Synthesis and Stuctures of Bimetallic and Polymeric Zinc Coordination Compounds Supported by Salicylaldiminato and Anilido-aldimine Ligands

X-ray crystallography

Crystal data for 2b: $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Zn}_{2}, M=707.62$, orthorhombic, $A b a 2$ (no. 41), $a=18.1320(8), b=$ $18.8215(7), c=23.1100(9) \AA, V=7886.8(5) \AA^{3}, Z=8, D_{\mathrm{c}}=1.192 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.248 \mathrm{~mm}^{-1}, T$ $=173 \mathrm{~K}$, pale yellow plates, Oxford Diffraction Xcalibur 3 diffractometer; 12497 independent measured reflections, F^{2} refinement, $R_{1}=0.063, w R_{2}=0.149,11979$ independent observed absorptioncorrected reflections $\left[\left|F_{\mathrm{o}}\right|>4 \sigma\left(\left|F_{\mathrm{o}}\right|\right), 2 \theta_{\max }=65^{\circ}\right], 404$ parameters. The structure of $\mathbf{1}$ was shown to be a partial polar twin by a combination of R-factor tests $\left[R_{1}^{+}=0.0646, R_{1}{ }^{-}=0.0726\right]$ and by use of the Flack parameter $\left[x^{+}=+0.260(12), x^{-}=+0.740(12)\right]$. CCDC 621015.

Crystal data for $\mathbf{4 c}$: $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{Zn}_{2}, M=787.71$, triclinic, $P \overline{1}$ (no. 2), $a=8.9147(5), b=14.7627(9), c=$ $16.4967(9) \AA, \alpha=88.863(6), \beta=86.406(4), \gamma=72.948(5)^{\circ}, V=2071.5(2) \AA^{3}, Z=2, D_{\mathrm{c}}=1.263 \mathrm{~g} \mathrm{~cm}^{-}$ ${ }^{3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=1.676 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}$, yellow blocks, Oxford Diffraction Xcalibur PX Ultra diffractometer; 7684 independent measured reflections, F^{2} refinement, $R_{1}=0.042, w R_{2}=0.120,6428$ independent observed absorption-corrected reflections $\left[\left|F_{\mathrm{o}}\right|>4 \sigma\left(\left|F_{\mathrm{o}}\right|\right), 2 \theta_{\text {max }}=142^{\circ}\right], 469$ parameters. CCDC 621016.

The $\mathrm{C}(37)$ ethyl ligand in the structure of $\mathbf{2 b}$, and the $\mathrm{C}(27)$ isopropyl moiety in the structure of $\mathbf{4 c}$, were both found to be disordered. In each case two orientations for the terminal methyl groups were identified with ca. 75% and 25% occupancy, respectively; the carbon atom(s) of major occupancy orientations were refined anisotropically, whilst those of the minor occupancy orientations were refined isotropically.

Crystal data for 5c: $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{Zn}_{2}, M=829.79$, monoclinic, $P 2_{1} / n$ (no. 14), $a=11.5694(6), b=$ $13.4841(8), c=14.3159(7) \AA, \beta=98.626(4)^{\circ}, V=2208.1(2) \AA^{3}, Z=2$ [C_{i} symmetry], $D_{\mathrm{c}}=1.248 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.122 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}$, yellow blocks, Oxford Diffraction Xcalibur 3 diffractometer; 7658 independent measured reflections, F^{2} refinement, $R_{1}=0.045, w R_{2}=0.095,3959$ independent observed absorption-corrected reflections $\left[\left|F_{\mathrm{o}}\right|>4 \sigma\left(\left|F_{\mathrm{o}}\right|\right), 2 \theta_{\max }=65^{\circ}\right], 244$ parameters. CCDC 621017.

Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{5 c}$.

$\mathrm{Zn}-\mathrm{N}(1)$	$1.9277(16)$	$\mathrm{Zn}-\mathrm{N}(7)$	$1.9906(17)$	
$\mathrm{Zn}-\mathrm{C}(23)$	$1.947(2)$			
$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(7)$	$94.65(7)$		$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{C}(23)$	$139.00(9)$
$\mathrm{N}(7)-\mathrm{Zn}-\mathrm{C}(23)$	$126.34(9)$			

Fig. S1 The asymmetric unit in the structure of $\mathbf{2 b}$ (50% probability ellipsoids).

Fig. S2 The environment of the $\mathrm{Zn}_{2} \mathrm{O}_{2}$ ring in the structure of $\mathbf{2 b}$.

Fig. S3 The molecular structure of $\mathbf{4 c}$ (50% probability ellipsoids).

Fig. S4 The molecular structure of 5c.

Fig. S5 The molecular structure of $\mathbf{5 c}$ (50% probability ellipsoids).

