Oligomerization and Regioselective Hydrosilylation of Styrenes Catalyzed by

Cationic Allyl Nickel Complexes Bearing Allylphosphine Ligands

Iqbal Hyder, Manuel Jiménez-Tenorio, M. Carmen Puerta, Pedro Valerga*

Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química

Inorgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz,

Spain

ELECTRONIC SUPPLEMENTARY MATERIAL

• X-Ray Crystal Structure of *trans*-[NiBr₂(PⁱPr₂CH₂CH=CH₂)₂] (3b)

• Relevant GPC/SEC chromatograms for the oligomers

X-Ray Crystal Structure of *trans*-[NiBr2(PⁱPr2CH2CH=CH2)2] (3b)

Complexes **3a-b** are easily accessibly in a more direct way by reaction of anhydrous NiBr₂ with the corresponding phosphine in ethanol. The X-ray crystal structure of **3b** was determined. The asymmetric unit consist in half a molecule being the Ni atom at a special position. An ORTEP view of the whole molecule is shown in the figure.

Figure. ORTEP drawing (50 % thermal ellipsoids) of the complex $[NiBr_2(\kappa^1(P)-P^iPr_2CH_2CH=CH_2)_2]$ (**3b**). Selected bond lengths (Å) and angles (°) with estimated standard deviations in parentheses: Ni(1)-P(1) 2.2590(8); Ni(1)-Br(1) 2.3025(5); C(1)-C(2) 1.500(4); C(2)-C(3) 1.312(5); Br(1)-Ni(1)-P(1) 89.34(3); Br(1)-Ni(1)-Br(1)' 180; P(1)-Ni(1)-P(1)' 180.

The structure consists of a packing of discrete $[NiBr_2(\kappa^1(P)-P^iPr_2CH_2CH=CH_2)_2]$ square planar molecules with a *trans* arrangement of bromide and phosphine ligands. This structure is very similar to that adopted by $[NiBr_2(PMe^iPr_2)_2]^{\$}$ and other related

compounds. All distances and angles in this complex are within the expected ranges, being unexceptional and do not require further comment.

It is interesting to mention that complexes **3a-b** exhibit a NMR spectral behavior very similar to that previously observed for the derivatives *trans*-[NiBr₂(PRⁱPr₂)₂] (R = Me, Ph).[§] Thus, the ¹H NMR spectra exhibit broad resonances at room temperature, whereas the ³¹P{¹H} NMR spectra appear featureless. At low temperatures, the ³¹P{¹H} NMR spectra consist of one singlet. This behavior has been interpreted in terms of fast phosphine dissociation, although a rapid exchange between species having square planar or distorted tetrahedral structures in solution can not be excluded.

§ M. Jiménez-Tenorio, M. C. Puerta, I. Salcedo, P. Valerga, S. I. Costa, L. C. Silva and P. T. Gomes, *Organometallics* 2004, **23**, 3139-3146.

Relevant GPC/SEC chromatograms for the oligomers

Run: Entry 1, Table 1 of the article Catalyst: 0.5 % [Ni(η^3 -CH₂CHCH₂)($\kappa^1(P)$ -PPh₂CH₂CH=CH₂)₂][BAr'₄] (**4a**) Substrate: Styrene Temperature: 40 °C Reaction time: 30 minutes Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 1	5.00	6.36	1 008.47	808.49	1.25	86
from peak # 1						
2 : Division 2	6.36	6.60	341.55	336.11	1.02	11
from peak # 1						
3 : Division 3	6.60	6.81	217.84	215.23	1.01	3
from peak # 1						

Run: Entry 2, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂CHCH₂)($\kappa^1(P)$ -PPh₂CH₂CH=CH₂)₂][BAr'₄] (**4a**) Substrate: Styrene Temperature: 40 °C Reaction time: 1 hour Solvent: 1,2-dichloroethane

Run: Entry 3, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂CHCH₂)($\kappa^1(P)$ -PPh₂CH₂CH=CH₂)₂][BAr'₄] (**4a**) Substrate: Styrene Temperature: 15 °C Reaction time: 24 hour Solvent: 1,2-dichloroethane

Run: Entry 4, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂C(CH₃)CH₂)($\kappa^1(P)$ -PPh₂CH₂CH=CH₂)₂][BAr'₄] (**4b**) Substrate: Styrene Temperature: 25 °C Reaction time: 5 minutes Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 1	5.00	6.36	937.11	765.09	1.22	81
from peak # 1						
2 : Division 2	6.36	6.60	342.92	337.33	1.02	15
from peak # 1						
3 : Division 3	6.60	6.83	217.01	214.22	1.01	4
from peak # 1						

