

Electronic Supplementary Information

Ligand synthesis

2-Chloro-N-[(S)[1- ethoxycarbonyl-2-phenyl] ethyl] ethanamide

S-Phenylalaninethylester hydrochloride (3 g, 13.1 mmol) was dissolved in dry diethyl ether (100 ml) under argon and triethylamine (4.37 ml, 31.3 mmol) was added. The solution was cooled to -20°C (acetone, CO_2 (s) bath) and chloroacetylchloride (1.25 ml, 15.7 mmol) in dry diethyl ether (60 ml) was added dropwise, maintaining the temperature at -20°C . The reaction mixture was allowed to warm to room temperature and stirred for 1 h. The resulting white precipitate was dissolved in water (60 ml) and the organic layer washed with hydrochloric acid (0.1 M, 80 ml), water (3 x 80 ml), dried (K_2CO_3) and the solvent was removed in vacuo to give a pale yellow solid. The product was recrystallised from ether adding hexane and was isolated as white needles (2.47 g, 70%), m.p. 38-40 $^{\circ}\text{C}$; (Found: C, 57.7; H, 5.98; N, 5.12. $\text{C}_{13}\text{H}_{16}\text{NO}_3\text{Cl}$ requires C, 57.9; H, 5.98; N, 5.16%); ν_{max} (solid)/cm⁻¹ 3310 (NH), 1731 (COO), 1650 (CONH); δ_{H} (200 MHz, CDCl_3) 7.30-7.10 (5H, m, Ar), 7.00 (1H, br s, NH), 4.84 (1H, m, CH), 4.17 (2H, q, $^3\text{J} = 7.2$, CH_2O), 4.00 (2H, s, CH_2Cl), 3.14 (2H, d, $^3\text{J} = 5.8$, CH_2Ph), 1.24 (3H, t, $^3\text{J} = 7$, CH_3); δ_{C} (50.29 MHz, CDCl_3) 171.2 (CO₂Et), 166.4 (CONH), 136.0 (ipso-Ar), 129.5 (m-Ar), 128.7 (o-Ar), 127.3 (p-Ar), 61.8 (OCH₂), 53.9 (CH), 42.6 (CH₂Cl), 37.8 (CH₂Ph), 14.2 (CH₃); m/z (ES⁺) 292 (100%, MNa^+), 561 (90%, M_2Na^+), 270 (20%, MH^+).

2-Chloro-N-[(S)[1-methoxycarbonyl-3-methyl] butyl] ethanamide

The title compound was prepared following a method similar to that above, using S-leucinemethylester hydrochloride (3 g, 16.5 mmol) and triethylamine (5.52 ml, 39.6 mmol) in dry diethyl ether (100 ml) and reacting with a solution of chloroacetylchloride

(1.58 ml, 19.8 mmol) in dry diethyl ether (60 ml). A brown oil resulted (3.21 g, 88%); ν_{max} (film)/cm⁻¹ 3304 (NH), 1745 (COO), 1680 (CONH); δ_{H} (200 MHz, CDCl₃) 6.90 (1H, br s, NH), 4.68-4.56 (1H, br m, CHNH), 4.04 (2H, s, ClCH₂CO), 3.72 (3H, s, OCH₃), 1.69-1.50 (3H, br m, CH₂CH), 0.92 (6H, d, ³J = 5.8, CH₃); δ_{C} (50.29 MHz, CDCl₃) 172.8 (CO₂Me), 166.6 (CONH), 52.2 (OCH₃), 51.0 (CHNH), 42.4 (ClCH₂CO), 40.7 (CH₂CH), 24.7 (CH₂CH), 22.7 (CH₃), 21.6 (CH₃); m/z (ES⁺) 244 (100%, MNa⁺) (Found: MNa⁺, 244.0739. C₉H₁₆NO₃NaCl requires MNa⁺, 244.0716).

General procedure for the preparation of tetraalkylated ligands.

1-Benzyl-4,7,10-Tris-[(S)-((1-ethoxycarbonyl-2-phenyl)ethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane

2-Chloro-N-[(S)[1- ethoxycarbonyl-2-phenyl] ethyl] ethanamide (2.68 g, 9.96 mmol) in dry N,N-dimethylformamide (5 ml) was added to a stirred solution of 1-benzyl-1,4,7,10-tetraazacyclododecane¹⁴ (0.872 g, 3.32 mmol) and fine mesh anhydrous potassium carbonate (1.37 g, 9.96 mmol) in dry N,N-dimethylformamide (25 ml). The reaction mixture was heated at 60 °C under an argon atmosphere for 36 h. The solvent was distilled off under vacuum and the resulting brown oil was extracted into dichloromethane (40 ml), washed with purite water (3 x 40 ml), brine (40 ml), dried (K₂CO₃) and concentrated to dryness to give a yellow brown oil. The mixture was purified by alumina column chromatography (gradient elution from dichloromethane to 0.5% methanol-dichloromethane) and the product was isolated as a pale yellow oil (1.54 g, 48 %); R_f (Al₂O₃; 10% CH₃OH-CH₂Cl₂; I₂ and u.v. detection) 0.5; δ_{H} (200 MHz, CDCl₃) 7.8 (1H, br s, NHCO), 7.5 (2H, br s, NHCO), 7.3-7.0 (20H, m, Ar), 4.7 (3H, m,

