Supplementary data - 1 -

The binding of phosphonic acids at aluminium oxide surfaces and correlation with passivation of aluminium flake

Rachel J. Cooper^a, Philip Camp^a, David K. Henderson^a, Paul A. Lovatt^a, David A. Nation^a, Stuart Richards^b and Peter A. Tasker^a*

^aSchool of Chemistry, The University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, Edinburgh, UK EH9 3JJ. E-mail: p.a.tasker@ed.ac.uk; Fax: +44 131 6506453; Tel: +44 131 6504706 ^bResearch Centre, Noveon, Blacklev, Manchester, UK M9 3ZS.

Contents

1	T:41
1	The page
2	Data for Figure 3 – isotherms of $1, 3, 4$ and 7
3	Data for Figure 4 – isotherms of 9 and 10
4	Data for Figure 5 – isotherms of 9 (with and without pH adjustment)
5-7	Calculations and discussion associated with Figure 5 and Table 4
8	Data for Figure 6 – isotherms of 1, 5 and 8
9	Data for Figure 7 – isotherms of 5 and 6 (plotted on logarithmic scale)
10	Data for isotherms of compounds 1 and 2
11	Data for Figure 8 – hydrogen evolution test results for the control, 5, 14 and 15
12-13	Data for Figure 9 – hydrogen evolution test results for 1, 2, 3, 5 and 8
14	Data for Figure 11 – hydrogen evolution test results for 4 and 7
15-16	Data for Figure 12 – hydrogen evolution test results for 9, 10, 11, 12 and 13
17-18	Data for Figure 13 – hydrogen evolution test results for 10 and commercial samples A and B
19	Data for hydrogen evolution test of compound 6
20	References

Supplementary data - 2 -

Data for Figure 3 – isotherms of 1, 3, 4 and 7 (pH 8.5, 25 $^{\circ}$ C)

Comp	ound 1	Comp	ound 3	Comp	ound 4	Comp	ound 7
Residual	Amount	Residual	Amount	Residual	Amount	Residual	Amount
concentration	adsorbed	concentration	adsorbed	concentration	adsorbed	concentration	adsorbed
(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)
3.03E-06	1.61E-07	3.03E-06	1.78E-07	4.32E-06	1.43E-07	3.03E-06	1.74E-07
9.16E-06	4.76E-07	1.14E-05	4.78E-07	1.05E-05	4.92E-07	9.36E-06	5.19E-07
1.86E-05	7.12E-07	2.32E-05	6.98E-07	1.99E-05	7.47E-07	1.90E-05	7.78E-07
4.09E-05	1.34E-06	5.06E-05	1.18E-06	4.66E-05	1.08E-06	4.19E-05	1.33E-06
1.12E-04	1.91E-06	1.26E-04	1.75E-06	1.21E-04	1.49E-06	1.11E-04	1.99E-06
2.74E-04	2.60E-06	2.16E-04	1.97E-06	1.98E-04	1.81E-06	1.91E-04	2.36E-06
3.52E-04	3.01E-06	3.07E-04	2.17E-06	2.74E-04	2.17E-06	2.67E-04	2.82E-06
7.77E-04	4.16E-06	4.00E-04	2.30E-06	3.55E-04	2.42E-06	3.58E-04	3.62E-06
1.21E-03	5.27E-06	3.97E-04	2.35E-06	7.83E-04	4.51E-06	8.06E-04	5.04E-06
1.66E-03	5.88E-06	8.60E-04	3.08E-06	1.22E-03	5.52E-06	1.26E-03	6.30E-06
2.11E-03	6.34E-06	1.34E-03	3.44E-06	1.66E-03	6.64E-06	1.72E-03	7.49E-06
2.58E-03	6.54E-06	2.04E-03	4.36E-06	2.12E-03	7.17E-06	2.69E-03	8.38E-06
3.05E-03	6.64E-06	2.52E-03	4.61E-06	2.58E-03	7.83E-06	3.21E-03	8.16E-06
3.52E-03	6.66E-06	2.77E-03	4.51E-06	3.06E-03	7.89E-06	3.68E-03	9.01E-06
-	-	-	-	3.55E-03	7.72E-06	4.18E-03	9.03E-06

