fits for K_s of Zn-QB1 and Zn-QB2 are deduced as follows:

 C_0

 $2 \operatorname{Zn}^{2+} + 2 \operatorname{QB} \implies \operatorname{Zn}_2 \operatorname{QB}_2$

ligand only

$$nC_0 \operatorname{Zn}^{2+} \text{ is added}$$
 (n-x) C_0 (1-x) C_0 x $C_0/2$
 $K_{ass} = \frac{[\operatorname{Zn}_2 \operatorname{QB}_2]}{[\operatorname{Zn}^{2+}]^2 [\operatorname{QB}]^2}$ (1)

The measurements are performed under the conditions where the fluorescent intensities of the free ligand is a constant A_0 ; After addition of a given amount of metal salt at a concentration of C_0 , the fluorescent intensity becomes

$$A = a \times [C_0 x/2] + A_0 \tag{2}$$

In the presence of an excess of salt, the fluorescent intensity reaches the saturate value A_{lim} :

$$A_{lim} = a \times [C_0/2] + A_0 \tag{3}$$

From eqs (2) and (3), it is easy to derive the usual equation:

$$\frac{A - A_0}{A_{lim} - A_0} = \mathbf{x}$$
(4)

From eqs (1) to (4), we can obtain the equation:

$$(2kC_0^{3})^{1/2} \times (n - \frac{A - A_0}{A_{lim} - A_0}) = \frac{1}{A_{lim} - A} \times [(A - A_0) \times (A_{lim} - A_0)]^{1/2}$$
(5)

For clarity, we set the value,

$$\frac{1}{A_{lim} - A} \times [(A - A_0) \times (A_{lim} - A_0)]^{1/2} = Y$$
(6)

If A_{Iim} cannot be accurately determined, it can be left as a floating parameter in the analysis. k can thus be obtained by a linear least-squares analysis of n versus Y. For chemosensor QB1, K_{ass} is calculated to be $4.08 \times 10^9 \,(\text{mol/L})^{-3}$. For chemosensor QB2, K_{ass} is calculated to be $1.27 \times 10^{14} \,(\text{mol/L})^{-3}$.

Figure S5. Selectivity of QB2 for Zn²⁺ over the metal ions of interest. Black bars: QB2 + 15 equiv cation of interest: 1, Na⁺; 2, K⁺; 3, Ca²⁺; 4, Mg²⁺; 5, Mn²⁺; 6, Fe²⁺; 7, Co²⁺; 8, Ni²⁺; 9, Cu²⁺; 10, Zn²⁺(0 equiv); 11, Cd²⁺.. Light gray bars: addition of 1 equiv of Zn(II) to the solution containing QB2 and 5 equiv cation of interest. Dark gray bars: addition of 1 equiv of Zn(II) to the solution containing QB2 and 1 equiv cation of interest. Red bars: addition of 10 equiv of Zn(II) to the solution containing QB2 and 1 equiv cation of interest. Samples were excited at 420 nm, and the emission spectra were recorded. [QB] = 100 μ M.

Figure S6. Changes in the emission spectra of (a) QB1 (50 μ M) (b) QB2 (50 μ M) against different pH (HEPES buffer or TRIS buffer) in DMSO – H₂O (v:v, 40:60) solutions upon addition of Zn(ClO₄)₂ · 6 H₂O (0.75 mM) in water. (c) Emission intensity variations of QB with different pH after addition of Zn²⁺, monitored at 420 nm.