CH), 4.01 (6H, m, OCH₂), 3.8-2.2 (30H, m, ring-CH₂, CH₂CO, CH₂Ph, NCH₂Ph), 1.14 (9H, m, CH₃); δ_C (50.29 MHz, CDCl₃) 171.8 (CO₂Et), 171 (CONH), 138.1 (ipso-Ar), 136.6 (ipso-Ar), 129.6, 129.3, 128.5, 127.1 (C-Ar), 61.5 (OCH₂), 59.4-59.1 (br, NCH₂Ph, NCH₂CO), 53.9- 52.0 (br, CH, ring-CH₂), 37.0 (CCH₂Ph), 14.3 (CH₃); m/z (ES⁺) 985 (100%, MNa⁺), 963 (45%, MH⁺), 501 (5%, MCa²⁺).

1-Benzyl-4,7,10-tris-[(S)-((1-methoxycarbonyl-3-methyl)butyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane L⁶

The title compound was prepared following a method similar to that above, using 2-Chloro-N-[(S)[1-methoxycarbonyl-3-methyl] butyl] ethanamide (1.33 g, 6.00 mmol) in dry N,N-dimethylformamide (5 ml) and reacting with a solution of 1-benzyl-1,4,7,10-tetraazacyclododecane¹⁴ (0.526 g, 2.00 mmol) and fine mesh anhydrous potassium carbonate (0.830 g, 6.00 mmol) in dry N,N-dimethylformamide (25 ml). The product was obtained, after purification, as a brown oil (0.821 g, 50%); R_f (Al₂O₃; 10% CH₃OH-CH₂Cl₂; I₂ and u.v. detection) 0.38; ν_{max} (film)/cm⁻¹ 1741 (COO), 1659 (CONH); δ_H (200 MHz, CDCl₃) 8.0-7.8 (3H, br s, NHCO), 7.3-7.1 (5H, m, Ar), 4.5 (3H, m, CHNH), 3.70-2.40 (33H, br m, ring-CH₂, CH₂CO, OCH₃, CH₂Ph), 1.58-1.40 (9H, br m, CH₂CH, CH₂CH), 0.87 (18H, m, CH₃); δ_C (50.29 MHz, CDCl₃) 173.4 (CO₂Me), 173.2 (CO₂Me), 171.3 (CONH), 170.9 (CONH), 138.0 (ipso-Ar), 129.0, 128.5, 127.4 (C-Ar), 59.9-59.0 (br, NCH₂Ph, NCH₂CO), 53.4-52.3 (br, ring-CH₂, OCH₃), 50.5 (CHNH), 41.3 (CH₂CH), 25.1 (CH₂CH), 23.0 (CH₃), 22.1 (CH₃); m/z (ES⁺) 429 (100%, MCa²⁺), 840 (30%, MNa⁺) 440 (20%, MK⁺Na⁺) (Found: (MHK)²⁺, 428.7514. C₄₂H₇₂N₇O₉K requires (MHK)²⁺, 428.7542).

General procedure for the preparation of trialkylated ligands.

1,4,7–Tris-[(S)-((1-ethoxycarbonyl-2-phenyl)ethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane L²

A hydrochloric acid solution (1 M, 1 ml) and a catalytic amount of palladium hydroxide on carbon were added to 1-Benzyl-4,7,10–Tris-[(S)-((1-ethoxycarbonyl-2-phenyl)ethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane (0.473 g, 0.49 mmol) in ethanol (25 ml) and the mixture was treated with hydrogen (45 psi) at room temperature for 48 h. The reaction mixture was filtered through celite and the solvent was removed under vacuum. The residue was taken into dichloromethane (30 ml) and washed with a solution of sodium bicarbonate (30 ml), brine (1 x 30 ml), dried (K_2CO_3) and concentrated to dryness to give the product as a pale yellow glassy solid (0.31 g, 71%), m.p. 84-88 °C; ν_{max} (solid)/cm⁻¹ 1734 (COO), 1656 (CONH); δ_{H} (200 MHz, CDCl_3) 7.6 (2H, d, ³J = 8, NHCO), 7.4 (1H, d, ³J = 8, NHCO), 7.30-7.00 (15H, m, Ar), 4.80 (3H, m, CH), 4.12 (6H, m, OCH₂), 3.45-2.20 (29H, m, ring-CH₂, ring-NH, CH₂Ph, CH₂CO), 1.12 (9H, m, CH₃); δ_{C} (50.29 MHz, CDCl_3) 172.1 (CO₂Et), 171.4 (CONH), 136.8 (ipso-Ar), 129.6 (m-Ar), 128.6 (o-Ar), 127 (p-Ar), 61.5 (OCH₂), 59.7 (CH₂CO), 53.9-53.0 (ring-CH₂, CH), 47.3 (ring-CH₂), 37.8 (CH₂Ph), 14.3 (CH₃); m/z (ES⁺) 456 (100%, M Ca^{2+}) (A satisfactory accurate mass spectrum could not be obtained for this product).

