Electronic supplementary information

Rhodium(III) complexes with a bidentate *N*-heterocyclic carbene ligand bearing flexible dendritic frameworks

Tetsuaki Fujihara,^a Yasushi Obora,^b Makoto Tokunaga,^b and Yasushi Tsuji^{a,b}*

^a Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University and CREST, Japan Science and Technology Agency (JST), Kyoto 615-8510, Japan E-mail: ytsuji@scl.kyoto-u.ac.jp; FAX: +81-75-383-2514.

^b Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan.

General procedures and materials. All manipulations were performed under an argon atmosphere using standard Schlenk-type glasswares on a dual-manifold Schlenk line. Reagents and solvents were dried and purified before use by usual procedures.¹ ¹H NMR and ¹³C{¹H} NMR, H-H COSY, and HSQC spectra were measured with a JEOL ECX-400 or a JEOL ECA-600 spectrometers. FD mass spectra were recorded on a JEOL JMS-SX102A instrument at the GC-MS & NMR Laboratory of Faculty of Agriculture, Hokkaido University. Elemental analyses were carried out at the Center for Instrumental Analysis, Hokkaido University.

N-Methylimidazole was purchased from Wako. Fréchet-type polybenzylether dendrimer bromides, G_1 -Br and G_2 -Br, were prepared by a reported method.² G_0 -Im (*N*-benzylimidazole: **1a**),³ [(G_0)(C_3H_3N_2)CH_2(C_3H_3N_2)(G_0)]I_2 (**2a**)⁴ and [Me(C_3H_3N_2)CH_2(C_3H_3N_2)Me]I_2 (**2d**)⁵ were prepared according to previous reports. **G**₁-**Im** (1b). A mixture of imidazole (2.0 g, 30 mmol), G₁-Br (11.5 g, 30 mmol), K₂CO₃ (4.2 g, 30 mmol), KOH (1.7 g, 30 mmol) and tetra(*n*-butyl)ammonium bromide (0.72 g, 1.5 mmol) in degassed toluene (200 cm³) was refluxed under Ar for 19 h. After cooling at room temperature, the suspension was filtered with a celite pad and the filtrate was evaporated to dryness. The residue was dissolved in CHCl₃ and the solution was purified with silica gel column chromatography. The fraction eluted with 2% MeOH-CHCl₃ was corrected and removal of volatiles under vacuum gave a white solid. Yield 6.2 g (57%). Found: C, 77.85; H, 6.03; N, 7.55. C₂₄H₂₂N₂O₂ requires C, 77.81; H, 5.99; N, 7.56. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H, Im), 7.37–7.28 (m, 10H, Ph), 7.07 (s, 1H, Im), 6.86 (s, 1H, Im), 6.54 (t, *J* = 2.0 Hz, 1H, Ph), 6.34 (d, *J* = 2.0 Hz, 2H, Ph), 5.00 (s, 2H, CH₂Im), 4.96 (s, 4H, CH₂Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.3, 138.5, 137.5, 136.4, 129.8, 128.6, 128.1, 127.5, 119.3, 106.3, 101.5, 70.1 (CH₂Ph), 50.7 (CH₂-Im). FD-MS: *m/z* = 370 ([M]⁺).

G₂-Im (1c). This compound was prepared with G₂-Br (6 mmol scale) by the similar method used for **1b**. Yield 2.0 g (42%). Found: C, 78.12; H, 5.97; N, 3.34. C₅₂H₄₆N₂O₆ requires C, 78.57; H, 5.83; N, 3.52. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H, Im), 7.43–7.31 (m, 20H, Ph), 7.09(s, 1H, Im), 6.87 (s, 1H, Im), 6.65 (d, *J* = 2.0 Hz, 4H, Ph), 6.58 (t, *J* = 2.2 Hz, 2H, Ph), 6.53 (t, *J* = 2.0 Hz, 1H, Ph), 6.34 (d, *J* = 2.0 Hz, 2H, Ph), 5.02 (s, 8H, CH₂Ph), 4.99 (s, 2H, CH₂Im), 4.91 (s, 4H, CH₂Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.2, 160.0, 138.8, 138.5, 137.4, 136.6, 129.8, 128.5, 127.9, 127.5, 119.3, 106.3, 106.2, 101.5, 101.4, 70.0 (CH₂Ph), 69.9 (CH₂Ph), 50.6 (CH₂-Im). FD-MS: *m*/*z* = 794 ([M]⁺).