Run: Entry 5, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂CHCH₂)($\kappa^1(P)$ -PⁱPr₂CH₂CH=CH₂)₂][BAr'₄] (**5a**) Substrate: Styrene Temperature: 40 °C Reaction time: 1 hour Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	$M_{\rm n}$	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 2	4.60	6.37	1 677.56	1 128.10	1.49	95
from peak # 1						
2 : Division 3	6.37	6.59	340.35	335.71	1.01	4
from peak # 1						
3 : Division 4	6.59	6.86	211.85	207.66	1.02	1
from peak # 1						

Run: Entry 6, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂C(CH₃)CH₂)($\kappa^1(P)$ -PⁱPr₂CH₂CH=CH₂)₂][BAr'₄] (**5b**) Substrate: Styrene Temperature: 40 °C Reaction time: 1 hour Solvent: 1,2-dichloroethane

Run: Entry 7, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂C(CH₃)CH₂)($\kappa^1(P)$ -PⁱPr₂CH₂CH=CH₂)₂][BAr'₄] (**5b**) Substrate: Styrene Temperature: 25 °C Reaction time: 15 hour Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 1	3.39	4.82	27 028.06	17 903.39	1.51	6
from peak # 1						
2 : Division 2	4.82	6.60	1 660.41	1 072.84	1.55	93
from peak # 1						
3 : Division 3	6.60	6.83	216.84	214.22	1.01	1
from peak # 1						

Run: Entry 8, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂CHCH₂)($\kappa^1(P)$ -PⁱPh₂CH₂CH=CH₂)₂][BAr'₄] (**4a**) Substrate: 4-Methylstyrene Temperature: 40 °C Reaction time: 20 hour Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 1	4.65	6.29	1 452.61	1 089.42	1.33	90
from peak # 1						
2 : Division 2	6.29	6.49	403.12	398.23	1.01	7
from peak # 1						
3 : Division 3	6.49	6.81	255.75	249.57	1.02	3
from peak # 1						

Run: Entry 9, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂C(CH₃)CH₂)($\kappa^1(P)$ -PⁱPh₂CH₂CH=CH₂)₂][BAr'₄] (**4b**) Substrate: 4-Methylstyrene Temperature: 25 °C Reaction time: 5 minutes Solvent: 1,2-dichloroethane

1 : Division 1	4.77	6.27	1 263.33	998.89	1.26	86
from peak # 1						
2 : Division 2	6.27	6.50	409.58	403.42	1.02	10
from peak # 1						
3 : Division 3	6.50	6.81	252.94	247.31	1.02	4
from peak # 1						

Run: Entry 10, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂CHCH₂)($\kappa^1(P)$ -PⁱPr₂CH₂CH=CH₂)₂][BAr'₄] (**5a**) Substrate: 4-Methylstyrene Temperature: 40 °C Reaction time: 5 hours Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Peak # 1	4.22	6.53	2 813.92	1 844.44	1.53	100

Run: Entry 11, Table 1 of the article

Catalyst: 0.5 % $[Ni(\eta^3-CH_2C(CH_3)CH_2)(\kappa^1(P)-P^iPr_2CH_2CH=CH_2)_2][BAr'_4]$ (**5b**) Substrate: 4-Methylstyrene Temperature: 40 °C Reaction time: 1 hour Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 1	4,47	6,41	2 056,83	1 334,00	1,54	97
from peak # 1						
2 : Division 2	6,41	6,73	299,61	293,06	1,02	3
from peak # 1						

Run: Entry 12, Table 1 of the article

Catalyst: 0.5 % [Ni(η^3 -CH₂C(CH₃)CH₂)($\kappa^1(P)$ -PⁱPr₂CH₂CH=CH₂)₂][BAr'₄] (**5b**) Substrate: 4-Methylstyrene Temperature: 25 °C Reaction time: 22 hour Solvent: 1,2-dichloroethane

Zone	Start [min]	Stop [min]	$M_{ m W}$	M _n	$M_{\rm W}/M_{\rm n}$	Peak Area %
1 : Division 1	4.04	6.45	2 456.08	1 501.55	1.64	98
from peak # 1						
2 : Division 2	6.45	6.79	269.68	262.06	1.03	2
from peak # 1						