Anion Doping as a Probe of Cooperativity in the Molecular Spin-Crossover Compound $[FeL_2][BF_4]_2$ (L = 2,6-di{pyrazol-1yl}pyridine)

Chiara Carbonera^a, Colin. A. Kilner^b, Jean-François Létard^a and Malcolm A. Halcrow^{*,b}

^aInstitut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS 9048 - Université de Bordeaux 1, Groupe des Sciences Moléculaires, 87 Av. Doc. A. Schweitzer, F-33608 Pessac, France.

^bSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK LS2 9JT. E-mail: m.a.halcrow@leeds.ac.uk

Electronic Supplementary Information

Figure S1. Observed and simulated magnetic data for the powder samples of **1-4** in warming mode, using the Slichter and Drickhamer model of phase transitions in solid solutions.

Figure S2. Variable temperature unit cell dimensions from single crystals of 2 and 3, near their spin-transition temperatures.

Table S1. Selected bond lengths and angles (Å, °), and metric parameters for the intermolecular π - π interactions, for 1-3.

Table S2. Selected bond lengths and angles $(Å, \circ)$ for 4.

Figure S1. Observed (points) and simulated (line) magnetic data for the powder samples of **1-4** in warming mode, using the Slichter and Drickhamer model of solid state phase transitions.¹ γ_{HS} is the high-spin fraction of the sample at a given temperature. The values of the interaction energy Γ derived by this analysis are listed in Table 1 of the main paper.

Figure S2 Variable temperature unit cell dimensions from single crystals of 2 (left) and 3 (right), near their spin-transition temperatures. Corresponding data for 1 are presented in ref. 2.

Table S1 Selected bond lengths and angles (Å, °), and metric parameters for the intermolecular π - π interactions, for 1-3. Symmetry codes: (i) -1+x, *y*, *z* (1 and 3) or 1+x, *y* (1 and 3) or 1+x (1 and 3) or 1+x

