Four Copper(II) Pyrazolido Complexes Derived from Reactions of 3{5}-Substituted Pyrazoles with CuF₂ or Cu(OH)₂

Q. Folshade Mokuolu^a, Dolos Foguet-Albiol^b, Leigh F. Jones^a, Joanna Wolowska^c, Radoslaw M. Kowalczyk^c, Colin A. Kilner^a, George Christou^b, Patrick C. McGowan^a and Malcolm A. Halcrow^{*,a}

^aSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds, U.K. LS2 9JT. Email: m.a.halcrow@ leeds.ac.uk. ^bDepartment of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA. ^cDepartment of Chemistry, University of Manchester, Oxford Road, Manchester U.K. M13 9PL.

Supplementary Information

Table S1 Selected bond lengths and angles for $[{Cu(\mu - pz^{Py})(pz^{Py})}_2] \cdot \frac{1}{2}H_2O \cdot 2CHCl_3 (1 \cdot \frac{1}{2}H_2O \cdot 2CHCl_3).$

Table S2 Metric parameters for the hydrogen bond interactions in $[{Cu(\mu - pz^{Py})(pz^{Py})}_2] \cdot \frac{1}{2}H_2O \cdot 2CHCl_3 (1 \cdot \frac{1}{2}H_2O \cdot 2CHCl_3).$

Table S3 Selected bond lengths and angles for $[{Cu(\mu-pz^{Ph})_2}_4] \cdot \frac{1}{2}C_5H_{12} (2 \cdot \frac{1}{2}C_5H_{12}).$

Fig S1 Variable temperature magnetic susceptibility data for a bulk sample of 2

Fig S2 X-band EPR spectra of powder samples of 1 and 3 at 115 K.

 $\begin{array}{l} \label{eq:2.1} \textbf{Table S4} \text{ Selected bond lengths and angles for } [\{Cu(\mu - pz^{Ph})_2\}_4] \cdot \frac{1}{2}C_5H_{12} \ [Cu_4F_2(\mu_4 - F)(\mu - pz^{PhF})_5(HPz^{PhF})_4] \cdot \frac{3}{4}CH_2Cl_2 \cdot \frac{1}{4}HPz^{PhF} \ (\textbf{3} \cdot \frac{3}{4}CH_2Cl_2 \cdot \frac{1}{4}Hpz^{PhF}). \end{array}$

 $\begin{array}{l} \textbf{Table S5} \mbox{ Metric parameters for the hydrogen bond interactions in } [Cu_4F_2(\mu_4-F)(\mu-Pz^{PhF})_5(HPz^{PhF})_4]\cdot \ensuremath{^3\!4}CH_2Cl_2\cdot \ensuremath{^1\!4}HPz^{PhF}(\mathbf{3}\cdot \ensuremath{^3\!4}CH_2Cl_2\cdot \ensuremath{^1\!4}HPz^{PhF}). \end{array} \right. \label{eq:stable}$

Table S6 Selected bond lengths and angles $(\text{\AA}, \circ)$ for $[Cu(pz^{PhF})_2(Hpz^{PhF})_2](4)$.

Table S7 Metric parameters for the hydrogen bond interactions in $[Cu(pz^{PhF})_2(Hpz^{PhF})_2]$ (4).

Fig S3 View of the complex molecule in 4, showing the atom numbering scheme employed.

