Supplemental Information for:

"Synthesis, structural studies and reactivity of vanadium complexes with tridentate (OSO)

ligand"

by Zofia Janas, Dorota Wiśniewska, Lucjan B. Jerzykiewicz, Piotr Sobota, Krzysztof Drabent and Krzysztof Szczegot

Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland * Corresponding author: zj@wchuwr.chem.uni.wroc.pl

- 1. Details of the crystal structure determination for 1.4CH₃CN.
- 2. Polymerisation data for **1** and **2**.

Details of the crystal structure determination for 1·4CH₃CN (CCDC 604895)

Symmetry transformations used to generate equivalent atoms: -x, -y+2, -z+1

Table S-1. Crystal data and structure refinement for $C_{60}H_{86}Cl_2N_2O_4S_2V_2$ $(\textbf{1})\cdot 4CH_3CN.$

Compund $C_{60}H_{86}Cl_2N_2O_4S_2V_2$ · 4CH3CN Chemical formula $C_{68}H_{98}Cl_2N_6O_4S_2V_2$ CCDC 604895 1300.44 Formula weight λ (Å) 0.71073 T(K) 100(2)Space group P -1 Crystal system Triclinic Unit cell dimensions a (Å) 8.480(3) b(Å) 14.312(5)с(Å) 15.312(7) $alpha(^{\circ})$ 93.17(3) Beta(°) 93.88(3) gamma (°) 102.56(3)V(Å³) 1805.0(12) Ζ 1 1.196 D_{c} (Mg/m³) 692 F(000) Habit block 0.63 x 0.40 x 0.35 Crystal size (mm) 0.438 μ (mm⁻¹) Empirical (SHELXA) Absorption correction Max. and min. transmission 0.833 and 0.483 Type of diffractometer Kuma KM4 automatic diffractometer Diffraction geometry ω-2θ Theta range ($^{\circ}$) 2.05to 25.08 Number of reflections measured 6873 Number of unique reflections 6402 0.0409 R_(int) Number of observed reflections 4695[I>2σ(I)] Refinement method least-squares on F^2 Number of parameters 392 Final R indices $[I>2\sigma(I)]$ $R_1 = 0.0568$, $wR_2 = 0.1552$ Final R indices (all data) $R_1 = 0.0846$, $wR_2 = 0.1723$ Goodness-of-fit (S) 1.043 Largest diff. peak and hole e.Å $^{\rm -3}$ 0.836 and -1.058 $R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; \quad wR_{2} = \{\Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

1.873(2) $1.999(2)$ $2.163(3)$ $2.3148(12)$ $2.4741(13)$ $1.779(3)$ $1.788(3)$ $1.356(4)$ $1.345(4)$ $1.345(4)$ $1.345(4)$ $1.345(4)$ $1.32(5)$ $1.459(5)$ $1.457(5)$ $1.381(4)$ $1.408(4)$ $1.399(4)$ $1.380(5)$ $1.394(4)$ $1.399(4)$ $1.385(4)$ $1.396(4)$ $1.401(4)$ $1.385(5)$ $1.406(5)$ $1.395(4)$ $1.526(4)$ $1.526(4)$ $1.526(4)$ $1.524(4)$ $1.548(4)$ $1.548(4)$ $1.543(4)$ $1.544(5)$ $1.544(5)$ $1.544(5)$ $1.544(5)$ $1.544(5)$ $1.548(5)$ $1.544(5)$ $1.544(5)$ $1.548(5)$ $1.544(5)$ $1.544(11)$ $1.466(12)$	
96.21(9) 173.34(10)	
80.13(9) 98.05(8) 165.39(7) 85.37(8) 84.69(8) 81.63(7) 89.25(8) 96.51(4) 101.86(13) 94.88(10) 92.49(11)	
	1.873(2) 1.999(2) 2.163(3) 2.3148(12) 2.4741(13) 1.779(3) 1.788(3) 1.356(4) 1.345(4) 1.144(4) 1.32(5) 1.459(5) 1.457(5) 1.381(4) 1.408(4) 1.399(4) 1.380(5) 1.394(4) 1.399(4) 1.385(4) 1.396(4) 1.385(5) 1.406(5) 1.395(4) 1.526(4) 1.526(4) 1.526(4) 1.548(4) 1.548(4) 1.548(4) 1.548(4) 1.543(4) 1.548(4) 1.548(5) 1.548(5) 1.548(5) 1.548(5) 1.548(5) 1.548(6) 1.519(6) 1.524(6) 1.528(6) 1.174(11) 1.466(12) 96.21(9) 173.34(10) 80.13(9) 98.05(8) 165.39(7) 85.37(8) 84.69(8) 81.63(7) 89.25(8) 96.51(4) 101.86(13) 92.8(10) 92.4(1)