	1							
150 K	1.911(2) 1.989(2) 1.973(2)	1.914(2) 1.996(2) 1.979(2)	79.80(9) 80.24(9) 177.95(11) 101.95(9) 98.15(9)	160.04(9) 101.01(8) 93.06(9) 92.28(9)	98.92(9) 91.48(9) 90.10(9) 79.92(9) 79.96(9) 159.81(9)	3.592(11) 5.38(18) 1.76	3.403(11) 7.86(16) 2.19	9.3044(3)
3 300 K	2.134(3) 2.201(3) 2.189(3)	2.138(3) 2.190(3) 2.212(4)	$73.51(10) \\ 73.45(11) \\ 173.43(13) \\ 112.82(13) \\ 110.48(13) \\ 100.4$	$146.91(12) \\104.32(10) \\98.20(11) \\93.02(11)$	108.32(11) 96.10(12) 91.18(12) 73.49(12) 73.30(12) 146.63(11)	3.606(15) 6.9(3) 1.25	3.483(15) 3.7(3) 1.65	9.6676(4)
150 K	1.907(2) 1.987(3) 1.976(3)	1.914(2) 1.994(3) 1.979(3)	79.86(10) 80.44(10) 178.14(12) 101.74(11) 98.32(10)	$160.29(10) \\100.76(10) \\93.25(11) \\92.33(10)$	98.92(10) 91.21(11) 90.02(10) 80.00(11) 79.92(11) 159.82(10)	3.566(11) 5.50(18) 1.74	3.379(12) 7.83(17) 2.17	9.2482(4)
2 300 K	2.141(2) 2.201(3) 2.193(3)	2.140(2) 2.193(3) 2.202(3)	73.54(10) 73.31(10) 173.06(12) 113.17(11) 100.14(11)	$\begin{array}{c} 146.82(11) \\ 104.35(10) \\ 98.32(10) \\ 93.16(10) \end{array}$	$\begin{array}{c} 108.40(10)\\ 95.83(11)\\ 91.26(11)\\ 73.56(10)\\ 73.23(11)\\ 146.61(10)\end{array}$	3.588(12) 7.8(2) 1.22	3.446(12) 4.1(2) 1.66	9.6042(7)
150 K	$\begin{array}{c} 1.9049(15) \\ 1.9913(17) \\ 1.9751(17) \end{array}$	1.9097(16) 1.9912(18) 1.9760(18)	79.97(7) 80.23(7) 178.15(8) 101.77(7) 98.08(7)	$160.19(7) \\100.80(7) \\93.10(7) \\92.15(7)$	98.99(7) 91.30(7) 90.23(7) 79.91(7) 80.22(7) 160.06(6)	3.554(7) 5.48(12) 1.72	3.368(8) 8.05(11) 2.16	9.2150(8)
1 300 K	2.1390(14) 2.2063(17) 2.1865(19)	2.1402(15) 2.1964(19) 2.203(2)	73.68(6) 73.23(6) 172.98(7) 113.16(7) 100.15(7)	146.88(7) 104.33(6) 98.35(7) 93.03(7)	108.32(6) 95.93(7) 91.23(7) 73.68(7) 73.10(7) 146.60(7)	3.593(8) 8.28(14) 1.20	3.443(8) 4.96(14) 1.66	9.5770(9)
	Fe(1)–N(2) Fe(1)–N(9) Fe(1)–N(14)	Fe(1)–N(18) Fe(1)–N(25) Fe(1)–N(30)	N(2)-Fe(1)-N(9) N(2)-Fe(1)-N(14) N(2)-Fe(1)-N(18) N(2)-Fe(1)-N(25) N(9)-Fe(1)-N(30)	N(9)-Fe(1)-N(14) N(9)-Fe(1)-N(18) N(9)-Fe(1)-N(25) N(9)-Fe(1)-N(30)	N(14)-Fe(1)-N(18) N(14)-Fe(1)-N(25) N(14)-Fe(1)-N(30) N(18)-Fe(1)-N(25) N(18)-Fe(1)-N(30) N(25)-Fe(1)-N(30)	Intralayer π - π interactions: N(8)-C(12)N(13 ⁱ)-C(17 ⁱ) A verage interplanar spacing Dihedral angle Centroid offset	N(24)-C(28)N(29 ⁱⁱ)-C(33 ⁱⁱ) A verage interplanar spacing Dihedral angle Centroid offset	Interlayer spacing c/2

Table S2 Selected bond lengths and angles (Å, °) for **4**. See ref. 3 for the definition and discussion of the distortion angles θ and ϕ . Symmetry code: (iii) –*x*, *y*, $\frac{1}{2-z}$.

Fe(1)–N(2) Fe(1)–N(9)	2.1808(16) 2.1951(18)	Fe(1)-N(14)	2.2297(19)
$\begin{array}{l} N(2) - Fe(1) - N(2^{iii}) (\phi) \\ N(2) - Fe(1) - N(9) \\ N(2) - Fe(1) - N(9^{iii}) \\ N(2) - Fe(1) - N(14) \\ N(2) - Fe(1) - N(14^{iii}) \end{array}$	155.69(10) 72.35(7) 127.82(7) 72.13(6) 90.17(6)	$\begin{array}{l} N(9) - Fe(1) - N(9^{iii}) \\ N(9) - Fe(1) - N(14) \\ N(9) - Fe(1) - N(14^{iii}) \\ N(14) - Fe(1) - N(14^{iii}) \\ \theta \end{array}$	85.20(10) 141.81(6) 106.05(7) 87.62(10) 66.56 (2)

References

- 1. C. P. Slichter and H. G. Drickhamer, *J. Chem. Phys.*, 1972, **56**, 2142; A. B. Gaspar, M. C. Muñoz, V. Niel, J. A. Real, *Inorg. Chem.*, 2001, **40**, 9.
- 2. J. M. Holland, J. A. McAllister, C. A. Kilner, M. Thornton-Pett, A. J. Bridgeman and M. A. Halcrow, *J. Chem. Soc., Dalton Trans.*, 2002, 548.
- 3. J. Elhaïk, D. J. Evans, C. A. Kilner and M. A. Halcrow, *Dalton Trans.*, 2005, 1693.