	Molecule A $(X = A)$	Molecule B $(X = B)$
Cu(1X)-N(3X)	1.975(3)	1.969(3)
Cu(1X)-N(9X)	2.130(3)	2.100(3)
Cu(1X)-N(15X)	1.991(3)	1.992(3)
Cu(1X)-N(25X)	1.945(3)	1.964(3)
Cu(1X)-N(31X)	2.174(3)	2.222(3)
Cu(2X)-N(4X)	1.990(3)	1.972(3)
Cu(2X)-N(14X)	1.948(3)	1.962(3)
Cu(2X)-N(20X)	2.090(3)	2.100(3)
Cu(2X)-N(36X)	1.936(3)	1.953(3)
Cu(2X)-N(42X)	2.196(3)	2.257(3)
Cu(1X)Cu(2X)	3.7318(7)	3.8931(7)
N(3X)–Cu(1X)–N(9X)	78.62(13)	79.61(13)
N(3X)-Cu(1X)-N(15X)	94.76(13)	95.23(13)
N(3X)-Cu(1X)-N(25X)	168.54(14)	170.43(14)
N(3X)-Cu(1X)-N(31X)	96.32(13)	97.84(12)
N(9X)-Cu(1X)-N(15X)	142.28(13)	151.78(12)
N(9X)-Cu(1X)-N(25X)	91.20(13)	91.89(14)
N(9X)-Cu(1X)-N(31X)	95.98(13)	98.00(12)
N(15X)-Cu(1X)-N(25X)	96.53(13)	94.34(13)
N(15X)-Cu(1X)-N(31X)	121.72(13)	110.21(12)
N(25X)-Cu(1X)-N(31X)	79.38(13)	78.86(12)
N(4X)- $Cu(2X)$ - $N(14X)$	94.27(13)	95.48(13)
N(4X)-Cu(2X)-N(20X)	142.56(12)	155.06(13)
N(4X)-Cu(2X)-N(36X)	95.60(13)	93.79(13)
N(4X)-Cu(2X)-N(42X)	113.65(12)	112.74(12)
N(14X)-Cu(2X)-N(20X)	79.53(13)	79.98(13)
N(14X)-Cu(2X)-N(36X)	169.81(13)	170.21(14)
N(14X)-Cu(2X)-N(42X)	94.51(12)	101.31(13)
N(20X)-Cu(2X)-N(36X)	94.08(13)	90.28(14)
N(20X)-Cu(2X)-N(42X)	103.67(12)	92.18(12)
N(36X)-Cu(2X)-N(42X)	79.18(12)	77.89(13)

able S1 Selected bond lengths (Å) and angles (°) for $[{Cu(\mu-pz^{Py})(pz^{Py})}_2]\cdot \frac{1}{2}H_2O\cdot 2CHCl_3 (1\cdot \frac{1}{2}H_2O\cdot 2CHCl_3).$	

	D–H	HA	DA	D–H…A
C(47)–H(47)O(63)	1.00	2.21	3.159(6)	158.8
C(59)-H(59)N(37B)	1.00	2.20	3.182(7)	166.7
O(63)–H(63B)N(37A)	0.846(10)	1.996(13)	2.823(4)	166(4)
O(63)–H(63A)N(26B)	0.847(10)	2.03(2)	2.824(4)	155(5)

~
۳
₹
2
ш
Δ
£
ш
Ξ.
₽.
۳.
<u>۳</u>
~
5
ш.
=
2
÷.
~
ш
F
<
۲
÷.
2
۳.
5
ш
Ē.
ج.
2
₹

F
ò
Ľ
<
z
œ.
2
<u> </u>
2
<u></u>
œ
č.
0
ci -
õ
œ
≥
5
≥
٤
2
_
<u>–</u>
Ê
Ê
EE HTTP
SEE HTTP
- SEE HTTP
TE - SEE HTTP
ATE - SEE HTTP
LATE - SEE HTTP
PLATE - SEE HTTP
MPLATE - SEE HTTP
FEMPLATE - SEE HTTP
I TEMPLATE - SEE HTTP
ON TEMPLATE - SEE HTTP
ION TEMPLATE - SEE HTTP
VTION TEMPLATE - SEE HTTP
ATION TEMPLATE - SEE HTTP
IICATION TEMPLATE - SEE HTTP
INICATION TEMPLATE - SEE HTTP
AUNICATION TEMPLATE - SEE HTTP
AMUNICATION TEMPLATE - SEE HTTP
MMUNICATION TEMPLATE - SEE HTTP
COMMUNICATION TEMPLATE - SEE HTTP
COMMUNICATION TEMPLATE - SEE HTTP
SC COMMUNICATION TEMPLATE - SEE HTTP
RSC COMMUNICATION TEMPLATE - SEE HTTP
E RSC COMMUNICATION TEMPLATE - SEE HTTP
HE RSC COMMUNICATION TEMPLATE - SEE HTTP
THE RSC COMMUNICATION TEMPLATE - SEE HTTP
3 THE RSC COMMUNICATION TEMPLATE - SEE HTTP
NG THE RSC COMMUNICATION TEMPLATE - SEE HTTP
SING THE RSC COMMUNICATION TEMPLATE - SEE HTTP
USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP
) USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP
ED USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP
TED USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP
ATED USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP:
REATED USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP
CREATED USING THE RSC COMMUNICATION TEMPLATE - SEE HTTP

