Supporting Information for

[Ir(PPh₃)₂(H)₂(ClCH₂CH₂Cl)][BAr^F₄]: A well characterised transition metal dichloroethane complex

*Gemma L. Moxham, Simon K. Brayshaw, Andrew S. Weller** Department of Chemistry, University of Bath, Bath. BA2 7AY

Experimental

All manipulations, unless otherwise stated, were performed under an atmosphere of argon, using standard Schlenk-line and glove-box techniques. Glassware was oven dried at 130° C overnight and flamed under vacuum prior to use. CH₂Cl₂ and pentane were dried over activated alumina, copper and molecular sieves using an MBraun solvent purification system. CD₂Cl₂ and ClCH₂CH₂Cl were distilled under vacuum from CaH₂ and stored over 3Å molecular sieves. Microanalyses were performed by Elemental Microanalysis Limited. Gas chromatography was performed using a Perkin-Elmer GC, helium carrier gas (14psi) injection volume 0.2 µl, oven temperature 40 °C and a flame ionisation detector. Data were analysed using the TurboChrom software package.

NMR spectroscopy

¹H and ³¹P{¹H} spectra were recorded on Bruker Avance 400 MHz and Bruker Avance 500 MHz spectrometers. Residual protio solvent was used as reference for ¹H NMR spectra. ³¹P{¹H} spectra were referenced against 85% H₃PO₄ (external). Chemical shifts are quoted in ppm. Coupling constants are quoted in Hz.

X-Ray Crystallography

Hemispheres of intensity data were collected at 150K on a Nonius Kappa CCD, using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å). Data were processed using the supplied Nonius software. Structure solution, followed by full matrix least squares refinement on F^2 (all data) was

performed using SHELX97¹ under the WINGX 1.70² package, after using SORTAV³ for absorption correction. In the structure of **1** some disorder of the CF₃ groups in the anion was evident. For **1** the Iridium bound hydrogen atoms were located and reliably refined.

CCDC- 636296 contains additional supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Starting materials

The starting materials $Na[BAr^{F_4}]$,⁴ [Ir(COD)Cl]₂,⁵ and [Ir(PPh_3)₂(COD)][BAr^{F_4}]⁶ were prepared by published literature methods or variations thereof.

Synthesis of $[Ir(PPh_3)_2(H)_2-\eta^2-(ClCH_2CH_2Cl)][BAr^F_4]$ (1)

A solution of $[(PPh_3)_2Ir(COD)][BAr^F_4]$ (20mg, 1.18 x 10⁻⁵ moles) in dichloroethane was freeze-thaw degassed and back-filled with H₂. On warming to room temperature there was a colour change from red to colourless. X-ray quality crystals of **1** were obtained by diffusion of pentane into a solution of the compound in dichloroethane. Yield 12mg, 60%. Microanalysis: $[(PPh_3)_2IrH_2(C_2H_4Cl_2)][BAr^F_4]$ C₇₀H₄₈BCl₂F₂₄IrP₂ requires C 50.02%, H 2.88%. Found C 50.21%, H 2.91%.

¹H NMR (δ/ppm C₂H₄Cl₂ 298 K) 7.67-6.85 (m, 42H, ArH), -23.84 (t, *J*(PH) 15 Hz, 2H, IrH). ³¹P{¹H} (δ/ppm C₂H₄Cl₂ 298 K) 19.1 (s).

NMR spectra in CD_2Cl_2 (a mixture of (1) and (2)):

¹H NMR (δ /ppm CD₂Cl₂ 298 K) 7.74-6.88 (m, 42H, ArH), 3.23 (br s, 4H, C₂H₄Cl₂), -25.08 (br s, 2H, IrH). ³¹P{¹H} (δ /ppm CD₂Cl₂ 298 K) 21.4 (br s). ¹H NMR (δ /ppm CD₂Cl₂ 270 K selected) 3.71 (br s, 1.8H, free C₂H₄Cl₂), 2.27 (br s, 2.1H, bound C₂H₄Cl₂), -23.47 (br s, 0.7H, IrH, 1), -25.69 (br s, 0.5H, IrH, 2). ³¹P{¹H} (δ /ppm CD₂Cl₂ 270 K) 22.8 (br s, 2) 19.2 (br s, 1). ¹H NMR (δ /ppm CD₂Cl₂ 250 K selected) 3.75 (s, 1.2H, free C₂H₄Cl₂), 2.05 (2.3H, bound C₂H₄Cl₂), -23.29 (t, *J*(PH) 15 Hz, 1.1H, IrH, 1), -25.53 (br s, 0.3H, IrH, 2). ³¹P{¹H} (δ /ppm CD₂Cl₂ 250 K) 23.1 (br s, 2) 19.3 (br s, 1). ¹H NMR (δ /ppm CD₂Cl₂ 220 K selected) 3.85 (s, 0.7H, free C₂H₄Cl₂), 1.98 (s, 2.8H, bound C₂H₄Cl₂), -23.12 (t, *J*(PH) 15 Hz, 1.3H, IrH, 1), -25.29 (t, *J*(PH) 15 Hz, 0.1H, IrH, 2). ³¹P{¹H} (δ /ppm CD₂Cl₂ 220 K) 23.2 (br s, 2) 19.7 (br s, 1).

