A Theoretical and Experimental Study of the Fluxional Behaviour of Molybdenum Dihydrobis- and Hydrotrispyrazolylborates

M. Dolores Santa María,*^{*a*} Rosa M. Claramunt,^{*a*} Ibon Alkorta^{*b*} and José Elguero^{*b*}

Electronic supplementary information (ESI)

NMR Spectroscopy. Solution. The spectra were recorded on a Bruker DRX 400 spectrometer (9.4 Tesla, 400.13 MHz for ¹H, 100.62 MHz for ¹³C and 40.56 MHz for ¹⁵N) with a 5-mm inverse-detection H-X probe equipped with a z-gradient coil. Chemical shifts (δ in ppm) are given from internal solvent, CDCl₃ 7.26 for ¹H, 77.0 for ¹³C, and for ¹⁵N nitromethane (0.00) was used as external reference. Parameters for ¹H NMR spectra were spectral width 4496 Hz, pulse width 7.5 µs at an attenuation level of 0 dB and resolution 0.27 Hz per point. Parameters for ¹³C NMR spectra were spectral width 26178 Hz, pulse width 10.6 µs at an attenuation level of -6 dB and resolution 0.80 Hz per point; WALTZ-16 was used for broadband proton decoupling; the FIDS were multiplied by an exponential weighting (lb = 1 Hz) before Fourier transformation. 2D (¹H-¹H) gs-COSY and inverse proton detected heteronuclear shift correlation spectra. (¹H-¹³C) gs-HMQC, (¹H-¹³C), gs-HMBC and (¹H-¹⁵N) gs-HMBC were acquired and processed using standard Bruker NMR software in non-phase-sensitive mode and were carried out to assign the ¹H, ¹³C and ¹⁵N signals. Gradient selection was achieved through a 5% sine truncated shaped pulse gradient of 1 ms. Selected parameters for (¹H-¹H) gs-COSY were spectral width 4496 Hz, the acquisition data size was 1024 points and one transient was accumulated per increment, with a 1 s relaxation delay, for a total of 512 experiments, data processing using zero filling in the F1 domain and shifted sine-bell apodization of factor 0 in both dimensions. Selected parameters for $({}^{1}H-{}^{13}C)$ gs-HMQC spectra were spectral width 4496 Hz for ¹H and 16.34 kHz for ¹³C, 1024 x 256 data set, number of scans 2 and relaxation delay 1s. Parameters for (¹H-¹³C) gs-HMQC spectra were spectral width 4496 Hz for ¹H and 26.18 kHz for ¹³C, 1024 x 128 data set, number of scans 4, relaxation delay 1s and 60 ms delay for the evolution of the ¹³C-¹H long-range coupling. Parameters for (¹H-¹⁵N) gs-HMQC spectra were spectral width 4496 Hz for ¹H and 12.44 kHz for ¹⁵N, 1024 x 512 data set, number of scans 2, relaxation delay 1s and 83 ms delay for the evolution of the ¹⁵N-¹H long-range coupling. The FIDs were processed using zero filling in the F1 domain and a sine-bell window function in both dimensions was applied prior to Fourier transformation. In the gs-HMQC experiments GARP modulation of ¹³C was used for decoupling. Variable temperature: A Bruker BVT3000 temperature unit was used to control the temperature and an exchanger to reach low temperatures. To avoid problems at low temperatures caused by air moisture, pure nitrogen was used as cooling gas stream.

Solid state. ¹³C (100.73 MHz) and ¹⁵N (40.60 MHz) CPMAS NMR spectra were obtained on a Bruker WB 400 spectrometer at 300 K using a 4 mm DVT probehead and standard CP pulse sequences were employed.. Samples were carefully packed in a 4-mm diameter cylindrical zirconia rotors with Kel-F end-caps. Operating conditions involved 3.2 μ s 90° ¹H pulses and decoupling field strength of 78.1 kHz by TPPM sequence. ¹³C spectra were originally referenced to a glycine sample and then the

chemical shifts were recalculated to the Me₄Si (for the carbonyl atom δ (glycine) = 176.1 ppm) and ¹⁵N spectra to ¹⁵NH₄Cl and then converted to nitromethane scale using the relationship: δ^{15} N(nitromethane) = δ^{15} N(ammonium chloride) – 338.1 ppm. The typical acquisition parameters for ¹³C CPMAS were: spectral width, 40 kHz; recycle delay, 5 s; acquisition time, 30 ms; contact time, 2 ms; and spin rate, 12 kHz. In order to distinguish protonated and unprotonated carbon atoms, the NQS (Non-Quaternary Suppression) experiment by conventional cross-polarization was recorded; before the acquisition parameters for ¹⁵N CPMAS were: spectral width, 40 kHz; recycle delay, 5 s; acquisition time, 35 ms; contact time, 5 ms; and spin rate, 6 kHz.