Supplementary data - 3 -

-	-	-	-	4.04E-03	7.49E-06	4.68E-03	9.05E-06
-	-	-	-	4.52E-03	7.54E-06	-	-

Data for Figure 4 – isotherms of 9 and 10 (pH 8.5, 25 $^{\circ}$ C)

Comp	ound 9	Compound 10		
Residual	Amount	Residual	Amount	
concentration	adsorbed	concentration	adsorbed	
(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)	
3.19E-06	1.92E-07	3.45E-06	1.70E-07	
9.84E-06	5.66E-07	1.00E-05	5.23E-07	
1.98E-05	8.72E-07	1.86E-05	8.13E-07	
5.08E-05	1.46E-06	4.25E-05	1.50E-06	
1.28E-04	2.28E-06	1.08E-04	2.44E-06	
2.20E-04	2.69E-06	1.86E-04	3.05E-06	
3.17E-04	3.04E-06	2.67E-04	3.60E-06	
4.21E-04	3.14E-06	3.51E-04	4.10E-06	
9.44E-04	3.78E-06	7.88E-04	6.02E-06	
1.46E-03	4.60E-06	1.26E-03	7.21E-06	
2.02E-03	4.44E-06	1.77E-03	7.31E-06	
2.55E-03	4.88E-06	2.27E-03	7.56E-06	

Supplementary data - 4 -

3.11E-03	4.56E-06	2.80E-03	7.25E-06
-	-	3.28E-03	7.99E-06

Data for Figure 5 – isotherms of 9 (with and without pH adjustment), pH 8.5 and pH 3.0, 25 $^{\circ}$ C

Comp	ound 9	Compound 9 (without pH adjustment)		
Residual	Amount	Residual	Amount	
concentration	adsorbed	concentration	adsorbed	
(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)	
3.19E-06	1.92E-07	2.16E-06	2.06E-07	
9.84E-06	5.66E-07	6.13E-06	6.27E-07	
1.98E-05	8.72E-07	1.01E-05	1.04E-06	
5.08E-05	1.46E-06	2.04E-05	2.08E-06	
1.28E-04	2.28E-06	4.63E-05	4.04E-06	
2.20E-04	2.69E-06	8.43E-05	5.69E-06	
3.17E-04	3.04E-06	1.26E-04	7.17E-06	
4.21E-04	3.14E-06	1.75E-04	8.56E-06	
9.44E-04	3.78E-06	4.51E-04	1.48E-05	
1.46E-03	4.60E-06	8.76E-04	1.71E-05	
2.02E-03	4.44E-06	1.39E-03	1.75E-05	
2.55E-03	4.88E-06	1.90E-03	1.76E-05	
3.11E-03	4.56E-06	2.41E-03	1.82E-05	
-	-	2.97E-03	1.70E-05	
-	-	3.45E-03	1.83E-05	

Supplementary data - 5 -

Calculations and discussion associated with Figure 5 and Table 4

If ligands are close packed on the surface, the theoretical area of each molecule can be estimated by assuming initially that the nuclei of the oxygen atoms of the head group $(PO_3^{2-} \text{ or } PO_3H^{-})$ lie on the circumference of a circle radius, r. Allowance will then need to be made for the van der Waals radii of the deprotonated oxygen atoms or likely contact radius for oxygen atoms forming H-bonds (Figure A).

Figure A Schematic representation of the arrangement of hexagonal close packed PO₃²⁻ or PO₃H⁻ units. In practice the radius of the packed disc will depend on the van der Waals radii of anionic and protonated O-atoms.

The radius of this disc (r in *a*, Figure B) can be calculated using trigonometry. The length of a P-O bond can be taken to be 1.57 Å.^{1, 2} Using the *sine* rule, the O^{……}O distance (see *b* in Figure B) is $2(1.57 \sin 109.5^{\circ}/2) = 2.56$ Å.

Figure B Using trigonometry to calculate the radius of a *disc* (C_e is the centroid).

