Computational Results

General Information and Methodical Details

As the first and basic aspect, the individual energies of the two types of dimeric aggregation motifs present in (meso)-[(norcamphor oximato)GaMe₂]₂ (1) and [{(meso)-[(norcamphor oximato)InMe₂]₂]_{∞} (2) had to be obtained, being the six-membered $M_2O_2N_2$ and the four-membered M_2O_2 heteroatom ring motif. As the starting points for these calculations, the molecular geometries of the single M₂O₂N₂ and M₂O₂ rings as yielded by the X-ray experiments on (meso)-[(norcamphor oximato)GaMe₂]₂ (1) and $[{(meso)-[(norcamphor oximato)]nMe_2]_2}_2]_{\infty}$ (2) were used. In order to reduce computational complexity and to exclude affections by substituent conformations, the formoximato unit was used as a simplified model of the norcamphor oximato ligand. Since the bicyclo[2.2.1]hept-2-ylidene skeleton does not play any role in 1 or 2 with respect to arguments like steric congestion (as judged from their crystal structures), replacing it by a mere methylene group was considered adequate. Combining these prerequisites, the four basic molecules to be calculated were the dimethylgallium and -indium formoximates $[Me_2M(O-N=CH_2)]_2$ (M = Ga, In), both as a six-membered $(\mu^1 - O, \mu^1 - N)$ -bridged (M₂O₂N₂ motif; molecules **A** and **D**) and a four-membered ($\mu^2 - O$)bridged (M_2O_2 motif; molecules **B** and **E**) cyclic dimer. From the single energy values thus obtained, the energetics of the transformation $M_2O_2N_2 \rightarrow M_2O_2$ [(μ^1 -O, μ^1 -N)- \rightarrow (μ^2 -O)-coordination; Ga: **A** \rightarrow **B**; In: **D** \rightarrow **E**] were at hand for both Ga and In, since this apparently is the initial step in the construction of the polymeric solid-state aggregation motif of **2** from the $In_2O_2N_2$ dimers present in solution.

The second and central issue to be scrutinized was the "dimerisation" of one $M_2O_2N_2$ molecule (Ga: **A**; In: **D**) with one of the type M_2O_2 (Ga: **B**; In: **E**) – thus the formation of the "new" M_2O_2N five-membered ring, or likewise the two "new" dative bonds $(O \rightarrow M' \text{ and } N' \rightarrow M)$. The $M_4O_4N_4$ "tetramers" ([{ $Me_2M[(\mu^1 - O, \mu^1 - N) - (O - N = CH_2)]$ }_2-O]-[{ $Me_2M'[(\mu^2 - O') - (O' - N' = CH_2)$]}_2-N']) obtained in that way (Ga: **C**; In: **F**) represent the minimum unit of a one-dimensional polymeric aggregate as found in the solid state for **2**. The calculations of the compounds **C** and **F** were launched based on the geometry data of **2** as determined by X-ray crystallography. Note that the tricyclic cores of **C** and **F** ($M_4N_4O_4$ motif; fused four-, five- and six-membered rings) were each dealt with as an *isolated molecule in the gas phase*, as is natural in computational chemistry. Therefore, the final geometries yielded cannot fully match the ones of an *aggregated polymer in the condensed phase* (like the In species **2**). Nevertheless, these deviations can be considered as minor enough not to blur the validity of the overall computational approach.

With all six optimisations leading to stably converging molecular structures (Ga: **A** to **C**; In: **D** to **F**), the energy balance between the formation of **C** (or **F**, resp.) and the first-mentioned transformation $\mathbf{A} \rightarrow \mathbf{B}$ (or $\mathbf{D} \rightarrow \mathbf{E}$, resp.) now allowed to quote on the verge of tetracoordination in the present group 13 oximates in a reliable manner. Note that the values for the formation of **C** or **F** have to be included into their balance of concern *twice*, since the {M₄O₄N₄}_∞ motif is of one-dimensional polymeric nature.