1,4,7–Tris-[(S)-((1-methoxycarbonyl-3-methyl)butyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane L⁴

The title compound was prepared following a method similar to that for L², treating a solution of L⁶ (1.07 g, 1.31 mmol) in ethanol (45 ml) with hydrogen (45 psi), in the presence of a hydrochloric acid solution (1 M, 1 ml) and a catalytic amount of palladium

hydroxide on carbon. The product was obtained as a yellow orange glassy solid (0.77 g, 81%), m.p. 120-122 °C; ν_{max} (solid)/cm⁻¹ 1739 (COO), 1665 (CONH); δ_{H} (200 MHz, CDCl₃) 8.0-7.84.(3H, br s, NHCO), 80-2.55 (35H, br m, ring-CH₂, CH₂CO, OCH₃, ring-NH, CHNH), 2.00-1.20 (9H, br m, CH₂CH, CH₂CH), 1.00-0.87 (18H, br, CH₃); δ_{C} (50.29 MHz, CDCl₃) 173.8 (CO₂Me), 173.4 (CO₂Me), 171.6 (CONH), 171.5 (CONH), 59.6 (br, NCH₂CO), 53.8-52.3 (br, ring-CH₂, OCH₃), 50.7 (CHNH), 47 (ring-CH₂), 41.3 (CH₂CH), 25.1 (CH₂CH), 23.0 (CH₃), 21.1 (CH₃); m/z (ES⁺) 384 (100%, MCa²⁺), 728 (15%, MH⁺) 766 (5%, MK⁺) (Found: MH⁺, 728.4878. C₃₅H₆₆N₇O₉ requires MH⁺, 728.4922).

Complex synthesis

Yb.L²

Ytterbium (III) triflate (0.099 g, 0.16 mmol) in dry acetonitrile (1 ml) was added to a solution of L² (0.135 g, 0.16 mmol) in dry acetonitrile (4 ml) and the mixture was heated to reflux under argon overnight. The reaction solution was dropped onto stirring diethylether (50 ml) and the resulting white precipitate was collected by centrifugation and filtration. The solid was redissolved in the minimum amount of acetonitrile and the precipitation procedure repeated once more. A white solid resulted (0.134 g, 56%), m.p 142-144 °C; ν_{max} (solid)/cm⁻¹ 1736 (COO), 1625 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment: major isomer 92.0 (1H, br s, ring-H_{ax}), 69.0 (1H, br s, ring-H_{ax}), 56.0 (1H, br s, ring-H_{ax}), 43.0 (1H, br s, ring-H_{ax}), 39.1 (1H, br s, ring-H_{eq}), 25.2 (1H, br s, ring-H_{eq}), 22.3 (1H, br s, ring-H_{eq}), 15.0 (1H, br s, ring-H_{eq}); minor isomer 96.0 (1H, br s, ring-H_{ax}), 67.0 (1H, br s, ring-H_{ax}), 59.0 (1H, br s, ring-H_{ax}), 43.0 (1H, br s, ring-H_{ax}), 41.0 (1H, br s, ring-H_{eq}), 27.0 (1H, br s, ring-H_{eq}), 23.0 (1H, br s, ring-H_{eq}), 19.0 (1H, br s, ring-H_{eq});

m/z (ES⁺) 522 (100%, M²⁺), 349 (5%, M³⁺) (Found: M²⁺, 522.2077. C₄₇H₆₄N₇O₉Yb requires M²⁺, 522.2077).

Eu.L²

The title compound was prepared using a similar method to that for Yb.L² using L² (0.057 g, 0.065 mmol) in dry acetonitrile (2 ml) and europium (III) triflate (0.039 g, 0.065 mmol) in dry acetonitrile (3 ml) to yield a white solid (0.056 g, 59%), m.p. 146-148 °C; ν_{max} (solid)/cm⁻¹ 1734 (COO), 1619 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 24.1 (1H, br s, ring-H_{ax}), 14.0 (2H, br s, ring-H_{ax}), 12.3 (1H, br s, ring-H_{ax}), -5.20, -6.02, -9.34, -10.0, -12.4, -15.1, -20.0; m/z (ES⁺) 512 (100%, M²⁺), 587 (10%, [M³⁺ (CF₃SO₃⁻)]²⁺) (Found: M²⁺, 511.6971. C₄₇H₆₄N₇O₉Eu requires M²⁺, 511.6989).