 $[(G_1)(C_3H_3N_2)CH_2(C_3H_3N_2)(G_1)]I_2$ (2b). A solution of G_1 -Im (1b) (3.7 g, 10 mmol) and CH_2I_2 (1.4 g, 5 mmol) in toluene (20 cm³) was refluxed under Ar for 19 h. The white precipitate was collected by filtration, washed with cold toluene, and dried under vacuum.

Yield 3.1 g (61%). Found: C, 58.21; H, 4.61; N, 5.55. $C_{49}H_{46}I_2N_4O_4$ requires C, 58.34; H, 4.60; N, 5.55. ¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 2H, Im), 8.62 (s, 2H, Im), 7.39 (s, 2H, Im), 7.32–7.22 (m, 20H, Ph), 6.99 (s, 2H, Im-CH₂-Im), 6.63 (d, J = 2.0 Hz, 4H, Ph), 6.51 (t, J = 2.0 Hz, 2H, Ph), 5.19 (s, 4H, CH₂Im), 4.95 (s, 8H, CH₂Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.5, 137.7 (Im), 136.3, 133.5, 128.6, 128.1, 127.7, 122.9 (Im), 121.9 (Im), 108.4, 103.4, 70.4, 57.4, 54.1. FD-MS: m/z = 881 ([M-I]⁺).

[(G₂)(C₃H₃N₂)CH₂(C₃H₃N₂)(G₂)]I₂ (2c). A solution of G₂-Im (1c) (4.0 g, 5 mmol) and CH₂I₂ (0.7 g, 2.5 mmol) in toluene (20 cm³) was refluxed under Ar for 24 h. The reaction mixture was evaporated to dryness. The residue was purified with silica gel column chromatography by using CHCl₃ as an eluent. A colorless fraction eluted with 10% MeOH-CHCl₃ was collected. Removal of volatiles under vacuum gave a white solid. Yield 1.3 g, (28%). Found: C, 66.45; H, 5.18; N, 3.14. C₁₀₅H₉₄I₂N₄O₁₂·(CHCl₃)_{0.5} requires C, 66.09; H, 4.97; N, 2.92. ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 2H, Im), 8.54 (s, 2H, Im), 7.32–7.22 (m, 42H, Ph + Im), 6.85 (s, 2H, Im-CH₂-Im), 6.60 (8H, Ph), 6.58 (4H, Ph), 6.48 (m, 6H, Ph), 5.06 (s, 4H, CH₂Im), 4.90 (s, 16H, CH₂Ph), 4.88 (s, 8H, CH₂Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.4, 160.0, 138.8, 137.6 (Im), 136.6, 133.4, 128.5, 127.9, 127.6, 122.9 (Im), 121.8 (Im), 108.2, 106.5, 103.5, 101.4, 70.1, 70.0, 57.2, 54.1. FD-MS: m/z = 1731 ([M-I]⁺).

RhI₂(OAc)[(G₀)(C₃H₂N₂)CH₂(C₃H₂N₂)(G₀)] (**3a**). A mixture of [RhCl(COD)]₂ (200 mg, 0.4 mmol), [(G₀)(C₃H₃N₂)CH₂(C₃H₃N₂)(G₀)]I₂ (**2a**) (467 mg, 0.8 mmol), KI (332 mg, 2 mmol), and KOAc (392 mg, 4 mmol) was stirred in CH₃CN (20 cm³) at 65 °C for 16 h. After cooling at room temperature, insoluble materials were removed by filtration and the filtrate was evaporated to dryness. The crude product was dissolved in CH₂Cl₂ and the

solution was passed through a silica gel column (2×15 cm, solvent: CH₂Cl₂). The second orange band eluted with CH₂Cl₂-acetone (5:1, v/v) was collected and evaporated to dryness. The residue was re-dissolved in a small amount of CH₂Cl₂ and precipitated by adding *n*-pentane. The orange precipitate was collected by filtration, washed with *n*-pentane, and dried under vacuum. Yield 170 mg (29%). Found: C, 37.29; H, 3.15; N, 7.78. C₂₃H₂₃I₂N₄O₂Rh requires C, 37.12; H, 3.12; N, 7.53. ¹H NMR (600 MHz, DMSO-d₆) δ 7.57–7.56 (m, 6H, Im + Ph), 7.37–7.29 (m, 8H, Ph), 6.18 (s, 2H, NHC-CH₂-NHC), 5.60 (s, 4H, *CH*₂Ph), 1.78 (s, 3H, *CH*₃CO). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 187.0 (CH₃CO), 151.5 (d, *J*_{Rh-C} = 41.6 Hz, NCN), 137.2, 129.0, 128.4, 127.9, 123.2 (NHC), 122.6 (NHC), 62.2 (NHC-CH₂-NHC), 52.8 (CH₂Ph), 24.3 (CH₃CO). FD-MS: *m*/*z* = 744 ([M-H]⁺).