Table S3 Selected bond lengths (Å) and ang For clarity only the range exhibited by the nir	les (°) for [{ $Cu(\mu-pz^{Ph})_2$ }_4]. $y_2C_5H_{12}$ (2. $y_2C_5H_{12}$ different angles formed by the disordered	H ₁₂). The suffixes A, B, and C refer to different atoms N(5A, 5B, 5C)–Cu(1)–N(83A, 83B, 83).	ent disordered sites for the same N atoms. 3C) is given.
Cu(1)–N(5A, 5B, 5C)	1.909(17), 2.080(13), 1.97(2)	Cu(3)–N(28)	1.973(2)
Cu(1)–N(16)	1.990(2)	Cu(3)–N(39)	1.965(2)
Cu(1)–N(72)	1.988(2)	Cu(3)–N(49)	1.983(2)
Cu(1)–N(83A, 83B, 83C)	2.040(16), 2.006(12), 1.886(14)	Cu(3)-N(60)	1.994(2)
Cu(2)–N(6A, 6B, 6C)	2.058(17), 1.888(15), 1.96(3)	Cu(4)–N(50)	1.953(2)
Cu(2)–N(17)	1.977(2)	Cu(4)–N(61)	1.984(2)
Cu(2)–N(27)	1.993(2)	Cu(4)–N(71)	2.004(2)
Cu(2)–N(38)	1.987(2)	Cu(4)–N(82A, 82B, 82C)	2.033(17), 1.827(10), 2.030(15)
Cu(1)Cu(2)	3.2881(6)	Cu(3)Cu(4)	3.2771(7)
Cu(2)Cu(3)	3.2839(7)	Cu(1)Cu(4)	3.3342(7)
N(5A, 5B, 5C)–Cu(1)–N(16)	92.5(8), 90.2(5), 96.0(4)	N(28)–Cu(3)–N(39)	87.71(9)
N(5A, 5B, 5C)–Cu(1)–N(72)	100.1(8), 99.9(8), 94.2(4)	N(28)-Cu(3)-N(49)	101.58(9)
N(5A, 5B, 5C)–Cu(1)–N(83A, 83B, 83C)	153.2(6)-162.5(6)	N(28)-Cu(3)-N(60)	142.78(9)
N(16)-Cu(1)-N(72)	146.58(9)	N(39)–Cu(3)–N(49)	154.97(9)
N(16)-Cu(1)-N(83A, 83B, 83C)	88.7(7), 95.5(3), 89.0(7)	N(39)–Cu(3)–N(60)	91.40(9)
N(72)-Cu(1)-N(83A, 83B, 83C)	92.6(7), 84.3(3), 93.1(7)	N(49)-Cu(3)-N(60)	94.73(9)
N(6A, 6B, 6C)–Cu(2)–N(17)	88.0(6), 87.3(4), 90.6(6)	N(50)-Cu(4)-N(61)	87.83(9)
N(6A, 6B, 6C)–Cu(2)–N(27)	90.7(8), 94.2(4), 88.4(7)	N(50)-Cu(4)-N(71)	92.62(9)
N(6A, 6B, 6C)–Cu(2)–N(38)	157.2(5), 152.1(3), 156.0(6)	N(50)–Cu(4)–N(82A, 82B, 82C)	155.3(6), 152.7(4), 159.5(4)
N(17)-Cu(2)-N(27)	148.55(9)	N(61)-Cu(4)-N(71)	143.43(9)
N(17)-Cu(2)-N(38)	100.76(9)	N(61)-Cu(4)-N(82A, 82B, 82C)	98.6(8), 103.3(4), 95.5(5)
N(27)-Cu(2)-N(38)	92.44(9)	N(71)–Cu(4)–N(82A, 82B, 82C)	96.0(6), 92.8(3), 96.5(4)

Fig S1 Variable temperature magnetic susceptibility data for a dried bulk sample of **2** (\circ). The blue line shows the best fit of these data (line) to a Hamiltonian describing a square of *S* = ½ copper(II) centres (equation 2 in the main paper). The fitted parameters are *J* = -89(3) cm⁻¹, *g* = 2.2 (fixed) and the paramagnetic impurity $\rho = 10.0(3)$ %. The red line is the best fit of the data to a Hamiltonian describing an antiferromagnetic chain of copper(II) spins, which gives *J* = -71(3) cm⁻¹ and *g* = 2.2 (fixed). See the main paper for more details.

Fig S2 X-band EPR spectra of powder samples of 1 (left) and 3 (right) at 115 K. The W-band EPR spectrum of 1 is shown in the main paper.