Yb.L³

Yb.L² (0.100 g, 0.067 mmol) was dissolved in the minimum amount of methanol and treated with an aqueous sodium hydroxide solution (0.02 M, 13.4 ml). The solution was brought to pH 6, reduced to small volume and loaded onto a cationic exchange column (Dowex, 50 WH⁺), eluting with water and then aqueous ammonia solution (6%). The ammonia layer was dried giving the product as a yellow solid (0.035 g, 54%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1619 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 90.0 (1H, br s, ring-H_{ax}), 64.0 (1H, br s, ring-H_{ax}), 52.0 (1H, br s, ring-H_{ax}), 27.0 (1H, br s, ring-H_{ax}), -22.9, -25.1, -38.6, -46.7, -47.8, -49.9, -60.2, -82.3; m/z (ES⁺) after addition of CF₃COOH: 959 (100%, MH⁺) (Found: MH⁺, 959.3137. C₄₁H₅₁N₇O₉Yb requires MH⁺ 951.3131).

Eu.L³

The title compound was prepared following a method similar for Yb.L³ using Eu.L² (0.150 g, 0.10 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 20.4 ml). A yellow solid resulted (0.043 g, 45%), m.p. > 230 °C; ν_{max} (solid)/cm⁻¹ 1612 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment not available, the spectrum showed broad signals between +30 and -20; m/z (ES⁺) after addition of CF₃COOH: 938 (100%, MH⁺) (Found: MH⁺, 938.2962. C₄₁H₅₁N₇O₉Eu requires MH⁺ 938.2962).

Yb.L⁴

The title compound was prepared following a method similar for Yb.L², using ytterbium (III) triflate (0.44 g, 0.72 mmol) in dry acetonitrile (3 ml) and L⁴ (0.512 g, 0.72 mmol) in dry acetonitrile (4 ml). A yellow solid resulted (0.70 g, 75%), m.p. 142-144 °C; ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 119.5 (1H, br s, ring-H_{ax}), 76.4 (1H, br s, ring-H_{ax}), 67.8 (1H, br, ring-H_{ax}), 53.9 (1H, br, ring-H_{ax}), 43.0 (1H, br s, ring-H_{eq}), 35.8 (1H, br s, ring-H_{eq}), 31.9 (1H, br s, ring-H_{eq}), 27.0 (1H, br, ring-H_{eq}), 12.1, -17.5, -19.1, -29.7, -33.8, -36.3, -41.1, -42.8, -48.5, -78.1, -91.0; m/z (ES⁺) 450 (100%, M²⁺) (Found: M²⁺, 450.2109. C₃₅H₆₄N₇O₉Yb requires M²⁺ 450.2077).

Ce.L⁴

The title compound was prepared following a method similar for Yb.L², using cerium (III) triflate (0.056 g, 0.096 mmol) in dry acetonitrile (2 ml) and L⁴ (0.070 g, 0.096 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.090 g, 71%), m.p. > 174 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial

assignment 15.0, 13.9, 10.4, 10.1, 8.14, 6.68, 6.1, -1.23, -3.92, -4.60, -8.12 (1H, br s, ring-H_{ax}), -12.1 (1H, br s, ring-H_{ax}); m/z (ES⁺) 509 (100%, [M³⁺ + (CF₃SO₃⁻)]²⁺), 1164 (20%, [M³⁺ + (CF₃SO₃⁻)₂]⁺) (Found: M²⁺, 433.1927. C₃₅H₆₄N₇O₉Ce requires M²⁺ 433.1910).

Pr.L⁴

The title compound was prepared following a method similar for Yb.L², using praseodymium (III) triflate (0.283 g, 0.48 mmol) in dry acetonitrile (3 ml) and L⁴ (0.350 g, 0.48 mmol) in dry acetonitrile (3 ml). A yellow solid resulted (0.609 g, 96%), m.p. > 184 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 25.1, 24.0, 20.71, 14.6, 11.8, 11.04, 8.94, 6.35, -2.0, -5.0, -7.2, -11.2, -13.8 (2H, br s, ring-H_{ax}), -17.1 (1H, br s, ring-H_{ax}), -29.9 (1H, br s, ring-H_{ax}); m/z (ES⁺) 434 (100%, M²⁺), 509 (40%, [M³⁺ + (CF₃SO₃⁻)]²⁺) (Found: [M³⁺ + (CF₃SO₃⁻)₂]⁺, 1166.3008. C₃₇H₆₅N₇O₁₅F₆S₂Pr requires [M³⁺ + (CF₃SO₃⁻)₂]⁺ 1166.2961).