Characterisation of $[Ir(PPh_3)_2(H)_2(ClCH_2Cl)_n][BAr^F_4]$ (2) (n = 1 or 2)

Given that dichloromethane is a weakly coordinating solvent it was unclear whether (2) was a solvent compound or a complex containing an agostic interaction. To determine this, compound (1) was dissolved in a non-coordinating solvent, 3-fluorotoluene. Only resonances attributable to (1) were observed. Addition of 0.20 ml CD₂Cl₂ to the solution of (1) in 3-fluorotoluene resulted in the appearance of new signals in approximately 10% intensity that corresponded to those previously reported for (2).⁷ This unequivocally confirms that (2) is a CD₂Cl₂ complex. It does not, however, allow the distinction to be made between one or two bound CD₂Cl₂ ligands. Given that all of the crystallographically characterised CH₂Cl₂ complexes have shown only one CH₂Cl₂ ligand,⁸ we suggest a formulation of [Ir(PPh₃)₂(H)₂(ClCH₂Cl)][BAr^F₄] for (2).

(1) in 3-fluorotoluene

¹H NMR (δ /ppm CH₃C₆H₄F 298 K selected) -23.68 (t, *J*(PH) 15 Hz, IrH). ³¹P{¹H} (δ /ppm CH₃C₆H₄F 298 K) 19.1 (s). ¹H NMR (δ /ppm CH₃C₆H₄F 250 K selected) -23.28 (t, *J*(PH) 15 Hz, IrH). ³¹P{¹H} (δ /ppm CH₃C₆H₄F 250 K) 19.2 (s).

(1) and (2) in 3-fluorotoluene and CD₂Cl₂

¹H NMR (δ /ppm CH₃C₆H₄F and CD₂Cl₂ 250 K selected) -22.92 (br t, IrH, **1**) -25.20 (br, IrH, **2**). ³¹P{¹H} (δ /ppm CH₃C₆H₄F and CD₂Cl₂ 250 K) 19.6 (s, **1**) 23.5 (s, **2**).

Methylcyclohexene hydrogenations

In a Schlenk tube 5mg (2.96 x 10^{-6} moles) of $[(PPh_3)_2Ir(cod)][BAr^F_4]$ was dissolved in 5 cm³ CH₂Cl₂ or C₂H₄Cl₂. 100 equivalents of methylcyclohexane was added. The solution was freeze-thaw degassed and back filled with hydrogen. The solution was left stirring under 1 atmosphere of hydrogen at 22°C and samples were taken at 5 minute intervals for 30 minutes and then 15 minute intervals for a further 90 minutes. The samples were quenched with dppe and analysed using Gas chromatography.

References

- 1 SHELXL97 A program for crystal structure refinement. G. M. Sheldrick, **1997**.
- 2 WinGX-1.70: L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
- 3 SORTAV: R. H. Blessing, Acta. Crystallogr. A, 1995, 51, 33.
- 4 W. E. Schmann, J. S. Miller, *Inorg Synth.*, **2002**, *33*, 85.
- 5 J. K. Herde, J. C. Lambert, C. V. Senoff, *Inorg. Synth.*, 1974, 15, 18.
- 6 A. Rifat, G. Kociok-Köhn, J. W. Steed, A. S. Weller, Organometallics, 2004, 23, 428
- G. L. Moxham, T. M. Douglas, S. K. Brayshaw, G. Kociok-Köhn, J. P. Lowe, A. S. Weller, *Dalton Trans.*, 2006, 46, 5492 and the published correction (submitted).
- For examples of CH₂Cl₂ complexes see: M. D. Butts, B. L. Scott, and G. J. Kubas, *J. Am. Chem. Soc.*, 1996, *118*, 11831; D. J. Huang, J. C. Huffman, J. C. Bollinger, O. Eisenstein, and K. G. Caulton, *J. Am. Chem. Soc.*, 1997, *119*, 7398; F. L. Taw, H. Mellows, P. S. White, F. J. Hollander, R. G. Bergman, M. Brookhart, and D. M. Heinekey, *J. Am. Chem. Soc.*, 2002, *124*, 5100; J. Zhang, K. A. Barakat, T. R. Cundari, T. B. Gunnoe, P. D. Boyle, J. L. Petersen, and C. S. Day, *Inorg. Chem.*, 2005, *44*, 8379