Supporting informations

Solid state structure and solution behaviour of organoselenium(II) compounds containing $2-\{E(CH_2CH_2)_2NCH_2\}C_6H_4$ groups (E = O, NMe)

Monika Kulcsar, Anca Beleaga, Cristian Silvestru, Alina Nicolescu, Calin Deleanu, Cristina Todasca and Anca Silvestru*

Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, RO-400028 Cluj-Napoca, Romania. Fax: 0040 264 590818; Tel: 0040 264 593833; E-mail: ancas@chem.ubbcluj.ro

Solid state structure - supramolecular architectures

$[2-{MeN(CH_2CH_2)_2NCH_2}C_6H_4]_2Se_2$ (2)

- the crystal contains a 1:1 mixture of 1:1 mixtures of (R_{N1}, S_{N3}) and (S_{N1}, R_{N3}) isomers
- the crystal contains parallel chains built from either (R_{N1}, S_{N3}) or (S_{N1}, R_{N3}) isomers

Figure S1. View along *c* axis of the chain polymer of (R_{N1},S_{N3}) -2 isomers based on intermolecular hydrogen contacts. Symmetry equivalent positions: H(3a) (2.5-x, -0.5+y, 0.5-z). Intermolecular contacts within a chain: N(2)···H(3a)_{aryl} 2.67 Å (c.f. $\sum r_{vdW}(N,H)$ 2.74 Å). No further inter-chain contacts.

[2-{O(CH₂CH₂)₂NCH₂}C₆H₄]SeCl (3)

- the crystal contains only the S isomer

Figure S2. View of the chain polymer of *S*-**2** isomers based on intermolecular hydrogen contacts (only hydrogens involved in intermolecular interactions are shown). Symmetry equivalent positions: Cl(1a) (-0.5+x, 0.5-y, -z); H(7Bb) (0.5+x, 0.5-y, -z). Intermolecular contacts within a chain: Cl(1)···H(7Bb)_{methylene} 2.89 Å.

Figure S3. View of a layer network built from parallel chains of *S*-**2** isomers, connected through interchain hydrogen contacts (only hydrogens involved in intermolecular interactions are shown). Symmetry equivalent positions: O(1a') (-0.5+x, -0.5-y, -z); H(7Ab'), H(11Ab') (0.5+x, -0.5-y, -z). Intermolecular contacts between chains: O(1)···H(7Ab')_{methylene} 2.50 Å, O(1)···H(11Ab')_{N-methylene-ring} 2.56 Å (c.f. $\sum r_{vdW}$ (O,H) 2.60 Å). No further inter-layer contacts.

intramolecular distances $Br(2) \cdots H(2) 2.555(7) \text{ Å}$ $\sum r_{vdW}(Br,H) 3.15 \text{ Å}$

Figure S4. View along *a* axis of the layer network built from 4·HBr units through intermolecular hydrogen contacts (only hydrogens involved in hydrogen contacts are shown). Symmetry equivalent positions: Se(1a) (x, y, 1+z); Se(1b) (x, y, -1+z); Se(1') (1.5-x, 0.5+y, 0.5+z); Se(1'') (1.5-x, -0.5+y, -0.5+z). Intermolecular contacts within a layer: Br(1)···H(11B'')_{N-methylene-ring} 3.02 Å, Br(2)···H(8Aa)_{N-methylene-ring} 3.05 Å, Br(2)···H(4'')_{aryl} 3.06 Å.

[2-{O(CH₂CH₂)₂NCH₂}C₆H₄]SeBr·HBr (4·HBr)

_

Figure S5. View along c axis of the layer network in the crystal of 4·HBr.

Figure S6. View along *c* axis of the tridimensional network in the crystal of **4**·HBr built through interlayer hydrogen contacts (only hydrogens involved in hydrogen contacts are shown). Symmetry equivalent positions: H(5') (-0.5+x, 0.5-y, -1+z); O(1'') (0.5+x, 0.5-y, 1+z). Intermolecular contacts between layers: O(1)…H(5')_{aryl} 2.37 Å (c.f. $\sum r_{vdW}(O,H)$ 2.60 Å).

$[2-{O(CH_2CH_2)_2NCH_2}C_6H_4]SeI(5)$

- the crystal contains a 1:1 mixture of R and S isomers
- intramolecular distances I(1)···H(6) 2.96 Å

 $\sum r_{vdW}(I,H) 3.35 \text{ Å}$

Figure S7. View of the dimer association of *R* and *S* isomers in the crystal of **5** (only hydrogens involved in hydrogen contacts are shown). Symmetry equivalent positions: Se(1') (2-x, -y, 1-z). Intermolecular contacts within the dimer unit: Se(1)…I(1') 3.96 Å; I(1)…H(9B')_{O-methylene-ring} 3.28 Å (c.f. $\sum r_{vdW}(Se,I) 4.15$ Å).