All calculations were carried out with the Turbomole program package, version 5.7.^[1] Geometry optimizations were performed at the Density Functional Theory (DFT) level using Turbomole's DFT program deck,^[2] with the PBE0^[3] hybrid functional, default TZVP basis sets^[4] [implying a quasi-relativistic electronic core potential (ECP-46-MWB)^[5] and an additional d-function for the valence orbitals of indium] and a quadrature of m4 quality employed.^[6] Redundant internal coordinates were used for the geometry optimization procedure.^[7] In order to characterize each converged geometry as a local minimum on the Potential Energy Surface (PES), only the three lowest eigenvalues of the hessian were determined by the Lowest Eigenvalue Search (LES) procedure as it is implemented in Turbomoles Aoforce deck.^[8, 9]

Coordinates in Bohr units

 ${Me_2Ga[(\mu^1-O,\mu^1-N)-(O-N=CH_2)]}_2$

(**A**, M₂O₂N₂ motif):

absolute energy: E = -4347.0092690740 hartrees

0.54440849123171	2.46040265614262	-6.04635178859101	С
-0.40401168708582	-0.08676014117012	-3.49630613787486	Ga
2.76815760979201	-0.70521809705440	-1.25450624348791	Ν
2.37438134195763	-1.73721342735331	1.01410325452603	0
0.40580300283597	0.10120660269305	3.49940920786874	Ga
-0.51051481322405	-2.41285157119653	6.09358742015376	С
-1.83625041495165	-3.49926899269088	-3.95758025038732	С
-2.39104263112219	1.71770814997702	-1.00060645350710	0
-2.77905789440121	0.66790572976913	1.26130796919968	Ν
-5.04709094554950	0.41458613137499	2.01499685159922	С
5.03593612954518	-0.50477351876251	-2.02527905204092	С
1.83117704271252	3.52562827254567	3.88692035815124	С
1.45667893638084	4.09007920330964	-5.16752431466184	Н
1.81754754706140	1.68613422593409	-7.47713254376867	Н
-1.14085727518963	3.13918460863288	-7.02757915388070	Н
-1.20491731128835	-4.15204154197234	5.22594719532850	Н
-1.95685379733592	-1.70058587186422	7.38561681706753	Н
1.14252927002309	-2.89376982081130	7.23352626605473	Н
-2.10953116535029	-4.43287108038992	-2.13712997040382	Н
-3.66020905180720	-3.40838308227028	-4.92134984211190	Н
-0.58083297270263	-4.68241881012111	-5.09277441168068	Н
6.59532608235446	-1.09259586850081	-0.82721400931392	Н
5.34252114599731	0.26236096188334	-3.89753943333422	Н
-5.34967958473274	-0.36513607002471	3.88261857496721	Н
-6.61086325341551	0.97122899349733	0.80767293742765	Н
0.87294376884639	4.56696248070420	5.39053107959823	Н
3.83836122483048	3.43454251514899	4.36440189951675	Н
1.62936095076191	4.60012167326043	2.13619599125068	Н

 ${Me_2Ga[(\mu^2-O)-(O-N=CH_2)]}_2$

(**B**, M₂O₂ motif):