The radius defined by the nuclei of the oxygen atoms (*c* in Figure B) is $(2.56/2)/\sin 60^\circ = 1.48$ Å. The diameter of the PO₃²⁻ disc is defined as twice the distance from the centroid (C_e) to the nucleus of an O atom, *plus* the van der Waals radius of oxygen, 1.40 Å,³ see Figure C, i.e. 2(r + r_{vdw}) = 2(1.48 + 1.40) = 5.76 Å.

Figure C Schematic representation of the radius of a PO_3^{2-} disc.

Supplementary data - 6 -

Supplementary data - 7 -

For primitive packing of $PO_3^{2^2}$ as in Figure D, the area of the surface required per molecule is equal to the diameter of the disc squared, because each square shown contains four quarters of a molecule. Hence the area required per molecule is $5.76^2 = 33.2 \text{ Å}^2$.

Figure D Schematic illustration of the arrangement of primitive close packing.

For hexagonal close-packing (Figure A), the surface area required per molecule is equal to twice the area of the equilateral triangle shown $[(\frac{1}{2} \times 5.76) \times 1/6 \times$

These theoretical areas can be compared with those determined experimentally by adsorption isotherms. The specific surface area for the ATH was determined by BET methods⁴ to be 6.0 m² g⁻¹. If the isotherm for **9** (without pH adjustment prior to analysis, *ca.* pH 3.0) is fitted by the Langmuir equation, the uptake is $20.0 (\pm 0.4) \times 10^{-6} \text{ mol g}^{-1}$.

As one gram of ATH has a surface area of 6.0 m² the saturation surface coverage = 20.0 (± 0.4) x $10^{-6} / 6.0 = 3.33 (\pm 0.07) x 10^{-6} g m^2$. Multiplication by Avogadro's number gives 3.33 (± 0.07) x (6.02 x 10^{17}) = 20.1 (± 0.4) x 10^{17} molecules m⁻² or 20.1 (± 0.4) x $10^{17} / 10^{20}$ = 20.1 (± 0.4) x 10^{-3} molecules Å⁻². Thus the area occupied by a single molecule = 1 / 20.1 (± 0.4) x 10^{-3} = 48 (± 5) Å².

For the isotherm determined with solutions made up to pH 8.5, the observed surface coverage is significantly smaller, $5.1 (\pm 0.3) \times 10^{-6} \text{ mol g}^{-1}$ (Table 3), and consequently the apparent area per adsorbed molecule is larger, $195 (\pm 9) \text{ Å}^2$.

For 'primitive packing', the surface occupancy is defined by the area of the square shown in Figure D, the sides of which are 2 x radius of the touching discs. Consequently, the diameter of the discs is $\sqrt{48} (\pm 5) = 6.9 (\pm 0.4)$ Å for uptake at pH 3.0 and 14.0 (± 0.4) Å at pH 8.5. For hexagonal close packing of the disc-shaped head groups (see Figure A), on average a molecule requires twice the area of the triangle shown.

Supplementary data - 8 -

Thus, for saturation at pH 3.0 the area of the triangle = 48 (± 5) / 2 = 24 (± 2.5) Å². As the area of the triangle = ½ x base x height = ½ x 2r x 2r sin60° = 1.73 r², r = $\sqrt{[24 (\pm 2.5)/1.73]} = 2.83 (\pm 0.2)$ and the diameter = 7.4 (± 0.4) Å. For the uptake at pH 8.5 the diameter of the disc representing the head group is 15.0 (± 0.4) Å.

Data for Figure 6 – isotherms of 1, 5 and 8 (pH 8.5, 25 $^{\circ}$ C)

Comp	ound 1	Comp	ound 5	Comp	ound 8
Residual concentration	Amount adsorbed	Residual concentration	Amount adsorbed	Residual concentration	Amount adsorbed