Table S-2. Bond lengths [Å] and angles [deg] for $C_{60}H_{86}Cl_2N_2O_4S_2V_2$ $(\textbf{1})\cdot 4CH_3CN.$

C(12) - O(1) - V(1) $C(22) - O(2) - V(1)$ $C(1) - N(1) - V(1)$ $N(1) - C(1) - C(2)$ $N(2) - C(3) - C(4)$ $C(16) - C(11) - S(1)$ $C(12) - C(11) - S(1)$ $C(12) - C(11) - S(1)$ $C(12) - C(11) - C(12) - C(11)$ $C(13) - C(12) - C(11)$ $C(13) - C(12) - C(11)$ $C(14) - C(15) - C(150)$ $C(16) - C(15) - C(150)$ $C(16) - C(15) - C(150)$ $C(26) - C(21) - S(1)$ $O(2) - C(22) - C(23)$ $C(24) - C(22) - C(23)$ $C(24) - C(25) - C(250)$ $C(24) - C(25) - C(153)$ $C(15) - C(150) - C(151)$ $C(153) - C(150) - C(154)$ $C(153) - C(150) - C(154)$ $C(153) - C(150) - C(154)$ $C(151) - C(152) - C(155)$ $C(157) - C(152) - C(151)$ $C(155) - C(250) - C(253)$ $C(254) - C(250) - C(253)$ $C(254) - C(250) - C(251)$ $C(255) - C(250) - C(251)$ $C(255) - C(252) - C(257)$ $C(255) - C(257) - C(257)$ $C(255) - C(257) - C$	121.18(17) 122.27(19) 165.8(3) 178.6(4) 179.4(4) 121.6(3) 120.1(2) 118.3(2) 123.3(3) 119.5(2) 117.2(3) 120.4(3) 122.8(3) 116.7(3) 123.7(3) 123.7(3) 122.3(3) 122.3(3) 122.3(3) 122.3(3) 122.4(2) 117.3(2) 121.2(3) 122.1(3) 122.1(3) 122.1(3) 123.7(3) 122.1(3) 123.7(3) 122.0(3) 112.8(2) 122.5(2) 112.2(2) 106.8(2) 107.0(2) 106.0(2) 122.5(2) 110.2(3) 107.9(3) 107.9(3) 107.9(3) 107.7(3)
C(254) - C(250) - C(251) $C(253) - C(250) - C(251)$ $C(252) - C(251) - C(250)$ $C(255) - C(252) - C(256)$ $C(255) - C(252) - C(257)$ $C(255) - C(252) - C(251)$ $C(256) - C(252) - C(251)$ $C(257) - C(252) - C(251)$ $C(257) - C(252) - C(251)$ $N(3) - C(5) - C(6)$	111.5 (3) 105.8 (3) 124.7 (3) 111.3 (5) 106.7 (4) 107.2 (3) 112.8 (3) 112.5 (3) 106.0 (4) 177.7 (9)