absolute energy: E = -4346.9979457670 hartrees

-3.11983028432903	4.06301427861081	-2.39691167785717	С
0.05083744554064	2.84742965218496	-0.89644587777120	Ga
-0.75576468730376	0.61968373635564	2.12288671615823	0
-0.41793779675629	0.99528886525539	4.66615805882070	Ν
-0.67785784584977	3.25706863479204	5.39364277376475	С
3.28093753485360	4.56651566325877	-0.22856153900348	С
-0.04807373376217	-2.84744920533832	0.89703346551625	Ga
3.12918223421157	-4.05317259153830	2.39164464351272	С
0.74928140991462	-0.62039068224449	-2.12511493418178	0
0.41210833589279	-0.99362343026791	-4.66818853547551	Ν
0.66039608934396	-3.25647345448288	-5.39643135836848	С
-3.27421315957683	-4.57747860219883	0.23792690391019	С
3.01777149569148	6.36495954618019	0.74970465906051	Н
4.52273069884720	3.37780444804281	0.91221499510515	Н
4.23653350327241	4.96122532169280	-2.01678248675915	Н
-3.70119131103315	5.86928927309477	-1.58342206176291	Н
-4.63268462019315	2.69373137824473	-2.09352189170566	Н
-2.88555517642064	4.32194476994350	-4.43133382534678	Н
-4.50087083137831	-3.41830373863169	-0.94878040259189	Н
-3.00414075797458	-6.40302408907342	-0.68672636048285	Н
-4.25050242701700	-4.91992919126032	2.02572957313139	Н
3.74248614586301	-5.82935940652628	1.53624265291467	Н
4.62390010295742	-2.65508120780657	2.13339807963287	Н
2.88597743047854	-4.36786754745214	4.41708641620936	Н
0.42297619966001	-3.60350279504671	-7.40056711451185	Н
1.10222269745209	-4.82187399037811	-4.12933732204827	Н
-0.44029796235689	3.60655395470753	7.39736183281147	Н
-1.13009430085823	4.81913297968230	4.12606706196508	Н

 $([{Me_2Ga[(\mu^1-O,\mu^1-N)-(O-N=CH_2)]}_2-O][{Me_2Ga'[(\mu^2-O')-(O'-N'=CH_2)]}_2-N'])$

(**C**, M₄O₄N₄ motif):

absolute energy: E = -8694.0105330520 hartrees

-2.61499751713766	5.04928518902785	-3.71636383283524	С
0.52245025875659	3.35362273872042	-2.58781018942241	Ga
1.95417931661632	2.31726305582272	-6.27724113923521	Ν
0.44360601467529	1.02955843709447	-7.84810770716132	0
-0.70153995867337	-2.30363447033931	-6.94460341759921	Ga
-3.77799049785352	-2.90750111560427	-8.96497148730306	С
3.64496429295857	4.70386561178584	-1.04466830017372	С
-0.11648878374728	-0.29054262840475	-1.84371483028133	0
0.97356971707575	-1.97888538809635	2.08040236591270	Ga
-1.25816590018488	-4.95614658919083	1.78963203255022	С
-1.93955665817648	-1.28755657791169	-3.33778952374372	Ν
-4.13766557951439	-1.56513492666659	-2.42473564475774	С
3.95659220954277	3.25346702245525	-7.21969710509082	С
4.58822906404738	-1.39728330144443	1.42484807786219	С
-0.81106608523742	0.88728286812183	7.25960440822640	Ga
1.38727321723431	3.68211729180282	8.38037166043473	С
-0.93271987018262	1.07785849707666	3.39179151233987	0
-1.45924434797307	3.11315378159175	1.92522757968841	Ν
-2.84927285371858	4.79582820121423	2.91055374650065	С
1.19756723613058	-1.97639042956399	6.20924498638884	0
1.20931970445544	-3.90410262851671	7.94046275015254	Ν
2.65764484685184	-5.72807810788957	7.38953378550506	С
-4.14520376155451	-0.17415825013154	8.53104867059928	С
2.18990029109227	-4.56753557063572	-6.30575481956190	С
5.29011204869565	3.52248604777411	-1.43321334249022	Н
3.44752191037860	4.86142216511501	1.00041779671517	Н
4.01842888659083	6.59866257947470	-1.78408764579755	Н
-1.30615683402560	-5.71350254208122	-0.12860163283254	Н
-3.18899388982325	-4.52545279199619	2.38017997303353	Н
-0.56446658691444	-6.44438927747280	3.04023050697526	Н
5.66378253944460	-3.02736943865811	2.09970623581439	Н