Nd.L⁴

The title compound was prepared following a method similar for Yb.L², using neodymium (III) triflate (0.057 g, 0.096 mmol) in dry acetonitrile (2 ml) and L⁴ (0.070 g, 0.096 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.093 g, 73%), m.p. > 180 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 16.3, 15.3, 13.5, 10.2, 9.58, 9.03, 8.66, 5.96, -2.45, -6.03, -8.81, -16.3 (1H, br s, ring-H_{ax}); m/z (ES⁺) 511 (100%, [M³⁺ + (CF₃SO₃⁻)]²⁺) (Found: M²⁺, 434.1938. C₃₅H₆₄N₇O₉Nd requires M²⁺ 434.1922).

Sm.L⁴

The title compound was prepared following a method similar for Yb.L², using samarium (III) triflate (0.074 g, 0.123 mmol) in dry acetonitrile (2 ml) and L⁴ (0.090 g, 0.123 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.120 g, 73%), m.p. > 184 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); m/z (ES⁺) 514 (100%, [M³⁺ + (CF₃SO₃⁻)²⁺]), 1176 (10%, [M³⁺ + (CF₃SO₃⁻)₂]⁺) (Found: M²⁺, 439.2024. C₃₅H₆₄N₇O₉Sm requires M²⁺ 439.1982).

Eu.L⁴

The title compound was prepared following a method similar for Yb.L², using europium (III) triflate (0.37 g, 0.62 mmol) in dry acetonitrile (3 ml) and L⁴ (0.450 g, 0.62 mmol) in dry acetonitrile (3 ml). A yellow solid resulted (0.713 g, 87%), m.p. > 178 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 24.8 (1H, br s, ring-H_{ax}), 16.0 (1H, br s, ring-H_{ax}), 13.5 (1H, br s, ring-H_{ax}), 9.28 (1H, br s, ring-H_{eq}), -1.66, -4.83, -6.40, -7.33, -9.43, -11.6, -13.6, -14.9, -19.0; m/z (ES⁺) 440 (100%, M²⁺), 514 (40%, [M³⁺ + (CF₃SO₃⁻)²⁺]) (Found: [M³⁺ + (CF₃SO₃⁻)₂]⁺, 1178.3163. C₃₇H₆₅N₇O₁₅F₆S₂Eu requires [M³⁺ + (CF₃SO₃⁻)₂]⁺ 1178.3097).

Tb.L⁴

The title compound was prepared following a method similar for Yb.L², using terbium (III) triflate (0.075 g, 0.12 mmol) in dry acetonitrile (2 ml) and L⁴ (0.090 g, 0.12 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.137 g, 83%), m.p. > 160 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 81.3, -33.9, -55.6, -70.0, -85.2, -112.0, -126.4, -148.3, -166.9 (2H, br s, ring-H_{ax}), -234.8

(1H, br s, ring-H_{ax}), -319.7 (1H, br s, ring-H_{ax}); m/z (ES⁺) 518 (100%, [M³⁺ + (CF₃SO₃⁻)²⁺]), 443 (60%, M²⁺) (Found: M²⁺, 442.7041. C₃₅H₆₄N₇O₉Tb requires M²⁺ 442.7010).

Dy.L⁴

The title compound was prepared following a method similar for Yb.L², using dysprosium (III) triflate (0.075 g, 0.12 mmol) in dry acetonitrile (2 ml) and L⁴ (0.090 g, 0.12 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.128 g, 77%), m.p. > 174 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 300.0, 216.0, 191.4, 147.4, 133.6, 120.6, 91.5, 70.9, -62.3, -88.44, -113.3, -138.2, -158.4, -191.0 (1H, br s, ring-H_{ax}), -213.0 (1H, br s, ring-H_{ax}), -237.7 (1H, br s, ring-H_{ax}), -379.4 (1H, br s, ring-H_{ax}); m/z (ES⁺) 444 (100%, M²⁺), 520 (80%, [M³⁺ + (CF₃SO₃⁻)²⁺]), 1188 (5%, [M³⁺ + (CF₃SO₃⁻)₂]²⁺) (Found: M²⁺, 445.2023. C₃₅H₆₄N₇O₉Dy requires M²⁺ 445.2028).

Ho.L⁴

The title compound was prepared following a method similar for Yb.L², using holmium (III) triflate (0.29 g, 0.47 mmol) in dry acetonitrile (3 ml) and L⁴ (0.348 g, 0.47 mmol) in dry acetonitrile (3 ml). A yellow solid resulted (0.62 g, 97%), m.p. > 158 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 191.3, 163.7, 110.8, 97.46, 81.0, 76.51, 74.0, 65.7, 61.0, 39.6, -14.8, -28.7, -59.10, -66.43, -79.81, -86.3 (1H, br s, ring-H_{ax}), -106.2 (1H, br s, ring-H_{ax}), -119.4 (1H, br s, ring-H_{ax}), -124.8 (1H, br s, ring-H_{ax}); m/z (ES⁺) 446 (100%, M²⁺) (Found: [M³⁺ + (CF₃SO₃⁻)₂]⁺, 1190.3165. C₃₇H₆₅N₇O₁₅F₆S₂Ho requires [M³⁺ + (CF₃SO₃⁻)₂]⁺ 1190.3188).