Figure S8. View of the columnar chain polymer in the crystal of **5** based on hydrogen contacts between dimer units (only hydrogens involved in hydrogen contacts are shown). Symmetry equivalent positions: Se(1a') (2-x, -y, 2-z); Se(1b) (x, y, -1+z). Inter-dimer contacts within a chain: I(1)…H(5a')_{aryl} 3.29 Å.

Figure S9. View along c axis of the columnar chain polymer in the crystal of 5.

Figure S10. View along *c* axis of the tridimesional network built from columnar chain polymers in the crystal of **5**, through oxygen-hydrogen inter-chain contacts (only hydrogens involved in hydrogen contacts are shown). Inter-chain contacts: O(1)···H(7B)_{methylene} 2.51 Å (c.f. $\sum r_{vdW}(O,H)$ 2.60 Å).

$[2-{MeN(CH_2CH_2)_2NCH_2}C_6H_4]SeI(6)$

- the crystal contains a 1:1 mixture of *R* and *S* isomers
- intramolecular distances I(1)····H(6) 2.87 Å $\sum r_{vdW}(I,H)$ 3.35 Å

Figure S11. View along *a* axis of the chain polymer of alternating *S* and *R* isomers in the crystal of **6** (only hydrogens involved in intermolecular interactions are shown). Symmetry equivalent positions: Se(1a) (x, 1.5-y, 0.5+z); Se(1b) (x, 1.5-y, -0.5+z). Intermolecular contacts within a chain: I(1)···H11Bb)_{N-methylene-ring} 3.31 Å. No further inter-chain contacts.

Solution behaviour

Figure S12. The aliphatic region of the ¹H NMR spectrum (CDCl₃, 400 MHz, 26°C) of (a) $[2-O(CH_2CH_2)_2NCH_2]C_6H_5$; (b) $[2-{O(CH_2CH_2)_2NCH_2}C_6H_4]SeCl (3)$; (c) $[2-{O(CH_2CH_2)_2NCH_2}C_6H_4]SeI (5)$.

Figure S13. (a) The aliphatic region of the ¹H NMR spectrum of [2-{O(CH₂CH₂)₂NCH₂}C₆H₄]SeCl (3) (CDCl₃, 400 MHz, 26°C), and (b) simulation of the ¹H aliphatic region for 3 on the basis of the following parameters:

δ 2.690 ppm [ddd, N-C*H*₂-CH₂, pro-*trans*-H_{8,11}, ²J_{HH} 12.0, ³J_{HH} 11.1, ³J_{HH} 4.0 Hz]; δ 3.110 ppm [d, N-C*H*₂-CH₂, pro-*cis*-H_{8,11}, ²J_{HH} 12.0]; δ 3.900 ppm [m, -CH₂-C*H*₂-O, H_{9,10}, ³J_{HH} 11.1, ³J_{HH} 4.0 Hz (with pro-*trans*-H_{8,11})]; δ 3.940 ppm [s, C₆H₄-C*H*₂-N, H₇].

Figure S14. ¹H NMR spectra (CDCl₃) for $[2-{O(CH_2CH_2)_2NCH_2}C_6H_4]SeI (5)$ at (a) 26 °C (400 MHz), and (b) -30 °C (300 MHz).

Figure S15. The 2D indirectly detected H,N-HMBC spectra (400 MHz, CDCl₃) for **2**: (a) 26 °C; (b) 60 °C.

Figure S16. The 2D indirectly detected H,Se-HMBC spectra (400 MHz, CDCl₃) for **2**: (a) 26 °C; (b) 60 °C.

Figure S17. The 2D indirectly detected H,N-HMBC spectra (400 MHz, CDCl₃) for 3, at 26 °C.

Figure S18. The 2D indirectly detected H,Se-HMBC spectra (400 MHz, CDCl₃) for 3, at 26 °C.

Figure S19. The 2D indirectly detected H,N-HMBC spectra (400 MHz, C₆D₆) for 5, at 26 °C.

Figure S20. The 2D indirectly detected H,Se-HMBC spectra (400 MHz, C₆D₆) for 5, at 26 °C.

Figure S21. The 2D indirectly detected H,N-HMBC spectra (400 MHz) for **6**: (a) 65 °C (C_6D_6); (b) 60 °C ($CDCl_3$).

Figure S22. The 2D indirectly detected H,Se-HMBC spectra (400 MHz, C₆D₆) for 6, at 65 °C.