	5.26450012500171	0.26217634746240	2.44512280260783	Н
I	4.97871719981259	-1.15485453265638	-0.58367700743096	Н
I	1.51736949921315	3.71878714414869	10.44080334373506	Н
	3.28892272254602	3.43498852366076	7.61847152657969	Н
	0.68330462047637	5.52404394280541	7.76743266551844	Н
	-5.34555759870748	1.43362196186576	9.01944401496048	Н
	-5.12902033297378	-1.32886737027857	7.13174059059925	Н
	-3.89556757684890	-1.32121242856554	10.22940461481424	Н
	-5.06388122623720	-1.29542566250595	-8.86552753057007	Н
	-4.79083653929520	-4.60159095493369	-8.35443250062163	Н
	-3.27455697055573	-3.17946216254926	-10.94916771259286	Н
	-3.28323147750328	6.42405954212781	1.74794503762530	Н
	-3.61382682059187	4.65724829565273	4.81747107089054	Н
	2.72399413985240	-7.27832746961207	8.72678281971467	Н
	3.81636247818417	-5.77822977656827	5.68778726506811	Н
	4.42955442029819	2.93055967494626	-9.19170085790007	Н
	5.15185778465465	4.37550785346554	-5.99644022562401	Н
	1.55736373983996	-6.43314474001030	-5.68552165609143	Н
	3.30678318853374	-4.82241804806840	-8.02378308927383	Н
	3.42314483231432	-3.78890852172860	-4.84581735832255	Н
	-5.56054792934536	-2.39576271730133	-3.64115073501695	Н
	-4.56868356220536	-0.99622964875840	-0.50190314902492	Н
	-4.30485277129087	4.15787559268540	-2.93533488719608	Н
	-2.61884337459450	7.03001566816675	-3.12713770938510	Н
ſ	-2.75766575482198	4.99742979683637	-5.77373678318031	Н

{Me₂In[(μ^{1} -O, μ^{1} -N)-(O-N=CH₂)]}₂

(**D**, M₂O₂N₂ motif):

absolute energy: E = -501.5677295148 hartrees

)6	350	350	50	;00	00	069	399	97	56	С	;
9	173	73	73	'3´	319	193	336	814	46	lr	า
8	861	861	61	511	118	180	306	667	79	Ν	
53	907	07	07)75	753	53	355	584	46	С)
62	306	806	06)66	362	623	231	169	96	lr	า
'9	900	900	00)07)79	796	968	82′	15	С	;
20	410	10	10	02)2(207)71	199	97	С	;
5	176	76	76	'6´	315	157	579	986	67	С)
50	557	557	57	575	750	507)79	92	54	Ν	1
51	838	38	38	385	35´	511	119	933	39	С	;
)4	992	92	92)2(204	042	120	09	13	С	;
31	251	251	51	513	13′	317	179	956	60	С	;
31	698	698	98)83	331	312	127	762	21	Η	ł
'0	504	504	04)47	47(701)16	619	91	Η	ł
86	788	'88	88	388	386	867	374	424	48	Н	ł
)1	134	34	34	349	49´	918	181	150	06	Н	ł
8	851	851	51	<u>;</u> 11	118	182	320	07	19	Η	ł
6	132	32	32	324	246	466	367	728	80	Η	ł
'4	213	213	13	37	374	74	157	733	38	Н	ł
39	044)44	44	43	439	392)23	369	93	Η	ł
52	987	87	87	375	752	520	207	727	79	Η	ł
94	246	246	46	-69	394	94(100	067	78	Η	ł
)5	776	76	76	'6(305	053	535	554	43	Η	ł
93	269	269	69	;99	993	93′	312	290	07	Η	ł
32	548	548	48	-88	382	82′	215	519	97	Η	ł
67	845	845	45	-56	567	677	777	783	34	Η	ł
99	865	865	65	55	599	998	997	72′	12	Н	ł
28	267	267	67	572	728	28	359	926	68	H	ł