Molecule A		Molecule B	
Cu(1A)-F(1A)	2.253(2)	Cu(1B)-F(1B)	2.267(2)
Cu(1A)-F(2A)	1.971(2)	Cu(1B)-F(2B)	1.971(2)
Cu(1A)-N(7A)	1.981(3)	Cu(1B)-N(7B)	1.988(3)
Cu(1A)-N(9A)	1.994(3)	Cu(1B)-N(9B)	1.993(3)
Cu(1A) - N(12A)	2.006(3)	Cu(1B)–N(12B, 12D)	1.825(18), 2.111(15)
Cu(2A) - F(1A)	2.245(2)	Cu(2B)-F(1B)	2.269(2)
Cu(2A) - F(3A)	1.946(2)	Cu(2B)-F(3B)	1.936(2)
Cu(2A) - N(1A)	1.999(3)	Cu(2B) - N(1B)	1.996(3)
Cu(2A) - N(4A)	1.965(3)	Cu(2B) - N(4B)	1.948(3)
Cu(2A) - N(14A, 14C)	2.040(15), 2.003(19)	Cu(2B) - N(14B, 14D)	1.95(2), 2.09(2)
Cu(3A) - F(1A)	2.295(2)	Cu(3B)-F(1B)	2.324(2)
Cu(3A) - N(2A)	1.971(3)	Cu(3B)-N(2B)	1.974(3)
Cu(3A) - N(3A)	1.988(3)	Cu(3B)-N(3B)	1.981(3)
Cu(3A) - N(6A)	1.996(3)	Cu(3B)-N(6B)	1.984(3)
Cu(3A) - N(16A)	2.013(3)	Cu(3B) - N(16B)	2.018(3)
Cu(4A) - F(1A)	2.254(2)	Cu(4B) - F(1B)	2.226(2)
Cu(4A) - N(5A)	1.990(3)	Cu(4B) - N(5B)	1.989(3)
Cu(4A) - N(8A)	2.011(3)	Cu(4B) - N(8B)	2.016(3)
Cu(4A) - N(10A)	1.969(3)	Cu(4B) - N(10B)	1.975(3)
Cu(4A) - N(18A)	2.025(3)	Cu(4B) - N(18B)	2.023(3)
Cu(1A)Cu(2A)	3.8169(7)	Cu(1B)Cu(2B)	3.8104(7)
Cu(1A)Cu(3A)	4.1812(6)	Cu(1B)Cu(3B)	4.2577(7)
Cu(1A)Cu(4A)	3.2719(6)	Cu(1B)Cu(4B)	3.2570(6)
Cu(2A)Cu(3A)	3.2863(6)	Cu(2B)Cu(3B)	3.2836(6)
Cu(2A)Cu(4A)	4.1654(7)	Cu(2B)Cu(4B)	4.1901(7)
Cu(3A)Cu(4A)	3.1899(6)	Cu(3B)Cu(4B)	3.2199(6)
F(1A)– $Cu(1A)$ – $F(2A)$	84.26(8)	F(1B)-Cu(1B)-F(2B)	82.67(9)
F(1A)-Cu(1A)-N(7A)	88.73(10)	F(1B)-Cu(1B)-N(7B)	87.40(11)
F(1A)-Cu(1A)-N(9A)	96.18(11)	F(1B)-Cu(1B)-N(9B)	97.16(10)
F(1A)– $Cu(1A)$ – $N(12A)$	107.28(11)	F(1B)-Cu(1B)-N(12B, 12D)	110.9(7), 109.6(5)
F(2A)-Cu(1A)-N(7A)	98.28(10)	F(2B)– $Cu(1B)$ – $N(7B)$	98.03(11)