RhI₂(**OAc**)[(**G**₁)(**C**₃**H**₂**N**₂)**CH**₂(**C**₃**H**₂**N**₂)(**G**₁)] (**3b**). A mixture of [RhCl(COD)]₂ (50 mg, 0.1 mmol), [(**G**₁)(**C**₃**H**₃**N**₂)**CH**₂(**C**₃**H**₃**N**₂)(**G**₁)]**I**₂ (**2b**) (202 mg, 0.2 mmol), KI (83 mg, 0.5 mmol), and KOAc (98 mg, 1 mmol) was stirred in CH₃CN (50 cm³) at 65 °C for 16 h. After cooling at room temperature, insoluble materials were removed by filtration and the residue was washed with hot CH₃CN. Removal of the solvent gave orange solids. The solids were collected by filtration, washed with a mixed solvent of CH₃CN and *n*-pentane (1:3, v/v), and dried under vacuum. Yield 105 mg (45%). Found: C, 52.67; H, 4.16; N, 5.74. C₅₁H₄₇I₂N₄O₆Rh·CH₃CN requires C, 52.62; H, 4.17; N, 5.79. ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.27 (m, 20H, Ph), 6.92 (d, *J* = 1.8 Hz, 2H, Im), 6.84 (d, *J* = 1.8 Hz, 2H, Im), 6.83 (d, *J* = 2.4 Hz, 4H, Ph), 6.58 (t, *J* = 2.4 Hz, 2H, Ph), 5.95 (s, 2H, NHC-CH₂-NHC), 5.59 (s, 4H, CH₂Ph), 5.05 (s, 8H, CH₂Ph), 1.94 (s, 3H, CH₃CO). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.9 (CH₃CO), 160.2, 155.0 (d, *J*_{Rh-C} = 41.6 Hz, NCN), 138.3, 136.8, 128.5, 127.9, 127.6, 123.0 (NHC), 120.6 (NHC), 108.5, 102.5, 70.3 (CH₂Ph), 63.3 (NHC-CH₂-NHC), 54.5 (CH₂Ph), 24.8 (CH₃CO). FD-MS: *m*/z = 1168 ([M-H]⁺).

 $RhI_2(OAc)[(G_2)(C_3H_2N_2)CH_2(C_3H_2N_2)(G_2)]$ (3c). A mixture of $[RhCl(COD)]_2$ (50 mg, 0.1 mmol), [(G₂)(C₃H₃N₂)CH₂(C₃H₃N₂)(G₂)]I₂ (**2c**) (371 mg, 0.2 mmol), KI (83 mg, 0.5 mmol), and KOAc (98 mg, 1 mmol) was stirred in CH₃CN (20 cm³) at 65 °C for 2 days. After cooling at room temperature, the insoluble materials were removed by filtration and the filtrate was evaporated to dryness. The crude product was dissolved in CH₂Cl₂ and passed through a silica gel column (2×15 cm, solvent CH₂Cl₂). The orange band eluted with CH_2Cl_2 -acetone (5:1, v/v) was collected and evaporated to dryness. The residue was re-dissolved in a small amount of CH_2Cl_2 and precipitated by adding *n*-pentane. The orange powder was collected by filteration, washed with *n*-pentane, and dried under vacuum. Yield 223 mg (55%). Found: C, 63.69; H, 4.87; N, 2.71. C₁₀₇H₉₅I₂N₄O₁₄Rh requires C, 63.40; H, 4.75; N, 2.78. ¹H NMR (600 MHz, CDCl₃) δ 7.41–7.30 (m, 40H, Ph), 6.69–6.65 (m, 14H, Ph + Im), 6.61 (s, 2H, Im), 6.54–6.53 (m, 6H, Ph), 5.58 (m, 6H, NHC-CH₂-NHC + CH₂Ph), 4.99 (24H, CH₂Ph), 1.91 (s, 3H, CH₃CO). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.9 (CH₃CO), 160.0, 159.9, 154.8 (d, J_{Rh-C} = 41.7 Hz, NCN), 139.3, 138.4, 136.7, 128.6, 128.0, 127.6, 122.9 (NHC), 120.6 (NHC), 107.9, 106.4, 102.6, 101.4, 70.1 (CH₂Ph), 69.9 (CH₂Ph), 63.1 (NHC-*C*H₂-NHC), 54.3 (*C*H₂Ph), 24.8 (*C*H₃CO). FD-MS: m/z = 2018 ([M+H]⁺).