Supplementary data - 9 -

(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)
3.03E-06	1.61E-07	2.58E-07	2.46E-07	4.10E-06	1.63E-07
9.16E-06	4.76E-07	6.45E-07	7.42E-07	1.27E-05	4.85E-07
1.86E-05	7.12E-07	1.23E-06	1.24E-06	2.55E-05	6.98E-07
4.09E-05	1.34E-06	1.07E-05	2.27E-06	5.67E-05	1.25E-06
1.12E-04	1.91E-06	9.31E-05	2.78E-06	1.50E-04	1.63E-06
2.74E-04	2.60E-06	1.94E-04	2.79E-06	2.51E-04	1.80E-06
3.52E-04	3.01E-06	3.94E-04	2.95E-06	3.54E-04	1.88E-06
7.77E-04	4.16E-06	9.17E-04	2.69E-06	4.56E-04	2.02E-06
1.21E-03	5.27E-06	1.41E-03	3.17E-06	9.87E-04	2.19E-06
1.66E-03	5.88E-06	1.93E-03	2.98E-06	1.52E-03	2.17E-06
2.11E-03	6.34E-06	2.44E-03	3.16E-06	2.04E-03	2.80E-06
2.58E-03	6.54E-06	2.93E-03	3.51E-06	2.58E-03	2.74E-06
3.05E-03	6.64E-06	3.45E-03	3.50E-06	3.11E-03	2.97E-06
3.52E-03	6.66E-06	3.95E-03	3.66E-06	3.66E-03	2.70E-06
-	-	-	-	4.18E-03	3.24E-06

Data for Figure 7 – isotherms of 5 and 6 (right graph plotted on a logarithmic scale), pH 8.5, 25 $^{\circ}$ C

Supplementary data - 10 -

Residual	Residual Amount		Amount
concentration	adsorbed	concentration	adsorbed
(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)
2.58E-07	2.46E-07	1.29E-07	2.60E-07
6.45E-07	7.42E-07	2.90E-07	7.77E-07
1.23E-06	1.24E-06	3.55E-07	1.30E-06
1.07E-05	2.27E-06	6.36E-06	2.45E-06
9.31E-05	2.78E-06	9.01E-05	2.99E-06
1.94E-04	2.79E-06	1.89E-04	3.15E-06
3.94E-04	2.95E-06	3.86E-04	3.51E-06
9.17E-04	2.69E-06	8.91E-04	4.06E-06
1.41E-03	3.17E-06	1.38E-03	5.03E-06
1.93E-03	2.98E-06	2.41E-03	5.45E-06
2.44E-03	3.16E-06	2.95E-03	5.30E-06
2.93E-03	3.51E-06	3.46E-03	5.65E-06
3.45E-03	3.50E-06	3.98E-03	5.83E-06
3.95E-03	3.66E-06	-	-

Data for isotherms of compounds 1 and 2 (pH 8.5, 25 °C)

Compound 1 Compound 2

Supplementary data - 11 -

Residual	Amount	Residual	Amount
concentration	adsorbed	concentration	adsorbed
(mol dm ⁻³)	(mol g ⁻¹)	(mol dm ⁻³)	(mol g ⁻¹)
3.03E-06	1.61E-07	4.57E-05	1.16E-06
9.16E-06	4.76E-07	1.15E-04	1.72E-06
1.86E-05	7.12E-07	1.80E-04	2.14E-06
4.09E-05	1.34E-06	2.70E-04	2.45E-06
1.12E-04	1.91E-06	3.57E-04	2.62E-06
2.74E-04	2.60E-06	7.99E-04	4.57E-06
3.52E-04	3.01E-06	1.27E-03	5.20E-06
7.77E-04	4.16E-06	1.74E-03	5.55E-06
1.21E-03	5.27E-06	2.22E-03	5.82E-06
1.66E-03	5.88E-06	2.70E-03	6.15E-06
2.11E-03	6.34E-06	3.20E-03	5.99E-06
2.58E-03	6.54E-06	-	-
3.05E-03	6.64E-06	-	-
3 52E-03	6 66E-06	_	_

Data for Figure 8 – hydrogen evolution test results for the control, 5, 14 and 15 (pH 8, 52 °C)