O(2)-V(1)-S(1)-C(11)	110.99(12)
O(1) - V(1) - S(1) - C(11)	13 90(11)
O(1) $V(1)$ $O(1)$ $O(11)$	13.00(11)
N(1) - V(1) - S(1) - C(11)	-66.24(12)
$C_{1}(1) = V_{1}(1) = C_{1}(1) = C_{1}(1)$	-151 (0(10)
$C_{1}(1) = V(1) = S(1) = C(11)$	-101.49(10)
O(2) - V(1) - S(1) - C(21)	8.86(11)
O(1) $U(1)$ $O(1)$ $O(21)$	
O(1) - V(1) - S(1) - C(21)	-88.23(11)
N(1) - V(1) - S(1) - C(21)	-168 37(11)
	100.07(11)
CL(1) - V(1) - S(1) - C(21)	106.38(10)
O(2) = V(1) = O(1) = C(12)	-1019(2)
O(2) $V(1)$ $O(1)$ $O(12)$	104.9(2)
N(1) - V(1) - O(1) - C(12)	69.5(2)
$C_{1}(1) = V_{1}(1) = O(1) = C(12)$	62 1 (2)
CI(I) = V(I) = O(I) = C(IZ)	02.4(3)
S(1)-V(1)-O(1)-C(12)	-21.24(19)
O(1) $T(1)$ $O(2)$ $O(22)$	70 6 (2)
O(1) = V(1) = O(2) = C(22)	/0.0(2)
N(1) - V(1) - O(2) - C(22)	14.3(9)
(1) (1) (1) (2) (2)	100 0 (0)
CT(1) = V(1) = O(2) = O(22)	-106.2(2)
S(1) - V(1) - O(2) - C(22)	-10.4(2)
2(2) $3(2)$ $3(2)$ $2(1)$	
O(2) - V(1) - N(1) - C(1)	4.6(16)
O(1) - V(1) - N(1) - C(1)	-52 5(10)
$C \perp (1) - V (1) - N (1) - C (1)$	125.7(10)
S(1) - V(1) - N(1) - C(1)	29.1(10)
$\mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1)$	20.1(10)
V(1) - N(1) - C(1) - C(2)	10(16)
C(21) = C(11) = C(11) = C(16)	-95 1(3)
C(21) = S(1) = C(11) = C(10)	- 55.4(5)
V(1)-S(1)-C(11)-C(16)	171.0(2)
C(21) = C(1) = C(11) = C(12)	Q1 5 (2)
C(21) = S(1) = C(11) = C(12)	04.3(2)
V(1) - S(1) - C(11) - C(12)	-9.1(2)
$T_{1}(1) = O(1) = O(12)$	160 0(2)
V(1) = O(1) = C(12) = C(13)	-100.0(2)
V(1) - O(1) - C(12) - C(11)	21.7(3)
$\alpha(1\alpha) = \alpha(11) = \alpha(12) = \alpha(1)$	17E 1 (2)
C(10) = C(11) = C(12) = O(1)	1/5.1(3)
S(1) - C(11) - C(12) - O(1)	-4.8(4)
a(1, c) = a(1, 1) + a(1, 0) + a(1, 2)	
C(16) - C(11) - C(12) - C(13)	-3.3(4)
S(1) - C(11) - C(12) - C(13)	176.8(2)
2(1) - 2(12) - 2(12) - 2(14)	
O(1) - C(12) - C(13) - C(14)	-1/3.8(3)
C(11) - C(12) - C(13) - C(14)	4 5 (4)
O(11) O(12) O(10) O(11)	
C(12) - C(13) - C(14) - C(15)	-2.2(5)
C(13) - C(14) - C(15) - C(16)	-15(4)
C(13) - C(14) - C(15) - C(150)	174.9(3)
C(12) - C(11) - C(16) - C(15)	-0.3(4)
S(1) - C(11) - C(16) - C(15)	1/9.6(2)
C(14) - C(15) - C(16) - C(11)	27(4)
C(150) - C(15) - C(16) - C(11)	-1/3.8(3)
C(11) - S(1) - C(21) - C(26)	76 7(2)
(1) (1) (1) (21) (21) (20)	
V(1) - S(1) - C(21) - C(26)	172.2(2)
C(11) - S(1) - C(21) - C(22)	-1038(2)
0(11) 0(1) 0(21) 0(22)	103.0(2)
V(1)-S(1)-C(21)-C(22)	-8.3(2)
V(1) = O(2) = C(22) = C(21)	7 7 (4)
V(1)-O(2)-C(22)-C(23)	-170.9(2)
C(26) - C(21) - C(22) - O(2)	-1776(3)
	±//•0(5)
S(I)-C(2I)-C(22)-O(2)	3.0(4)
C(26) - C(21) - C(22) - C(23)	$1 \ 1 \ (\Lambda)$
	1 · 1 (4)
S(1)-C(21)-C(22)-C(23)	-178.4(2)
O(2) - C(22) - C(23) - C(24)	178 1 (3)
	±/0.±(5)
C(21)-C(22)-C(23)-C(24)	-0.6(4)
C(22) = C(23) = C(24) = C(25)	-0 1 (5)
(22) (23) (23) (23)	-0.1(J)
C(23)-C(24)-C(25)-C(26)	0.4(4)
C(23) = C(24) = C(25) = C(250)	-178 0(3)
	±/0.0(5)
C(22)-C(21)-C(26)-C(25)	-0.8(4)
S(1) = C(21) = C(26) = C(25)	170 6/21
$\Box(\bot) = \Box(\Box \bot) = \Box(\Box \cup) = \Box(\Box \cup)$	エノロ・ロ(乙)

Table S-3. Torsion angles [deg] for $C_{60}H_{86}Cl_2N_2O_4S_2V_2$ (1)·4CH₃CN.