F(2A)-Cu(1A)-N(9A)	173.72(11)	F(2B)-Cu(1B)-N(9B)	174.16(12)
F(2A)- $Cu(1A)$ - $N(12A)$	85.50(11)	F(2B)-Cu(1B)-N(12B, 12D)	85.6(10), 85.4(8)
N(7A)-Cu(1A)-N(9A)	88.00(13)	N(7B)-Cu(1B)-N(9B)	87.79(13)
N(7A)-Cu(1A)-N(12A)	163.87(14)	N(7B)-Cu(1B)-N(12B, 12D)	161.7(7), 163.0(5)
N(9A)-Cu(1A)-N(12A)	88.39(13)	N(9B)-Cu(1B)-N(12B, 12D)	89.0(10), 89.2(8)
F(1A)– $Cu(2A)$ – $F(3A)$	83.83(9)	F(1B)-Cu(2B)-F(3B)	83.28(9)
F(1A)-Cu(2A)-N(1A)	89.19(11)	F(1B)– $Cu(2B)$ – $N(1B)$	88.43(11)
F(1A)-Cu(2A)-N(4A)	92.98(10)	F(1B)-Cu(2B)-N(4B)	93.89(11)
F(1A)-Cu(2A)-N(14A, 14C)	116.1(7), 110.7(7)	F(1B)-Cu(2B)-N(14B, 14D)	113.4(6), 117.5(6)
F(3A)- $Cu(2A)$ - $N(1A)$	96.48(11)	F(3B)-Cu(2B)-N(1B)	96.35(11)
F(3A)– $Cu(2A)$ – $N(4A)$	172.72(12)	F(3B)-Cu(2B)-N(4B)	172.12(12)
F(3A)-Cu(2A)-N(14A, 14C)	89.3(9), 86.2(9)	F(3B)-Cu(2B)-N(14B, 14D)	81.3(4), 91.9(4)
N(1A)-Cu(2A)-N(4A)	90.00(13)	N(1B)-Cu(2B)-N(4B)	90.91(14)
N(1A)-Cu(2A)-N(14A, 14C)	154.6(/), 160.1(7)	N(1B)–Cu(2B)–N(14B, 14D)	157.4(6), 153.6(6)
N(4A)-Cu(2A)-N(14A, 14C)	86.2(9), 88.8(9)	N(4B)-Cu(2B)-N(14B, 14D)	93.1(4), 82.9(4)
F(1A)-Cu(3A)-N(2A)	85.07(11)	F(1B)-Cu(3B)-N(2B)	84.49(10)
F(1A)-Cu(3A)-N(3A)	92.15(10)	F(1B)-Cu(3B)-N(3B)	93.68(11)
F(1A) = Cu(3A) = N(6A)	106.72(10)	F(1B) - Cu(3B) - N(6B)	104.93(11)
F(1A) - Cu(3A) - N(16A)	94.33(10)	F(1B)-Cu(3B)-N(16B)	93.89(11)
N(2A)-Cu(3A)-N(3A)	89.58(13)	N(2B)- $Cu(3B)$ - $N(3B)$	90.18(13)
N(2A) - Cu(3A) - N(6A)	89.22(13)	N(2B) - Cu(3B) - N(6B)	89.51(13)
N(2A)- $Cu(3A)$ - $N(16A)$	1/9.21(13)	N(2B) - Cu(3B) - N(16B)	1/8.09(13)
N(3A) - Cu(3A) - N(6A)	100.91(13)	N(3B) - Cu(3B) - N(6B)	101.27(15)