Er.L⁴

The title compound was prepared following a method similar for Yb.L², using erbium (III) triflate (0.076 g, 0.12 mmol) in dry acetonitrile (2 ml) and L⁴ (0.090 g, 0.12 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.134 g, 81%), m.p. > 150 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 117.6 (1H, br s, ring-H_{ax}), 78.1 (1H, br s, ring-H_{ax}), 54.2 (1H, br s, ring-H_{ax}), 50.8 (1H, br s, ring-H_{ax}), 30.2, 25.4, 20.6, -14.3, -17.9, -21.4, -28.4, -33.4, -41.9, -74.7; m/z (ES⁺) 446 (100%, M²⁺), 521 (80%, [M³⁺ + (CF₃SO₃⁻)]²⁺) (Found: M²⁺, 446.2039. C₃₅H₆₄N₇O₉Er requires M²⁺ 446.2034).

Tm.L⁴

The title compound was prepared following a method similar for Yb.L², using thulium (III) triflate (0.076 g, 0.12 mmol) in dry acetonitrile (2 ml) and L⁴ (0.090 g, 0.12 mmol) in dry acetonitrile (2 ml). A yellow solid resulted (0.130 g, 78%), m.p. > 164 °C (dec.); ν_{max} (solid)/cm⁻¹ 1742 (COO), 1627 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 293.0 (1H, br s, ring-H_{ax}), 261.9 (1H, br s, ring-H_{ax}), 228.0 (1H, br s, ring-H_{ax}), 179. (1H, br s, ring-H_{ax}), 136.5, 111.7, 70.7, 64.7, 30.6, -37.2, -44.1, -58.1, -77.3, -88.3, -96.8, -108.6, -130.7, -139.7, -175.2, -253.6; m/z (ES⁺) 447 (100%, M²⁺), 523 (15%, [M³⁺ + (CF₃SO₃⁻)]²⁺) (Found: M²⁺, 447.7052. C₃₅H₆₄N₇O₉Tm requires M²⁺ 447.7054).

Yb.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Yb.L⁴ (0.25 g, 0.18 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 37 ml). A yellow solid resulted (0.080 g, 50%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD)

partial assignment 105.6 (1H, br s, ring-H_{ax}), 99.1 (1H, br s, ring-H_{ax}), 79.0 (1H, br s, ring-H_{ax}), 75.0 (1H, br s, ring-H_{ax}), 43.4 (1H, br s, ring-H_{eq}), 27.0 (3H, br s, ring-H_{eq}), 21.7, 18.7, 10.4, 8.15, -17.0, -22.8, -24.3, -33.0, -36.3, -46.7, -51.9, -54.3, -58.5, -61.7, -121.3; m/z (ES⁺) after addition of CF₃COOH: 429 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 857.3681. C₃₂H₅₇N₇O₉Yb requires MH⁺ 857.3607).

Ce.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Ce.L⁴ (0.090 g, 0.068 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.5 ml). A yellow solid resulted (0.032 g, 57%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 19.4, 18.2, 17.1, 15.9, 13.3, 9.62, 8.89, 7.23, 6.59, -1.2, -1.80, -2.2, -2.73, -3.32, -9.96 (1H, br s, ring-H_{ax}), -10.94 (1H, br s, ring-H_{ax}), -15.0 (2H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 412 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 823.3288 C₃₂H₅₇N₇O₉Ce requires MH⁺ 823.3272).

Pr.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Pr.L⁴ (0.400 g, 0.30 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 76 ml). A yellow solid resulted (0.150 g, 60%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 34.2, 32.2, 31.8, 27.0, 26.42, 21.3, 20.86, 15.82, 14.2, 13.0, 12.65, 10.9, -7.62, -23.4 (1H, br s, ring-H_{ax}), -24.0 (1H, br s, ring-H_{ax}), -27.1 (1H, br s, ring-H_{ax}), -33.1 (1H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 413 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 824.3298 C₃₂H₅₇N₇O₉Pr requires MH⁺ 824.3294).