C(24)-C(25)-C(26)-C(21)	0.1(4)
C(250)-C(25)-C(26)-C(21)	178.6(3)
C(14)-C(15)-C(150)-C(153)	1.1(4)
C(16)-C(15)-C(150)-C(153)	177.4(3)
C(14)-C(15)-C(150)-C(151)	128.5(3)
C(16)-C(15)-C(150)-C(151)	-55.2(3)
C(14)-C(15)-C(150)-C(154)	-115.6(3)
C(16)-C(15)-C(150)-C(154)	60.6(3)
C(15)-C(150)-C(151)-C(152)	-72.6(3)
C(153)-C(150)-C(151)-C(152)	54.6(4)
C(154)-C(150)-C(151)-C(152)	171.1(3)
C(150)-C(151)-C(152)-C(157)	48.9(4)
C(150)-C(151)-C(152)-C(156)	-76.8(4)
C(150)-C(151)-C(152)-C(155)	166.8(3)
C(26)-C(25)-C(250)-C(254)	-179.6(3)
C(24)-C(25)-C(250)-C(254)	-1.3(4)
C(26)-C(25)-C(250)-C(253)	-62.3(4)
C(24)-C(25)-C(250)-C(253)	116.0(3)
C(26)-C(25)-C(250)-C(251)	53.9(4)
C(24)-C(25)-C(250)-C(251)	-127.7(3)
C(25)-C(250)-C(251)-C(252)	61.0(4)
C(254)-C(250)-C(251)-C(252)	-65.7(4)
C(253)-C(250)-C(251)-C(252)	178.4(3)
C(250)-C(251)-C(252)-C(255)	-62.5(5)
C(250)-C(251)-C(252)-C(256)	64.3(5)
C(250)-C(251)-C(252)-C(257)	-178.9(3)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(13)-H(13)Cl(1) ⁽ⁱ⁾	0.95	2.79	3.518(4)	134
C(6)-H(6A)O(2) ⁽ⁱⁱ⁾	0.98	2.52	3.429(7)	155

Table S-4. Hydrogen bonds for $C_{60}H_{86}Cl_2N_2O_4S_2V_2$ (1)·4CH₃CN [Å and deg.].

Symmetry transformations used to generate equivalent atoms: $^{(i)}$ -x,-y+2,-z+1; $^{(ii)}$ -x+1,-y+2,-z+1

Table S-5.	Atomic	coordir	nates (x 10 ⁴)	and eq	uivalent	isotropic
displacement	t parame	ters (Å	$A^2 \times 10^3$) for (C ₆₀ H ₈₆ Cl ₂	$N_2O_4S_2V_2$ (1) \cdot 4CH ₃ CN.
U(eq) is de:	fined as	one th	nird of	the tr	ace of	the orth	ogonalized
Uij tensor.							