RhI₂(**OAc**)[**Me**(**C**₃**H**₂**N**₂)**CH**₂(**C**₃**H**₂**N**₂)**Me**] (**3d**). This complex was prepared with [Me(C₃H₃N₂)CH₂(C₃H₃N₂)Me]I₂ (**2d**) (0.4 mmol) by the similar method used for **3a**. Yield 35 mg (15%). Found: C, 22.41; H, 2.56; N, 9.30. C₁₁H₁₅I₂N₄O₂Rh requires C, 22.32; H, 2.55; N, 9.46. ¹H NMR (600 MHz, DMSO-d₆) δ 7.57 (d, *J* = 2.4 Hz, 2H, Im), 7.54 (d, *J* = 2.4 Hz, 2H, Im), 6.10 (s, 2H, NHC-CH₂-NHC), 3.92 (s, 6H, NHC-CH₃), 1.82 (s, 3H, CH₃CO). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.5 (CH₃CO), 151.3 (d, *J*_{Rh-C} = 43.1 Hz, NCN), 125.0 (NHC), 121.5 (NHC), 62.0 (NHC-CH₂-NHC), 37.5 (NHC-CH₃), 24.2 (CH₃CO).

Calculation

An optimized structure of **3c** was obtained by ONIOM⁶ calculations by using an initial structure generated with CAChe⁷/CONFLEX⁸/MM3⁹. In the ONIOM calculation, the molecular system of **3c** was divided into two layers. The high layer was assigned to **3c** with a RhI₂(OAc)[(C₃H₂N₂)CH₂(C₃H₂N₂)] core for B3LYP¹⁰/LANL2DZ¹¹ calculation. The low layer contains the rest dendritic frameworks of **3c** for molecular mechanics calculation using UFF force field.¹² All calculations were performed with the Gaussian 03 program¹⁰ on a HIT HPC-IA642/SS 1.3/3D-4G.

X-ray Diffraction Study. crystal structure refinements A summary of of $RhI_2(OAc)[(G_0)(C_3H_2N_2)CH_2(C_3H_2N_2)(G_0)] \cdot C_4H_8O$ (**3a**·THF), $RhI_2(OAc)$ $[(G_1)(C_3H_2N_2)CH_2(C_3H_2N_2)(G_1)] \cdot CH_3CN$ $(3b \cdot CH_3CN)$ and $RhI_2(OAc)[Me(C_3H_2N_2)CH_2(C_3H_2N_2)Me]$ (3d) was given in Table S1. Single crystals of (3a·THF) suitable for X-ray diffraction study were obtained by diffusion of *n*-pentane into 3a in THF. Single crystals of **3b**·CH₃CN and **3d** were obtained by slow evaporation of **3b** or **3d** Data were collected on a Rigaku/Saturn70 CCD diffractometer using in CH₃CN. graphite-monochromated Mo K α radiation ($\lambda = 0.71070$ Å) at 113 K, and processed using CrystalClear (Rigaku). The structures were solved by a heavy-atom Patterson method (SHELX97) and refined by full-matrix least-square refinement on F^2 . The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located on the calculated positions and not refined. All calculations were performed using the CrystalStructure software package. CCDC Numbers 633257, 633258 and 633259.

Table S1. Crystallographic Data of $RhI_2(OAc)[(G_0)(C_3H_2N_2)CH_2(C_3H_2N_2)(G_0)]$ ·THF(**3a**·THF), $RhI_2(OAc)[(G_1)(C_3H_2N_2)CH_2(C_3H_2N_2)(G_1)]$ ·CH₃CN(**3b**·CH₃CN) and $RhI_2(OAc)[Me(C_3H_2N_2)CH_2(C_3H_2N_2)Me]$ (**3d**).

