Supplementary Information

for

Synthesis and Stuctures of Bimetallic and Polymeric Zinc Coordination Compounds Supported by Salicylaldiminato and Anilido-aldimine Ligands

David J. Doyle, Vernon C. Gibson* and Andrew J. P. White

X-ray crystallography

Crystal data for **2b**: C₃₈H₆₀N₂O₂Zn₂, M = 707.62, orthorhombic, Aba2 (no. 41), a = 18.1320(8), b = 18.8215(7), c = 23.1100(9) Å, V = 7886.8(5) Å³, Z = 8, $D_c = 1.192$ g cm⁻³, μ (Mo-K α) = 1.248 mm⁻¹, T = 173 K, pale yellow plates, Oxford Diffraction Xcalibur 3 diffractometer; 12497 independent measured reflections, F^2 refinement, $R_1 = 0.063$, $wR_2 = 0.149$, 11979 independent observed absorption-corrected reflections $[|F_o| > 4\sigma(|F_o|), 2\theta_{max} = 65^\circ]$, 404 parameters. The structure of **1** was shown to be a partial polar twin by a combination of *R*-factor tests $[R_1^+ = 0.0646, R_1^- = 0.0726]$ and by use of the Flack parameter $[x^+ = +0.260(12), x^- = +0.740(12)]$. CCDC 621015.

Crystal data for **4c**: C₄₅H₆₀N₄Zn₂, M = 787.71, triclinic, $P\overline{1}$ (no. 2), a = 8.9147(5), b = 14.7627(9), c = 16.4967(9) Å, $\alpha = 88.863(6)$, $\beta = 86.406(4)$, $\gamma = 72.948(5)^{\circ}$, V = 2071.5(2) Å³, Z = 2, $D_c = 1.263$ g cm⁻³, μ (Cu-K α) = 1.676 mm⁻¹, T = 173 K, yellow blocks, Oxford Diffraction Xcalibur PX Ultra diffractometer; 7684 independent measured reflections, F^2 refinement, $R_1 = 0.042$, $wR_2 = 0.120$, 6428 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta_{max} = 142^{\circ}$], 469 parameters. CCDC 621016.

The C(37) ethyl ligand in the structure of **2b**, and the C(27) isopropyl moiety in the structure of **4c**, were both found to be disordered. In each case two orientations for the terminal methyl groups were identified with *ca*. 75% and 25% occupancy, respectively; the carbon atom(s) of major occupancy orientations were refined anisotropically, whilst those of the minor occupancy orientations were refined isotropically.

Crystal data for **5c**: C₄₈H₆₆N₄Zn₂, M = 829.79, monoclinic, $P2_1/n$ (no. 14), a = 11.5694(6), b = 13.4841(8), c = 14.3159(7) Å, $\beta = 98.626(4)^\circ$, V = 2208.1(2) Å³, Z = 2 [C_i symmetry], $D_c = 1.248$ g cm⁻³, μ (Mo-K α) = 1.122 mm⁻¹, T = 173 K, yellow blocks, Oxford Diffraction X calibur 3 diffractometer; 7658 independent measured reflections, F^2 refinement, $R_1 = 0.045$, $wR_2 = 0.095$, 3959 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta_{max} = 65^\circ$], 244 parameters. CCDC 621017.

Zn-N(1)	1.9277(16)		Zn-N(7)	1.9906(17)
Zn-C(23)	1.947(2)			
N(1)–Zn–N(7)	94.65(7)		N(1)–Zn–C(23)	139.00(9)
N(7)–Zn–C(23)	126.34(9)			

Table S1.Selected bond lengths (Å) and angles (°) for 5c.

Fig. S1 The asymmetric unit in the structure of 2b (50% probability ellipsoids).

Fig. S2 The environment of the Zn_2O_2 ring in the structure of 2b.

Fig. S3 The molecular structure of **4c** (50% probability ellipsoids).

Fig. S4 The molecular structure of 5c.

Fig. S5 The molecular structure of 5c (50% probability ellipsoids).