Supplementary data - 12 -

Control (no	passivator)	Comp	ound 5	Compo	ound 14	Compo	ound 15
Time (mins)	Hydrogen volume (ml)						
0	0	0	0	0	0	0	0
38	14	35	2	15	1	30	0
41	17.5	41	4	50	2	45	0
43	23	50	8.5	60	12	150	9.5
45	27	63	12	80	42.5	160	15
49	37	76	18	85	54	175	23
51	46.5	83	21.5	90	65	180	26.5
53	49.5	92	26	92	72	185	31
55	55	112	37	93	74	205	49
57	62.5	130	46	94	76	210	54
59	69	154	58	95	80	215	61
61	75	172	66	-	-	220	66
64	80	183	71	-	-	225	72
-	-	195	76.5	-	-	230	76
-	-	200	80	-	-	235	80

Data for Figure 9 – hydrogen evolution test results for 1, 2, 3, 5 and 8 (pH 8, 52 °C)

Supplementary data - 13 -

	Compo	ound 1		Comp	ound 2	Compound 3		Compound 5		Compound 8	
Time	H ₂ volume	Time	H ₂ volume	Time	H ₂ volume	Time	H ₂ volume	Time	H ₂ volume	Time	H ₂ volume
(mins)	(ml)	(mins)	(ml)	(mins)	(ml)	(mins)	(ml)	(mins)	(ml)	(mins)	(ml)
0	0	22.5	14	0	0	0	0	0	0	0	0
0.5	0	23	14	0.5	0	0.5	0	0.58	2	0.5	0
1	0	23.5	14	1	0	1	0	0.66	4	1	0
1.5	0	24	14	2	0	1.5	0	0.83	8.5	1.5	0
2	0	24.5	14	3	0	2	0	1	12	2	0
2.5	0	25	14	3.5	0	2.5	0	1.2	18	2.5	2
3	0	25.5	14	4.75	0	3	0	1.33	21.5	3	3
3.5	0	26	14	5.5	0	3.5	0	1.5	26	3.5	3.5
4	0	26.5	14	6	0	4	0	1.83	37	4	4
4.5	0	27	14	20	0	4.5	1.5	2.16	46	4.5	4
5	0	27.5	15	21.5	0	5	1.5	2.5	58	5	4
5.25	1	28	15	22	0	5.5	2.5	2.83	66	5.5	4.5
5.5	1	28.75	17	23	0	6	2.5	3	71	6	5
6	1	29	18	24	0	6.5	3	3.2	76.5	6.5	5
6.5	1	29.75	20	24.75	0	7	3	3.35	80	7	5.25
	Compo	ound 1		Comp	ound 2	Comp	bound 3	Comp	ound 5	Comp	ound 8

Supplementary data - 14 -

Time	H ₂ volume										
(mins)	(ml)										
7	1	30	22	25.5	0	7.5	3	-	-	7.5	6
7.5	3	30.5	25	26.25	0	8	3	-	-	8	7
8	3	31	29	26.5	0	8.5	3	-	-	8.5	7
8.5	3	31.25	35	27.25	0	9	3.5	-	-	9	8
9	3.5	31.75	40	28	0	9.5	3.5	-	-	9.5	9.5
9.5	3.5	32	44	28.5	0	10	4	-	-	10	10
10	3.5	33	58	44.5	5	10.5	4.5	-	-	10.5	11
10.5	3.5	34	76.5	45.5	6	11	5	-	-	11	12.5
11	4.5	34.25	80	46.5	6.5	11.5	5.5	-	-	11.5	13.5
11.5	6.5	-	-	48	11.5	12	6.5	-	-	12	14
12	7	-	-	49.5	16	12.5	7	-	-	12.5	15
12.5	7	-	-	51	24	13	9	-	-	13	16.5
13	7	-	-	52.5	30	13.5	10	-	-	13.5	18.5
13.5	7	-	-	53.75	40	14	12	-	-	14	20.5
14	7	-	-	54.5	45	14.5	14	-	-	14.5	22
14.5	7	-	-	54.75	45	15	15	-	-	15	23.5
15	8.5	-	-	57	80	15.5	18	-	-	15.5	25
15.5	9.25	-	-	-	-	16	20.5	-	-	16	27
16	9.5	-	-	-	-	16.5	24	-	-	16.5	29
16.5	9.75	-	-	-	-	17	29.5	-	-	17	32
17	10	-	-	-	-	17.5	34.5	-	-	17.5	34
17.5	10	-	-	-	-	18	43	-	-	18	36
18	10	-	-	-	-	18.5	52.5	-	-	18.5	40
18.5	11.5	-	-	-	-	18.8	60	-	-	18.8	42
18.8	12	-	-	-	-	19	63.5	-	-	19	43.5
19	12	-	-	-	-	19.5	74.5	-	-	19.5	46
19.5	13	-	-	-	-	19.75	80	-	-	19.75	47.5
19.75	13	-	-	I	-	-	-	-	-	20	50
20	13	-	-	-	-	-	-	-	-	20.25	52
20.25	13	-	-	-	-	-	-	-	-	20.5	55
20.5	13	-	-	-	-	-	-	-	-	21	57
21	13	-	-	-	-	-	-	-	-	21.5	66.5
21.5	13.5	-	-	-	-	-	-	-	-	22	73
22	14	-	-	-	-	-	-	-	-	22.5	80