 ${Me_2In[(\mu^2-O)-(O-N=CH_2)]}_2$

(E, M₂O₂ motif):

absolute energy: E = -501.5642448049 hartrees

8	2	.814	914	1972	215	506	-0	893	835	6149	9954	2	С
2		.218	3688	3588	822	644	-0.	313	567	2426	6111	8	In
18	(.183	3808	3169	905	274	2	349	032	9044	4407	0	0
1(-(.101	852	2654	465	557	4	910	812	397 <i>°</i>	1149	1	Ν
9		.914	818	368 ⁻	126	836	6	184	613	427 ⁻	1957	0	С
8	2	.811	864	1948	820	503	0	066	861	7884	4141	0	С
2	-3	.216	6228	3549	971 [,]	400	0	314	259	3963	3036	2	In
79	-4	.793	349	909	583	170	0	886	894	6442	2845	4	С
1	-(.179)722	206	694	054	-2	349	599	7212	2956	9	0
1((.102	2333	374	784	841	-4	912	252	9688	3966	1	Ν
9	-1	.918	3142	292	791 [,]	403	-6	182	087	2346	6449	6	С
8	-4	.852	278	3554	423	745	-0	065	126	017(0932	9	С
0	6	.095	5118	324(071	534	1.	679	217	418 ⁻	1297	4	Н
3	3	.305	5074	1602	241	363	0.	335	200	1459	9246	4	Н
8	Ę	.871	936	6234	410	977	-1.	626	732	5624	4752	1	Н
3	6	.350)483	307(000	094	0	428	766	5137	7219	2	Н
3	3	.360)481	1504	410	168	-0	650	549	154 [·]	1520	2	Н
5	Ę	5.565	620)128	855	210	-2	809	786	057	7329	4	Н
3	-3	.376	6325	597	518	041	-0	412	281	3879	9756	0	Н
1	-6	6.196	<u>979</u>	9779	941	171	-1.	629	825	3472	2075	7	Н
8	-5	.858	3279	9738	819	602	1.	657	239	1464	4911	7	Н
2	-6	6.275	5388	301	543	631	-0	486	147	0318	8455	4	Н
3	-3	.316	6184	1828	849	488	0	713	013	4333	3386	7	Н
6	-5	6.611	879	966	146	081	2	775	815	692	5106	2	Н
7		.734	200)29(684	111	 -8	220	333	9723	3470	2	Н
79	-3	.790	066	612	726	981	-5	328	394	3932	2568	8	Н
72		.728	8653	377:	363	529	8	222	197	4392	2106	4	Н
78	3	.785	5294	1670	667	083	5	334	694	081 [·]	1724	9	Н

 $([\{Me_2ln[(\mu^1-O,\mu^1-N)-(O-N=CH_2)]\}_2-O][\{Me_2ln'[(\mu^2-O')-(O'-N'=CH_2)]\}_2-N'])$

(**F**, M₄O₄N₄ motif):

absolute energy: E = -1003.1537457060 hartrees

-2.76033884051874	5.70542932018942	-3.52939173023808	С
0.47477851814239	3.67995032631438	-2.14597588345848	In
-1.57928256618580	3.05619097904755	2.05518886808575	Ν
-3.07478333871140	4.63270230689039	3.06720281201669	С
2.19298440220980	2.72029881291013	-6.06073332212336	Ν
4.26423946403611	3.66813436981422	-6.83348873138935	С
3.93350652073675	4.77348858961148	-0.32884711291368	С
-0.37450999624767	-0.26016824243910	-1.87415801200048	0
-2.17347505500595	-1.14493697223638	-3.47172152596651	Ν
-4.40395486572003	-1.39774622732141	-2.63166472583282	С
0.76937504192091	1.51977167386119	-7.76793649965988	0
-0.61390680866748	-2.04232338681007	-7.31465667218666	In
2.38385125873174	-4.63685299790731	-6.50536077803708	С
-3.87176625302358	-2.30676931840283	-9.70510039669143	С
0.83464372834824	-2.33749694349745	1.81416595407221	In
1.11033447156186	-2.41587063889295	6.04864267219835	0
1.55332784538622	-4.23683007100438	7.82817475343557	Ν
2.83148020384550	-6.11597581916415	7.07910538039724	С
-1.86707064429186	-5.35252894578390	1.51600559398721	С
4.76993121566560	-1.91641200237852	0.98360970168274	С
-0.73762585904890	0.65710924889997	7.52917530183308	In
-4.41200723061687	-0.38583707326188	8.86571975391864	С
-0.89830282790040	1.02831883959607	3.44082607841022	0
1.87381316906608	3.48742076441950	8.76282766244679	С
5.49681927821715	3.52364668557225	-0.82707657451430	Н
3.72044220160103	4.72663166432500	1.72262394307025	Н
4.45166736010506	6.70244510908910	-0.86008053329818	Н
-2.02692376743755	-6.09953146195248	-0.40125125700493	Н
-3.74155485998469	-4.75129542718123	2.14200071456886	Н
-1.28766163447304	-6.90099314138766	2.75322502744140	Н
5.72774810981023	-3.73984364595961	1.15242939780566	Η