	х	У	Z	U(eq)
V(1)	1431(1)	9472(1)	5084(1)	12(1)
Cl(1)	3216(1)	9071(1)	6134(1)	21(1)
S(1)	2897(1)	9140(1)	3799(1)	11(1)
0(1)	306(2)	10135(1)	4201(1)	14(1)
0(2)	149(3)	8240(2)	4789(1)	16(1)
N(1)	2972(3)	10898(2)	5266(2)	18(1)
N(2)	4963(4)	1546(2)	8423(2)	32(1)
C(1)	3798(4)	11628(2)	5178(2)	24(1)
C(2)	4842(5)	12554(3)	5045(3)	41(1)
C(3)	3692(4)	1387(2)	8088(2)	23(1)
C(4)	2051(5)	1185(3)	7666(3)	41(1)
C(11)	2211(3)	9990(2)	3151(2)	11(1)
C(12)	997(3)	10424(2)	3460(2)	13(1)
C(13)	538(4)	11126(2)	2962(2)	17(1)
C(14)	1179(4)	11324(2)	2170(2)	16(1)
C(15)	2336(4)	10871(2)	1841(2)	14(1)
C(16)	2865(3)	10209(2)	2366(2)	13(1)
C(21)	1426(3)	8062(2)	3459(2)	13(1)
C(22)	240(4)	7741(2)	4030(2)	15(1)
C(23)	-883(4)	6882(2)	3768(2)	20(1)
C(24)	-812(4)	6387(2)	2974(2)	20(1)
C(25)	374(4)	6718(2)	2396(2)	16(1)
C(26)	1492(4)	7572(2)	2662(2)	14(1)
C(150)	2962(4)	11018(2)	934(2)	14(1)
C(151)	4834(4)	11283(2)	970(2)	15(1)
C(152)	5841(4)	12281(2)	1335(2)	18(1)
C(153)	2190(4)	11734(2)	445(2)	17(1)
C(154)	2430(4)	10036(2)	394(2)	21(1)
C(155)	7607(4)	12164(3)	1458(3)	28(1)
C(156)	5800(4)	13053(2)	679(2)	24(1)
C(157)	5364(4)	12610(2)	2222 (2)	22(1)
C(250)	464(4)	6212(2)	1503(2)	19(1)
C(251)	2164(4)	6017(2)	1380(2)	21(1)
C(252)	3001(4)	5391(3)	1958(3)	30(1)
C(253)	170(5)	6896(3)	792(2)	29(1)
C(254)	-871(4)	5288(2)	1322(2)	24(1)
C(255)	3325 (8)	5785(4)	2911(3)	73(2)
C(256)	2093(6)	4343(3)	1883(4)	62 (2)
C(257)	4653(5)	5426(4)	1605(4)	58(1)
N(3)	7410(12)	14625(5)	4619(6)	130(3)
C(5)	8322(11)	14193(5)	4345(5)	86(2)
C(6)	9408(10)	13631(5)	3981(4)	84(2)

#1 -x,-y+2,-z+1 #2 -x+1,-y+2,-z+1

Table S-6. Anisotropic displacement parameters (Å 2 x 10^3) for $C_{60}H_{86}Cl_2N_2O_4S_2V_2$ (1)-4CH_3CN.

	U11	U22	U33	U23	U13	U12
V(1)	11(1)	14(1)	12(1)	0(1)	-5(1)	7(1)
Cl(1)	17(1)	29(1)	19(1)	6(1)	-6(1)	11(1)
S(1)	11(1)	11(1)	13(1)	1(1)	-5(1)	5(1)
0(1)	12(1)	18(1)	13(1)	-1(1)	-3(1)	8(1)
0(2)	17(1)	16(1)	15(1)	1(1)	0(1)	4(1)
N(1)	16(1)	23(2)	15(1)	-3(1)	-7(1)	7(1)
N(2)	24(2)	38(2)	35(2)	1(1)	-3(1)	9(1)
C(1)	19(2)	24(2)	28(2)	-4(1)	-3(1)	7(2)
C(2)	36(2)	27(2)	56(3)	-6(2)	6(2)	-3(2)
C(3)	26(2)	18(2)	23(2)	0(1)	-1(1)	7(1)
C(4)	29(2)	46(2)	43(2)	-9(2)	-17(2)	8(2)
C(11)	13(1)	9(1)	11(1)	-2(1)	-6(1)	4(1)
C(12)	12(1)	13(1)	13(1)	0(1)	-4(1)	4(1)
C(13)	16(2)	17(2)	21(2)	0(1)	-3(1)	12(1)
C(14)	16(2)	13(1)	20(2)	5(1)	-6(1)	8(1)
C(15)	15(1)	12(1)	14(2)	3(1)	-5(1)	3(1)
C(16)	9(1)	11(1)	19(2)	-1(1)	-4(1)	5(1)
C(21)	10(1)	10(1)	19(2)	0(1)	-6(1)	4(1)
C(22)	17(2)	14(1)	16(2)	1(1)	-4(1)	8(1)
C(23)	18(2)	17(2)	24(2)	4(1)	1(1)	2(1)
C(24)	17(2)	15(2)	26(2)	-1(1)	-4(1)	2(1)
C(25)	15(2)	14(1)	19(2)	0(1)	-4(1)	8(1)
C(26)	15(1)	14(1)	15(1)	3(1)	-3(1)	8(1)
C(150)	15(2)	14(2)	15(2)	2(1)	-4(1)	8(1)
C(151)	17(2)	14(1)	17(2)	4(1)	-1(1)	8(1)
C(152)	15(2)	15(2)	24(2)	5(1)	-5(1)	4(1)
C(153)	19(2)	20(2)	15(2)	5(1)	-4(1)	$\perp 0(\perp)$
C(154)	22(2)	16(2)	22(2)	-2(1)	-7/(1)	4(1)
C(155)	15(2)	30(2)	39(2)	5(2)	-6(1)	4(1)
C(156)	22(2)	16(2)	31(2)	9(1)	-4(1)	$-\perp(\perp)$
C(157)	25(2)	1/(2)	22(2)	-2(1)	-8(1)	4(1)
C(250)	20(2)	16(2)	21(2)	$-\perp(\perp)$	-6(1)	5(1)
C(251)	ZZ(Z)	18(2)	$Z \perp (Z)$	- 5 (1) E (2)	$\angle (\perp)$	3(1) 1E(2)
C(252)	28 (2) 44 (2)	24(2)	39(2)	-5(2)	-4(2)	15(2)
C(253)	44 (Z) 22 (2)	$\angle / (\angle)$	10(2)	-1(1)	-9(2)	$\pm 4(\angle)$
C(255)	22 (2) 106 (5)	23(Z) 91(4)	20 (Z) AA (2)	- > (⊥) _13 (2)	-4(1) -32(2)	(L) C (N) CQ
C(255)	12(3)	ジエ(4) 30(2)	44(J) 116(5)	-13(3)	-32(3)	00(4) 15(2)
C(250)	42(J) 21(2)	$J \cup (Z)$		∠∠ ()) _2 (2)	-10(3)	⊥J (∠) 17 (2)
U(2)	J⊥(Z) 153/0)	40(S) 71(A)	ジン(4) 165(0)	-2(3)	エ (<i>∠</i>) 5 / (6)	エ / (乙)
C(5)	109(6)	/ ± (4) 62 (1)	100(0) 72(A)	42 (D) 22 (R)	-10(4)	-1/(4)
C(5)	114(6)	66 (4)	12(4) 65(1)	20(3)	-12(4)	+(+) 3 (A)
C(0)	TTJ (0)	00(4)	00(4)	20(3)	12(4)	J(F)