Data for Figure 11 – hydrogen evolution test results for 4 and 7 (pH 8, 52 $^{\circ}$ C)

Supplementary data - 15 -

Time	(hrs)

	Comp	ound 4		Compound 7				
Time (mins)	Hydrogen							
	volume (ml)		volume (ml)		volume (ml)		volume (ml)	
0	0	94	78	0	0	142.5	38.5	
1.25	0	96.25	80	1	0	147	40.5	
4.5	0	-	-	1.5	0	165.75	48	
20.75	10	-	-	2	0	171.5	51.5	
21.75	12.5	-	-	5.5	0	176	53	
27.25	34.5	-	-	10.5	0	188.5	57.5	
31.5	40	-	-	25.25	0	190.5	59	
46	50	-	-	73	9	192.75	60.5	
50.5	54	-	-	77.75	10	196.25	61	
52	57	-	-	92.5	17.5	215	65.5	
54	59.5	-	-	96.75	22	260.5	73	
69.25	64	-	-	101	24.5	268.75	75.5	
75	68	-	-	117.25	31.5	285	80	
79.5	70	-	-	123.75	32.5	-	-	
92	77	-	-	128	33	-	-	

Supplementary data - 16 -

Data for Figure 12 – hydrogen evolution test results for 9, 10, 11, 12 and 13 (pH 8, 52 °C)

Compo	ound 9	Compo	ound 10	Compo	und 11	Compo	ound 12	Compo	ound 13
Time (mins)	Hydrogen	Time (mins)	Hydrogen	Time (mins)	Hydrogen	Time (mins)	Hydrogen	Time (mins)	Hydrogen
	volume (ml)		volume (ml)		volume (ml)		volume (ml)		volume (ml)
0	0	0	0	0	0	0	0	0	0
1	0	0.5	0	0.5	0	0.5	0	1.25	0
6.5	0	1	0	1	0	1	0	2	0
22	4	1.5	0	1.5	0	1.5	0	5.5	0
24	4.75	2	0	2	0	2	0	7	0
25	5	16.75	0	16.75	0	16.75	0	21.5	0
26	7	18.5	0	18.5	0	18.5	0	27.5	0
28.5	9.75	21.5	0	21.5	0	21.5	0	119.5	4.75
31.25	17	27	0	27	0	27	0	125	6
33	25	40.75	0	40.75	0	40.75	0	131	7.5
33.25	26	44.5	0	44.5	0	44.5	0	143	9.75
33.5	28	49.5	1	49.5	1	49.5	1	148.5	10
33.75	29	64.75	1	64.75	1.5	64.75	2.5	156	10