Table S4 Selected bond lengths (Å) and angles (°) for $[Cu_4F_2(\mu_4-F)(\mu-Pz^{PhF})_5(HPz^{PhF})_4]\cdot\frac{3}{4}CH_2Cl_2\cdot\frac{1}{4}HPz^{PhF}$ (**3**· $\frac{3}{4}CH_2Cl_2\cdot\frac{1}{4}Hpz^{PhF}$). The suffixes C and D refer to different disordered sites for N atoms located in molecules A and B respectively.

Table S4 continued.				
N(3A)-Cu(3A)-N(16A)	89.92(12)	N(3B)-Cu(3B)-N(16B)	88.91(13)	
N(6A)-Cu(3A)-N(16A)	91.45(12)	N(6B)-Cu(3B)-N(16B)	91.89(13)	
F(1A)-Cu(4A)-N(5A)	109.18(10)	F(1B)– $Cu(4B)$ – $N(5B)$	108.91(11)	
F(1A)-Cu(4A)-N(8A)	84.25(10)	F(1B)– $Cu(4B)$ – $N(8B)$	83.93(10)	
F(1A)-Cu(4A)-N(10A)	90.07(11)	F(1B)-Cu(4B)-N(10B)	92.46(11)	
F(1A)-Cu(4A)-N(18A)	99.82(11)	F(1B)-Cu(4B)-N(18B)	98.24(11)	
N(5A)-Cu(4A)-N(8A)	87.01(13)	N(5B)-Cu(4B)-N(8B)	87.67(13)	
N(5A)-Cu(4A)-N(10A)	160.48(13)	N(5B)-Cu(4B)-N(10B)	158.35(13)	
N(5A)-Cu(4A)-N(18A)	91.01(12)	N(5B)-Cu(4B)-N(18B)	92.59(13)	
N(8A)-Cu(4A)-N(10A)	91.91(13)	N(8B)-Cu(4B)-N(10B)	91.29(13)	
N(8A)-Cu(4A)-N(18A)	175.88(13)	N(8B)-Cu(4B)-N(18B)	177.60(14)	
N(10A)-Cu(4A)-N(18A)	88.74(13)	N(10B)-Cu(4B)-N(18B)	87.58(13)	
Cu(1A)-F(1A)-Cu(2A)	116.13(9)	Cu(1B)-F(1B)-Cu(2B)	114.32(9)	
Cu(1A)-F(1A)-Cu(3A)	133.68(9)	Cu(1B)-F(1B)-Cu(3B)	136.11(9)	
Cu(1A)-F(1A)-Cu(4A)	93.10(8)	Cu(1B)-F(1B)-Cu(4B)	92.92(8)	
Cu(2A)-F(1A)-Cu(3A)	92.76(8)	Cu(2B)-F(1B)-Cu(3B)	91.28(8)	
Cu(2A)-F(1A)-Cu(4A)	135.62(9)	Cu(2B)-F(1B)-Cu(4B)	137.55(10)	
Cu(3A)-F(1A)-Cu(4A)	89.06(7)	Cu(3B)-F(1B)-Cu(4B)	90.07(8)	

 $\begin{array}{l} \textbf{Table S5} \text{ Metric parameters for the hydrogen bond interactions in } [Cu_4F_2(\mu_4\text{-}F)(\mu\text{-}Pz^{PhF})_5(\text{HPz}^{PhF})_4]\cdot \frac{3}{4}CH_2Cl_2\cdot \frac{1}{4}\text{HPz}^{PhF}}{(3\cdot \frac{3}{4}CH_2Cl_2\cdot \frac{1}{4}\text{Hpz}^{PhF})} (\text{\AA}, \circ). \end{array}$

	D–H	HA	DA	D–HA
N(11A)-H(11A)F(3A)	0.88	1.98	2.752(4)	145.5
N(13A, 13C)–H(13A, 13C)…F(2A) ^a	0.88, 0.88	1.81, 1.91	2.66(2), 2.749(19)	162.2, 157.5
N(15A)–H(15A)F(2A)	0.88	1.93	2.693(4)	143.7
N(17A)–H(17A)F(3A)	0.88	1.78	2.647(4)	168.9
N(11B, 11D)–H(11B, 11D)F(3B) ^a	0.88, 0.88	2.05, 1.82	2.787(8), 2.656(9)	141.1, 157.6
N(13B, 13D)-H(13B, 13D)F(2B) ^a	0.88, 0.88	1.93, 1.90	2.73(2), 2.73(2)	149.2, 157.9
N(15B)–H(15B)F(2B)	0.88	1.90	2.689(4)	148.7
N(17B)–H(17B)F(3B)	0.88	1.78	2.644(4)	167.5

^aThis interaction involves a disordered N–H group, and should be interpreted with caution.

Table S6 Selected bond lengths and angles (Å, °) for $[Cu(pz^{PhF})_2(Hpz^{PhF})_2]$ (4).

Cu(1)–N(2)	1.985(4)	Cu(1)–N(26)	1.978(4)
Cu(1)–N(14)	1.952(3)	Cu(1)–N(38)	1.950(3)
N(2)-Cu(1)-N(14)	97.21(14)	N(14)-Cu(1)-N(26)	140.69(16)
N(2)-Cu(1)-N(26)	96.41(14)	N(14)-Cu(1)-N(38)	93.27(13)
N(2)-Cu(1)-N(38)	143.76(16)	N(26)-Cu(1)-N(38)	97.10(13)

Table S7 Metric parameters for the hydrogen bond interactions in $[Cu(pz^{PhF})_2(Hpz^{PhF})_2]$ (4).

	D–H	HA	DA	D–H…A
N(3)–H(3)N(15)	0.88	1.92	2.682(5)	144.2
N(27)-H(27)N(39)	0.88	1.92	2.669(5)	141.7

Fig S3 View of the complex molecule in **4**, showing the atom numbering scheme employed. All C-bound H atoms have been omitted for clarity, and thermal ellipsoids are at the 50% probability level. Colour code: C = white, H = grey, Cu = green, N = blue, F = yellow.