The cross peaks observed between pairs of signals are: (¹H-¹H) gs-COSY: 1.20 (Ha)↔3.20 (Hs), 1.61 (Ha)↔3.68 (Hs), 3.20 (Hs)↔3.68 (Hs), 2.07 (5-Me)↔5.76 (H4), 2.08 (5-Me)↔5.65 (H4), 2.35 (3-Me)↔5.65 (H4), 2.65 (3-Me)↔5.76 (H4). $(^{1}\text{H}^{-13}\text{C})$ gs-HMOC: 1.20 (Ha) \leftrightarrow 49.8, 1.61 (Ha) \leftrightarrow 66.4, 1.66 (Me methallyl) \leftrightarrow 22.2, 2.07&2.08 (5-Me)↔10.5&10.7, 2.35 (3-Me)↔14.0, 2.65 (3-Me)↔13.6, 3.20 $(Hs) \leftrightarrow 49.8, 3.68 (Hs) \leftrightarrow 66.4, 5.65 (H4) \leftrightarrow 104.9, 5.76 (H4) \leftrightarrow 105.1. (^{1}H-^{13}C) gs-$ HMBC: 1.20 (Ha)↔22.2 (Me methallyl), 1.20 (Ha)↔66.4 (Ct), 1.20 (Ha)↔225.7 (CO), 1.61 (Ha) \leftrightarrow 22.2 (Me methallyl), 1.61 (Ha) \leftrightarrow 49.8 (Ct), 1.61 (Ha) \leftrightarrow 233.5 (CO), 1.66 (Me methallyl) \leftrightarrow 49.8 (Ct), 1.66 (Me methallyl) \leftrightarrow 66.4 (Ct), 1.66 (Me methallyl)↔91.8 (C_c), 2.07&2.08 (5-Me)↔104.9&105.1 (C4), 2.07 (5-Me)↔142.3 (C5), 2.08 (5-Me)↔144.1 (C5), 2.35&2.65 (3-Me)↔104.9&105.1 (C4), 2.35 (3-Me)↔144.1 (C5), 2.35 (3-Me)↔149.0 (C3), 2.65 (3-Me)↔151.7 (C3), 3.20 (Hs)↔66.4 (Ct), 3.68 (Hs)↔49.8 (Ct), 5.65 (H4)↔144.1 (C5), 5.65 (H4)↔149.0 (C3), 5.76 (H4)↔142.3 (C5), 5.76 (H4)↔151.7 (C3), (¹H-¹⁵N) gs-HMBC: 2.07 (5-Me)↔-151.1 (N1), 2.08 (5-Me)↔-150.1 (N1), 2.35 (3-Me)↔-126.9 (N2), 2.65 $(3-Me) \leftrightarrow -130.3 \text{ (N2)}, 5.65 \text{ (H4)} \leftrightarrow -150.1 \text{ (N1)}, 5.76 \text{ (H4)} \leftrightarrow -151.1 \text{ (N1)}.$

Comp.	Minimum	TS	Barrier	Barrier+ZPE
1	-1085.3559	-1085.3301	67.9	67.6
2	-1046.0459	-1046.0224	61.8	61.5
3	-1388.9978	-1388.9406	150.4	148.9
4	-1349.6874	-1349.6450	111.5	111.6
5	-928.0969	-928.0858	29.0	29.3
6	-888.7865	-888.7753	29.4	29.3
7	-1153.1307	-1153.0833	124.3	122.8
8	-1113.8213	-1113.7901	81.9	81.4

B3LYP/LANL2DZ calculations (absolute energies in hartrees and relative energies in kJ mol⁻¹)

Absolute shieldings (σ , ppm)