	3a ∙THF	3b ·CH ₃ CN	3d
empirical formula	$C_{23}H_{23}I_2N_4O_2Rh\cdot C_4H_8O$	$C_{51}H_{47}I_2N_4O_6Rh{\cdot}C_2H_3N$	$C_{11}H_{15}I_2N_4O_2Rh$
formula weight	816.28	1209.72	591.98
temp / K	113	113	113
crystal system	monoclinic	triclinic	monoclinic
space group	<i>P</i> 2 ₁ /c (#14)	P1 (#2)	<i>C</i> c (#5)
<i>a</i> / Å	12.126(5)	9.338(4)	9.685(2)
b / Å	14.786(6)	13.972(6)	13.321(3)
<i>c</i> / Å	15.987(6)	20.243(8)	12.691(3)
α / deg	90	72.083(12)	90
eta / deg	92.446(6)	85.57(1)	94.340(2)
γ / deg	90	78.379(9)	90
$V/ \text{\AA}^3$	2863(2)	2461(2)	1632.6(7)
Ζ	4	2	4
$ ho_{ m cacd}/ m g~ m cm^{-3}$	1.893	1.632	2.408
unique reflections	6455	10345	2075
observed reflections	5511, <i>I</i> >2 <i>o</i> (<i>I</i>)	8789, <i>I</i> >2 <i>o</i> (<i>I</i>)	2074, <i>I</i> >2 <i>o</i> (<i>I</i>)
GOF	0.993	1.072	1.088
R1, $wR2$ (all data) ^{<i>a</i>}	0.042, 0.098 ^b	0.043, 0.102 ^c	0.019, 0.059 ^d
^{<i>a</i>} $R1 = \Sigma[F_o - F_c]/\Sigma F_o , wR2 = [\Sigma (w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}, ^{b} w =$			
$1/[\sigma(F_o^2)]/(4F_o^2),$ $^c w = 1/[0.002F_o^2 + \sigma(F_o^2)]/(4F_o^2),$ $^d w =$			
$1/[0.0005F_o^2 + 0.2\sigma(F_o^2)]/(4F_o^2).$			

References

- 1 W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals, 4th ed.*, Burrerworth-Heinemann, Oxford, U.K., 1997.
- 2 C. J. Hawker and J. M. J. Fréchet, J. Am. Chem. Soc., 1990, 112, 7638.
- 3 (a) K. J. Harlow, A. F. Hill and T. Welton, *Synthesis*, 1996, 697. (b) S. Hayat, Atta-ur-Rahman,
 M. I. Choudhary, K. M. Khan, W. Schumann and E. Bayer, *Tetrahedron*, 2001, 57, 9951.
- 4 M. Albrecht, J. R. Miecznikowski, A. Samuel, J. W. Faller and R. H. Crabtree, *Organometallics*, 2002, **21**, 3596.
- 5 R. M. Claramut, J. Elguero and T. Meco, J. Heterocycl. Chem., 1983, 20, 1245.
- 6 (a) F. Maseras and K. Morokuma, J. Comp. Chem., 1995, 16, 1170; (b) S. Humbel, S. Sieber, and K. Morokuma, J. Chem. Phys., 1996, 105, 1959; (c) M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber and K. Morokuma, J. Phys. Chem., 1996, 100, 19357.
- 7 CAChe 6.0, computational program package, Fujitsu Limited, 2000-2003.
- 8 (a) H. Goto and E Osawa, J. Am. Chem. Soc., 1989, **111**, 8950; (b) H. Goto and E. Osawa, J. Chem. Soc., Perkin Trans. 2, 1993, 187.
- 9 (a) J.-H. Lii and N. L. Allinger, J. Am. Chem. Soc., 1989, 111, 8566; (b) J.-H. Lii and N. L.
 Allinger, J. Am. Chem. Soc., 1989, 111, 8576.
- 10 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; (b) W. R. Wadt and P. J. Hay, J.
 Chem. Phys., 1985, 82, 284; (c) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
- 12 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, *J. Am. Chem. Soc.*, 1992, **114**, 10024.
- Gaussian 03 program: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 03*, Revison A.1, Gaussian, Inc., Pittsburgh, PA, **2003**.