Nd.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Nd.L⁴ (0.090 g, 0.068 mmol), dissolved in the minimum amount of methanol, and an aqueous sodium hydroxide solution (0.02 M, 13.5 ml). A yellow solid resulted (0.025 g, 45%), m.p. > 260 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 17.5, 16.1, 11.8, 10.2, 9.77, 7.77, 7.20, 6.54, 9.91, 5.67, -11.2 (1H, br s, ring-H_{ax}), -12.0 (1H, br s, ring-H_{ax}), -15.78 (1H, br s, ring-H_{ax}), -16.7 (1H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 413 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 825.3299 C₃₂H₅₇N₇O₉Nd requires MH⁺ 825.3289).

Sm.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Sm.L⁴ (0.090 g, 0.067 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.6 ml). A yellow solid resulted (0.028 g, 50%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); m/z (ES⁺) after addition of CF₃COOH: 418 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 835.3412 C₃₂H₅₇N₇O₉Sm requires MH⁺ 835.3410).

Eu.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Eu.L⁴ (0.500 g, 0.37 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 75 ml). A yellow solid resulted (0.028 g, 50%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 25.7 (1H, br s, ring-H_{ax}), 23.4 (1H, br s, ring-H_{ax}), 18.0 (1H, br s, ring-H_{ax}), 17.6 (1H, br s, ring-H_{ax}), 11.03, -1.12, -2.34, -2.78, -3.32, -5.13, -5.37, -6.89, -7.28,

-8.84, -9.33, -11.1, -12.8, -14.6, -15.43; m/z (ES⁺) after addition of CF₃COOH: 418 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 836.3474 C₃₂H₅₇N₇O₉Eu requires MH⁺ 836.3430).

Tb.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Tb.L⁴ (0.090 g, 0.067 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.5 ml). A yellow solid resulted (0.030 g, 53%), m.p. > 260 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 250.0, 232.0, 151.7, 141.1, 127.2, 69.8, 62.7, 49.4, 36.9, 31.4, 25.3, -16.4, -44.5, -53.7, -58.4, -89.2, -95.3, -128.6, -148.3 (1H, br s, ring-H_{ax}), -212.4 (1H, br s, ring-H_{ax}), -241.0 (1H, br s, ring-H_{ax}), -333.2 (1H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 422 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 842.3519 C₃₂H₅₇N₇O₉Tb requires MH⁺ 842.3471).

Dy.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Dy.L⁴ (0.090 g, 0.067 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.5 ml). A yellow solid resulted (0.033 g, 58%), m.p. > 260 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 250.0, 246.0, 187.0, 100.8, 88.0, 73.4, 68.4, 43.8, 36.2, 28.2, -23.82, -49.54, -131.0, -151.9, -270.0 (2H, br s, ring-H_{ax}), -309.2 (1H, br s, ring-H_{ax}), -380.5 (1H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 424 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 847.3553 C₃₂H₅₇N₇O₉Dy requires MH⁺ 847.3510).

Ho.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Ho.L⁴ (0.40 g, 0.30 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 74 ml). A yellow solid resulted (0.100 g, 40%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 142.4, 134.3, 88.3, 70.8, 44.5, 41.44, 38.2, 35.3, 30.0, -40.8, -49.8, -58.6, -78.2, -123.4 (1H, br s, ring-H_{ax}), -142.7 (1H, br s, ring-H_{ax}), -183.1 (1H, br s, ring-H_{ax}), -194.6 (1H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 425 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 848.3534 C₃₂H₅₇N₇O₉Ho requires MH⁺ 848.3521).

Er.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Er.L⁴ (0.090 g, 0.067 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.5 ml). A yellow solid resulted (0.030 g, 53%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 122.8 (1H, br s, ring-H_{ax}), 106.3 (1H, br s, ring-H_{ax}), 66.86 (2H, br s, ring-H_{ax}), 52.2, 37.5, 31.7, 24.0, 19.4, 17.2, 14.2, -14.8, -27.7, -31.3, -32.8, -39.6, -45.6, -49.5, -56.2, -64.9; m/z (ES⁺) after addition of CF₃COOH: 425 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 849.3578 C₃₂H₅₇N₇O₉Er requires MH⁺ 849.3521).

Tm.L⁵

The title compound was prepared following a method similar to that for Yb.L³, using Tm.L⁴ (0.090 g, 0.067 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.4 ml). A yellow solid resulted (0.025 g, 44%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1625 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD)

partial assignment 289.7 (2H, br s, ring-H_{ax}), 199.0 (1H, br s, ring-H_{ax}), 191.0 (1H, br s, ring-H_{ax}), 121.0, 78.2, 69.9, 56.9, 27.8, -35.5, -57.6, -65.5, -84.3, -94.7, -146.3, -164.3, -175.9, -182.5, -389; m/z (ES⁺) after addition of CF₃COOH: 427 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 852.3556 C₃₂H₅₇N₇O₉Tm requires MH⁺ 852.3560).

