Supporting Information

Kai-Ju Wei, Jia Ni, Yong-Shu Xie, Yangzhong Liu and Qing-Liang Liu

Scheme 1. ¹H NMR spectra of the ligand **3-BPFA** (300 MHz, DMSO; 298K).

Figure S1. ORTEP diagram showing the structure of **3-BPFA** with 50% thermal ellipsoids probability and the atom-labeling scheme. Hydrogen atoms and water molecules have been omitted for clarity.

 Table S1.
 Hydrogen bonds for ligand 3-BPFA [Å and deg.].

D-H···A	d(D-H)	d(H···A)	d(D····A)	\angle (DHA)
$N(1)-H(1A)\cdots O(2)^{\#1}$	0.86	2.14	2.97	160
$N(3)-H(3A)\cdots N(2)^{\#2}$	0.86	2.29	3.11	159
$O(3)-H(3E)\cdots O(1)^{\#3}$	0.85	2.03	2.88	179
$O(3)-H(3F)\cdots N(4)^{\#4}$	0.85	1.99	2.84	179
Symmetry transform	nations used to g	enerate equivale	ent atoms: (#1) -x+	+1, y+1/2, -z+1;
(#2) -x, y-1/2, -z+1;	(#3) x+1, y, z; (#	#4) x, y, z-1.		

Complex 1		12	
Cu-N(2)	2.040(4)	$Cu-N(4)^{#2}$	2.045(3)
Cu-O(3)	2.186(5)		
$N(2) - Cu(1) - N(2)^{\#1}$	167.4(2)	$N(2)-Cu(1)-N(4)^{\#2}$	88.57(13)
$N(2)^{\#1}$ -Cu(1)- N(4) $^{\#2}$	90.32(13)	$N(2) - Cu(1) - N(4)^{\#3}$	90.32(13)
$N(2)^{\#1}$ -Cu(1)- N(4)^{\#3}	88.57(13)	$N(4)^{#2}$ -Cu(1)-N(4) ^{#3}	169.85(16)
N(2)-Cu(1)-O(3)	96.30(11)	$N(2)^{\#1}$ -Cu(1)-O(3)	96.30(11)
$N(4)^{#2}$ -Cu(1)-O(3)	95.08(8)	$N(4)^{\#3}$ -Cu(1)-O(3)	95.08(8)
Symmetry transform	nations used to gen	nerate equivalent atoms: (#1) -x+5/4, y, -z+1/4;
(#2) x, -y+1/4, -z+1/	4; (#3) -x+5/4, -y-	+1/4, z.	
Complex 2			
Ni(1)-N(2)	2.172(7)	Ni(1)-O(3)	2.203(10)
$Ni(1)-N(4)^{\#2}$	2.200(8)	Ni(1)-Cl(1)	2.615(3)
$N(2)-Ni(1)-N(2)^{\#1}$	179.0(4)	$N(2)-Ni(1)-N(4)^{\#2}$	88.9(3)
$N(2)^{\#1}-Ni(1)-N(4)^{\#2}$	91.2(3)	$N(2)-Ni(1)-N(4)^{\#3}$	91.2(3)
$N(2)^{\#1}-Ni(1)-N(4)^{\#3}$	88.9(3)	$N(4)^{#2}$ -Ni(1)-N(4) ^{#3}	177.8(4)
N(2)-Ni(1)-O(3)	90.49(18)	$N(2)^{\#1}$ -Ni(1)-O(3)	90.49(18)
$N(4)^{#2}$ -Ni(1)-O(3)	88.92(19)	$N(4)^{#3}$ -Ni(1)-O(3)	88.92(19)
N(2)-Ni(1)-Cl(1)	89.51(18)	$N(2)^{\#1}-Ni(1)-Cl(1)$	89.51(18)
$N(4)^{#2}$ -Ni(1)-Cl(1)	91.08(19)	$N(4)^{#3}$ -Ni(1)-Cl(1)	91.08(19)
O(3)-Ni(1)-Cl(1)	180.000(1)	$Ni(1)-Cl(1)-Ni(1)^{#3}$	180.000(1)
Symmetry transform	nations used to gen	nerate equivalent atoms: (#1) -x+1/4, y, -z+5/4;
(#2) x, -y+1/4, -z+5/	4; (#3) -x+1/4, -y-	+1/4, z.	
Complex 3			
Co(1)-O(3)	2.125(7)	Co(1)-N(2)	2.162(5)
$Co(1)-N(4)^{\#2}$	2.175(5)	Co(1)- $Cl(1)$	2.5621(12)
$O(3)-Co(1)-N(2)^{\#1}$	90.64(14)	O(3)-Co(1)-N(2)	90.64(14)
$N(2)^{\#1}$ -Co(1)-N(2)	178.7(3)	$O(3)-Co(1)-N(4)^{\#2}$	89.68(14)
$N(2)^{\#1}-Co(1)-N(4)^{\#2}$	90.80(18)	$N(2)-Co(1)-N(4)^{\#2}$	89.20(18)
$O(3)-Co(1)-N(4)^{\#3}$	89.68(14)	$N(2)^{\#1}$ -Co(1)-N(4) $^{\#3}$	89.20(18)
$N(2)-Co(1)-N(4)^{\#3}$	90.80(18)	$N(4)^{\#2}$ -Co(1)-N(4)^{\#3}	179.4(3)
O(3)-Co(1)-Cl(1)	180.000(1)	$N(2)^{\#1}$ -Co(1)-Cl(1)	89.36(14)
N(2)-Co(1)-Cl(1)	89.36(14)	$N(4)^{\#2}$ -Co(1)-Cl(1)	90.32(14)
$N(4)^{\#3}$ -Co(1)-Cl(1)	90.32(14)	$Co(1)^{\#3}$ -Cl(1)-Co(1)	180.0

Symmetry transformations used to generate equivalent atoms: (#1) -x+9/4, y, -z+1/4; (#2) x, -y+5/4, -z+1/4; (#3) -x+9/4, -y+5/4, z.