``The anisotropic temperature factors are expressed as: $exp[-2\pi^{2}(U_{11}h^{2}a^{*2} + U_{22}k^{2}b^{*2} + U_{33}l^{2}c^{*2} + 2U_{12}hka^{*}b^{*} + 2U_{23}klb^{*}c^{*} + 2U_{13}hla^{*}c^{*})].$

Tables of polymerisation data for 1-and 2.

Tabela S-7.	Ethene Polymerizsation Catalyzed by 1-Cocatalyst System Depending on
	Temperature ^a

Run no.	Cocatalyst.	[V]	Al:V	Activity	d _n ,	$M_{\rm w}/M_{\rm n}$	Т
		mmol/dm ³		kgPE/molVh	g/dm ³		Κ
1	Al(i-Bu) ₃	0,01	1000	1516	145	3,11	293
2	Al(i-Bu) ₃	0,01	1000	2994	138	2,68	303
3	Al(i-Bu) ₃	0,01	1000	6320	130	3,32	313
4	Al(i-Bu) ₃	0,01	1000	10624	133	3,47	323
5	Al(i-Bu) ₃	0,01	1000	9236	128	3,75	333
6	Al(i-Bu) ₃	0,01	1000	4288	116	4,16	343

^a Polymerisation conditions: $P_{ethene} = 0,5$ MPa, time = 30 min, $V_{hexane} = 1$ L

Tabela S-8. Ethene Polymerisation Catalyzed by **2-**Cocatalyst System Depending on Temperature^a

Run no.	Cocatalyst	[V]	Al:V	Activity	d _n ,	$M_{\rm w}/M_{\rm n}$	T _p
		mmol/dm ³		kgPE/molVh	g/dm ³		K
1	Al(i-Bu) ₃	0,01	1000	974	123	3,22	293
2	Al(i-Bu) ₃	0,01	1000	1590	134	3,17	303
3	Al(i-Bu) ₃	0,01	1000	2416	129	3,51	313
4	Al(i-Bu) ₃	0,01	1000	3068	133	3,74	323
5	Al(i-Bu) ₃	0,01	1000	3632	125	3,65	333
6	Al(i-Bu) ₃	0,01	1000	2906	127	3,98	343

^a Polymerisation conditions: $P_{ethene} = 0.5$ MPa, time = 30 min, $V_{hexane} = 1$ L