Н	2.31953612432471	-0.61404931148079	5.65049302383667
Н	-0.92893747405852	-1.21158232798860	5.07906312813973
Н	10.60030208713969	2.98095611339003	2.66643712927149
Н	7.41364047683840	3.63853344841322	3.42743978964253
Н	8.94803922238520	5.33976492968748	0.98285331461678
Н	9.51499371097497	1.23515296465356	-5.51253037238277
Н	7.37336132865140	-1.34653412524350	-5.46539160345232
Н	10.44657060269879	-1.69957318151450	-4.22145269572244
Н	-9.59369546454126	-0.56959672102085	-4.98104464412799
Н	-9.19199757684707	-3.89880204372551	-5.08326598883425
Н	-11.67385629596056	-2.56772758419266	-3.30904106555991
Н	1.94614607769718	6.26127849388233	-3.60410403557487
Н	4.96523691194485	4.39128192962653	-3.83870754976423
Н	8.46121615994020	-7.57880120489615	3.20940058444741
Н	5.16025661251031	-6.29812283157483	3.55970660152143
Н	-8.78595092027140	3.44016042506601	4.86128284717984
Н	-5.48136730315630	4.70541120359878	5.39789599077374
Н	-6.30184595337251	-6.56956798072940	1.68967451078455
Н	-8.02270701937197	-4.62053277433232	3.78345391651836
Н	-4.75481505447789	-4.09662885706074	3.33395621038643
Н	-3.92237206385328	-2.12603079646897	-5.81824950096084
Н	-0.69727345424405	-0.90814384109185	-4.88489666422124
Η	-3.19742605888725	4.66064141019467	-4.51125165610202
Η	-2.63352755077915	7.55779796675456	-2.94637459575390
H	-5.56342448682465	6.00284789675448	-2.58336658581018

- [1] R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Letters*, 1989, **162**, 165.
- [2] O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, **102**, 346.
- [3] (a) P. A. M. Dirac, *Proc. Royal Soc. (London)*, 1929, A 123, 714; (b) J. C.
 Slater, *Phys. Rev.*, 1951, 81, 385; (c) J. P. Perdew and Y. Wang, *Phys. Rev.*, 1992, B 45, 13244; (d) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865; (e) J. P. Perdew, M. Ernzerhof and K. Burke, *J. Chem. Phys.*, 1996, 105, 9982.
- [4] A. Schäfer, C. Huber and R. Ahlrichs, *J. Chem. Phys.*, 1994, **100**, 5829.
- [5] A. Bergner, M. Dolg, W. Kuechle, H. Stoll and H. Preuss, *Mol. Phys.*, 1993, 80, 1431.
- [6] K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, 1997, **97**, 119.
- [7] M. v. Arnim and R. Ahlrichs, *J. Chem. Phys.*, 1999, **111**, 9183.
- [8] (a) P. Deglmann, F. Furche and R. Ahlrichs, *J. Chem. Phys.*, 2002, **117**, 9535;
 (b) S. Grimme, F. Furche and R. Ahlrichs, *Chem. Phys. Letters*, 2002, **361**, 321.