Figure S2. View of the supramolecular adduct **3-BPFA**, showing the hydrogen bonds between N-H donors on **3-BPFA** and the N acceptors on the other moiety. Symmetry transformations used to generate equivalent atoms: (#1) -x+1, y+1/2, -z+1; (#2) -x, y-1/2, -z+1.

Figure S3. View of the packed structure along *bc* plane in compound **3-BPFA**. Symmetry transformations used to generate equivalent atoms: (#3) x+1, y, z; (#4) x, y, z-1.

D-H···A	d(D-H)	d(H···A)	d(D····A)	\angle (DHA)
N(3)-H(3A)····O(1)	0.86	2.17	2.84	134
$N(1)-H(1A)\cdots O(7)^{\#1}$	0.86	2.17	2.96	154
O(3)-H(3B)····O(8) ^{#2}	0.82	1.94	2.71	156
O(8)-H(8A)····O(2) ^{#3}	0.82	2.00	2.77	144
G () (1		• • • • • •	111 1 (112

Table S3. Hydrogen bonds for 1 [Å and deg.].

Symmetry transformations used to generate equivalent atoms: (#1) x, y, z-1; (#2) -x+5/4, y, -z+1/4; (#3) x-1/2, y+1/2, z.

Figure S4. Top view of the pseudo-capsule $[Ni_2(3-BPFA)_4(\mu-Cl)_2(H_2O)_2](ClO_4)_3$, showing multiple N-H···O and C-H···O H-bonding interactions. A ClO₄⁻ anion is omitted for clarity. Symmetry transformations used to generate equivalent atoms: (#1): -x+1/2, -y+1, -z+3/2.

D-H····A	d(D-H)	d(H···A)	$d(D \cdot \cdot \cdot A)$	\angle (DHA)
N(3)-H(3)····O(1)	0.86	2.44	3.04	127
C(18)-H(18)····O(1)	0.93	2.37	3.13	139
C(15)-H(15)····O(7) ^{#1}	0.93	2.51	3.28	140
$N(1)-H(1)\cdots O(7)^{\#1}$	0.86	2.50	3.27	150
S			$(\#1)_{1} = 1/2 = 1/2$	- 12/2

Table S4. Hydrogen bonds for 2 [Å and deg.].

Symmetry transformations used to generate equivalent atoms: (#1): -x+1/2, -y+1, -z+3/2

Figure S5. Top and side views of the cage $[Co_2(3-BPFA)_4(\mu-Cl)_2(H_2O)_2](ClO_4)_3\cdot 4CH_3OH$, showing multiple intramolecular N-H···O hydrogen-bonding interactions and intermolecular N-H···O and O-H···O hydrogen-bonding interactions. Hydrogen atoms are omitted for clarity.

D-HA	d(D-H)	d(HA)	d(DA)	\angle (DHA)
N(3)-H(3A)····O(1)	0.86	2.23	2.87	132
C(5)-H(5)····O(6)	0.93	2.49	3.37	157
C(8)-H(8)····O(1)	0.93	2.11	2.73	123
C(19)-H(19)····O(1)	0.93	2.25	3.03	142
$O(3)-H(3B)-O(8)^{\#1}$	0.82	2.07	2.77	143
$O(8)-H(8B)-O(2)^{#2}$	0.82	2.59	3.29	85
$N(1)-H(1A)\cdots O(5)^{\#3}$	0.86	2.30	3.08	150
C(11)-H(11)····O(5) ^{#3}	0.93	2.46	3.23	140
Summatry transform	antiona wood	to concrete agu	ivalant atoms: (+	(41) · v + 1 v z · (42)

Symmetry transformations used to g	enerate equivalent atoms	s: (#1): x+1, y, z; (#3): x+1, y, z-1.
Table 85.	Hydrogen bonds for 3	[Å and deg.].

Symmetry transformations used to generate equivalent atoms: (#1): x+1,y,z; (#2): x-1/2, y-1/2, z; (#3): x+1,y,z-1.

Figure S6. UV-visible absorption spectra at ambient temperature in MeOH (4×10^{-5} M) for the ligand **3-BPFA** and in MeOH (1×10^{-5} M) complexes **1-3**.

Figure S7. Thermogravimetric analysis of complexes 1-3.

Figure S8. Cyclic voltammogram of **Ferrocene** in acetonitril/0.1 M tetrabutylammonium hexafluorophosphate; concentration of **Ferrocene**: 0.5×10^{-3} M. Scan rate of 50 mV/s.

Figure S9. Cyclic voltammogram of **3-BPFA** in acetonitril/0.1 M tetrabutylammonium hexafluorophosphate; concentration of **3-BPFA**: 0.5×10^{-3} M. Scan rate of 50 mV/s.

Figure S10. Cyclic voltammogram of 1 in acetonitril/0.1 M tetrabutylammonium

hexafluorophosphate; concentration of $1: 0.5 \times 10^{-3}$ M. Scan rate of 50 mV/s.

Figure S11. Cyclic voltammogram of **2** in acetonitril/0.1 M tetrabutylammonium hexafluorophosphate; concentration of **2**: 0.5×10^{-3} M. Scan rate of 50 mV/s.

Figure S12. Cyclic voltammogram of **3** in acetonitril/0.1 M tetrabutylammonium hexafluorophosphate; concentration of **3**: 0.5×10^{-3} M. Scan rate of 50 mV/s.