References			B3LYP/LANL2DZ
BH ₄ GIAO.log:	1	В	161.0201
BH ₄ GIAO.log:	2	Н	33.6756
BMe ₃ GIAO.log:	1	В	23.1862
BMe ₃ GIAO.log:	2	С	177.0135
BMe3 GIAO.log:	3	С	177.0329
BMe3 GIAO.log:	4	С	177.0414
BMe3 GIAO.log:	5	Н	31.6551
BMe3 GIAO.log:	6	Н	31.6553
BMe3 GIAO.log:	7	Н	31.6579
BMe3 GIAO.log:	8	Н	31.6551
BMe3 GIAO.log:	9	Н	31.6553
BMe3 GIAO.log:	10	Н	31.6579
BMe3 GIAO.log:	11	Н	31.433
BMe3 GIAO.log:	12	Н	31.4322
BMe3 GIAO.log:	13	Н	31.4303
C ₂ H ₂ GIAO.log:	1	С	129.1164
C ₂ H ₂ GIAO.log:	3	Н	30.6777
CH ₂ O GIAO.log:	1	С	-17.0724
CH ₂ O GIAO.log:	2	0	-563.3824
CH ₂ O GIAO.log:	3	Н	21.3584
CH ₄ GIAO.log:	1	С	195.5784
CH ₄ _GIAO.log:	2	Н	32.3813
H ₂ O_GIAO.log:	1	0	298.3304
H ₂ O_GIAO.log:	2	Н	31.8177
Mo(CO)6_GIAO.log:	1	Мо	-97.5837
Mo(CO)6_GIAO.log:	2	С	-35.093
Mo(CO)6_GIAO.log:	3	0	-120.2748
MoO ₄ _GIAO.log:	1	Мо	-395.3101
MoO ₄ _GIAO.log:	2	0	-373.802
NH ₃ _GIAO.log:	1	N	261.5728
NH ₃ _GIAO.log:	2	Н	32.7386
Nitromethane_GIAO.log:	1	С	120.3508
Nitromethane_GIAO.log:	2	Н	28.1942
Nitromethane_GIAO.log:	3	Н	28.1942
Nitromethane_GIAO.log:	4	Н	28.1709
Nitromethane_GIAO.log:	5	Ν	-198.7746
Nitromethane_GIAO.log:	6	0	-574.4917
Nitromethane_GIAO.log:	7	0	-574.4041

TMS_GIAO.log:	1	Si	9.1226
TMS_GIAO.log:	2	С	193.1862
TMS_GIAO.log:	6	Н	32.77

1 Mo -310.892
2 O-162.3539
3 O-124.5024
4 N-40.4161
5 N-6.3602
6 N-47.0793
7 N -6.1354
8 B 120.6772
9 H 33.8813
10 H 29.5183
11 C 44.2177
12 C 83.9517
13 H 26.5562
14 C 31.9432
15 C 41.8199
16 C 84.6684
17 H 26.5681
18 C 36.1805
19 C -75.3211
20 C -60.9744
21 C 112.7834
22 H 30.3575
23 H 28.6384
24 C 86.7389

26 H 29.5995 27 H 31.1315 28 C 164.4957 29 H 30.6252 30 H 31.132 31 H 31.5583 32 C 173.409 33 H 30.6465 34 H 29.8556 35 H 29.4688 36 C 175.6598 37 H 30.5076 38 H 30.9617 39 H 30.8475 40 C 175.1556 41 H 30.9257 42 H 30.7927 43 H 30.6284 44 C 172.7874 45 H 30.6521 46 H 30.539 47 H 29.9157

Comp.	Barrier	Me(allyl)	Me(pyrazole)	tris/bis
 1	67.9	1	1	0
2	61.8	0	1	0
3	150.4	1	1	1
4	111.5	0	1	1
5	29.0	1	0	0
6	29.4	0	0	0
7	124.3	1	0	1
8	81.9	0	0	1

Presence/absence matrix

Regression Summary

Barrier+ZPE vs. 3 Independents				
Count	8			
Num. Missing	0			
R	.973			
R Squared	.947			
Adjusted R Squared	.908			
RMS Residual	13.206			

Regression Coefficients Barrier+ZPE vs. 3 Independents

	Coefficient	Std. Error	Std. Coeff.	t-Value	P-Value
Intercept	20.475	9.338	20.475	2.193	.0934
allyl	21.200	9.338	.261	2.270	.0857
pz	31.700	9.338	.390	3.395	.0274
bis	69.250	9.338	.852	7.416	.0018

Regression Summary

Barrier+ZPE vs. 5 Independents				
Count	8			
Num. Missing	0			
R	.999			
R Squared	.999			
Adjusted R Squared	.996			
RMS Residual	2.599			

Regression Coefficients Barrier+ZPE vs. 5 Independents

	Coefficient	Std. Error	Std. Coeff.	t-Value	P-Value
Intercept	27.775	2.250	27.775	12.342	.0065
pz	35.250	2.599	.434	13.565	.0054
bis	54.650	3.183	.673	17.172	.0034
ally*bis	36.300	3.675	.387	9.878	.0101
pz*bis	-7.100	3.675	076	-1.932	.1931
allyl	3.050	2.599	.038	1.174	.3614