Supplementary data - 17 -

34	30	69	1	69	1.5	69	2.5	189.5	10
Comp	ound 9	Compound 10		Compo	ound 11	Compo	ound 12	Compo	ound 13
Time (mins)	Hydrogen	Time (mins)	Hydrogen						
	volume (ml)		volume (ml)		volume (ml)		volume (ml)		volume (ml)
34.25	32	72.5	1	72.5	1.5	72.5	2.5	334.5	10
35.25	38.5	88.5	1	88.5	1.5	88.5	2.5	430.5	10
35.5	40	144	1	144	1.5	144	2.5	501.5	10
35.75	42.5	164.75	4	164.75	4	164.75	5.5	549.5	10
36.5	45.5	209	4	209	4	209	5.5	-	-
37	50	217.75	4	217.75	4	217.75	7.5	-	-
37.5	54.5	361.5	4.5	361.5	6.5	361.5	10	-	-
38.25	59.5	400.5	4.75	400.5	7	400.5	11.5	-	-
38.5	62	424.5	4.75	424.5	7	424.5	11.5	-	-
39	70	452	4.75	452	7	452	11.5	-	-
39.5	74.75	521	4.75	521	7	521	11.5	-	-
40	80	545.5	4.75	545.5	7	545.5	11.5	-	-

Supplementary data - 18 -

Compo	ound 10	Sam	ole A	Sample B		
Time (mins)	Hydrogen volume (ml)	Time (mins)	Hydrogen volume (ml)	Time (mins)	Hydrogen volume (ml)	
0	0	0	0	0	0	
0.5	0	0.25	0	0.25	0	
1	0	0.267	1	1	0	
1.5	0	0.33	2.5	1.75	0	
2	0	0.42	7	2.25	0	
16.75	0	0.5	15	3.25	0	
18.5	0	0.633	32	17.5	1	
21.5	0	0.667	41.5	18.5	1	
27	0	0.75	52	21	1	
40.75	0	0.83	73	65.5	3.5	
44.5	0	0.85	78	89.5	4	
49.5	1	0.858	80	93	4	
64.75	1	-	-	94.75	4	

Supplementary data - 19 -

69	1	-	-	97.75	4
72.5	1	-	-	113.75	4
Compo	ound 10	Sam	ple A	Sam	ole B
Time (mins)	Hydrogen	Time (mins)	Hydrogen	Time (mins)	Hydrogen
	volume (ml)		volume (ml)		volume (ml)
88.5	1	-	-	119.25	4
144	1	-	-	120.25	4.5
164.75	4	-	-	120.75	4.5
209	4	-	-	137	5
217.75	4	-	-	139.25	5
361.5	4.5	-	-	140.75	5
400.5	4.75	-	-	144	5
424.5	4.75	-	-	168	5
452	4.75	-	-	185	5
521	4.75	-	-	209.5	5
545.5	4.75	-	-	241	5
-	-	-	-	256.5	5
-	-	-	-	266.5	5
-	-	-	-	285	6
-	-	-	-	288.25	6
-	-	-	-	305	6
-	-	-	-	332	6
-	-	-	-	425.5	6
-	-	-	-	449.5	6
-	-	-	-	473.5	6
-	-	-	-	497.5	7.5
-	-	-	-	545.5	7.5

Supplementary data - 20 -

Data for hydrogen evolution test of compound **6** (pH 8, 52 $^{\circ}$ C)

Control (no	passivator)	Comp	ound 5	Comp	ound 6
Time (mins)	Time (mins) Hydrogen		Time (mins) Hydrogen		Hydrogen
	volume (ml)		volume (ml)		volume (ml)
0	0	0	0	0	0
38	14	35	2	25	0
41	17.5	41	4	53	1.5
43	23	50	8.5	81	18
45	27	63	12	100	24
49	37	76	18	140	42
51	46.5	83	21.5	200	55.5
53	49.5	92	26	230	67
55	55	112	37	265	75
57	62.5	130	46	281	80
59	69	154	58	-	-

Supplementary data - 21 -

61	75	172	66	-	-
64	80	183	71	-	-
		195	76.5	-	-
		200	80	-	-

References

- ¹ F. H. Allen, *Acta Crystallographica, Section B: Structural Science*, 2002, **B58**, 380.
- ² CONQUEST, Cambridge Crystallographic Data Centre, Cambridge, 2001.
- ³ M. C. Ball and A. H. Norbury, '*Physical Data for Inorganic Chemists*', Longman Group Limited, London, 1974.
- ⁴ P. W. Atkins, '*Physical Chemistry*', Oxford University Press, Oxford, 6th Edition, 1998.