Yb.L⁶

The title compound was prepared following a method similar for Yb.L², using ytterbium (III) triflate (0.099 g, 0.16 mmol) in dry acetonitrile (1 ml) and L⁶ (0.131 g, 0.16 mmol) in dry acetonitrile (4 ml). A yellow solid resulted (0.200 g, 87%), m.p. > 140 °C (dec.); ν_{max} (solid)/cm⁻¹ 1740 (COO), 1622 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 140.0 (1H, br s, ring-H_{ax}), 134.0 (2H, br s, ring-H_{ax}), 112.3 (1H, br s, ring-H_{ax}), 34.8 (2H, br s, ring-H_{eq}), 29.0 (1H, br s, ring-H_{eq}), 24.65 (1H, br s, ring-H_{eq}), 23.8, 19.0, -9.63, -10.5, -15.7, -16.9, -28.9, -51.1, -60.5, -66.3, -69.1, -75.4, -79.6, -86.1, -89.69; m/z (ES⁺) 495 (100%, M²⁺) (Found: M²⁺, 495.2322. C₄₂H₇₀N₇O₉Yb requires M²⁺, 495.2312).

Eu.L⁶

The title compound was prepared following a method similar for Yb.L², using europium (III) triflate (0.088 g, 0.147 mmol) in dry acetonitrile (3 ml) and L⁶ (0.120 g, 0.147 mmol) in dry acetonitrile (3 ml). A yellow solid resulted (0.181 g, 87%), m.p. > 150 °C (dec.); ν_{max} (solid)/cm⁻¹ 1740 (COO), 1622 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 21.5 (1H, br s, ring-H_{ax}), 20.4 (1H, br s, ring-H_{ax}), 17.8 (1H, br s, ring-H_{ax}), 16.9 (1H, br s, ring-H_{eq}), 12.0, 8.20, 7.60, -4.85, -5.50, -7.20, -8.50, -8.90, -9.50, -9.80, -10.8, -11.2, -12.0, -18.5; m/z (ES⁺) 484 (100%, M²⁺), 1119 (30%, [M²⁺ + (CF₃SO₃⁻)]⁺) (Found: M²⁺, 484.7217. C₄₂H₇₀N₇O₉Eu requires M²⁺, 484.7218).

Tb.L⁶

The title compound was prepared following a method similar for Yb.L², using terbium (III) triflate (0.037 g, 0.061 mmol) in dry acetonitrile (3 ml) and L⁶ (0.050 g, 0.061 mmol) in dry acetonitrile (3 ml). A yellow solid resulted (0.060 g, 70%), m.p. > 168 °C (dec.); ν_{max} (solid)/cm⁻¹ 1740 (COO), 1622 (CONH); δ_{H} (200 MHz, CD₃OD) partial assignment 380.0, 360.0, 300, 260.0, 200.0, 180.0, 140.0, -80.0, -110.0, -170.0, -160.0, -220.0, -250.0 (1H, br s, ring-H_{eq}), -266.0 (1H, br s, ring-H_{eq}), -320.0 (1H, br s, ring-H_{eq}), -330.0 (1H, br s, ring-H_{eq}); m/z (ES⁺) 487 (100%, M²⁺), 563 (20%, [M³⁺ + (CF₃SO₃⁻)]²⁺), 1275 (5%, [M³⁺ + (CF₃SO₃⁻)₂]⁺) (Found: M²⁺, 487.7239. C₄₂H₇₀N₇O₉Tb requires M²⁺, 487.7239).

Yb.L⁷

The title compound was prepared following a method similar to that for Yb.L³, using Yb.L⁶ (0.100 g, 0.069 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 13.9 ml). A yellow solid resulted (0.035g, 40%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1623 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment major isomer 107.1 (1H, br s, ring-H_{ax}), 102.7 (1H, br s, ring-H_{ax}), 83.2 (1H, br s, ring-H_{ax}), 61.74 (1H, br s, ring-H_{ax}), 59.3, 51.0, 42.0, 38.6, 37.0, 34.0, 28.3, 19.1, 17.1, -10.89, -12.06, -24.67, -28.95, -30.0, -43.0, -44.19, -46.3, -47.3, -55.8, -66.6, -72.1, -83.2, -98.6, -102.0, -105.3, -131.4; δ minor isomer 71.0 (1H, br s, ring-H_{ax}), 35.68 (1H, br s, ring-H_{ax}), 20.32 (1H, br s, ring-H_{ax}), 14.80 (1H, br s, ring-H_{ax}), -4.86, -6.58; m/z (ES⁺) after addition of CF₃COOH: 474 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 947.4077. C₃₉H₆₃N₇O₉Yb requires MH⁺ 947.4077).

Eu.L⁷

The title compound was prepared following a method similar to that for Yb.L³, using Eu.L⁶ (0.080 g, 0.056 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 11.3 ml). A yellow solid resulted (0.024 g, 46%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1623 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 21.27 (1H, br s, ring-H_{ax}), 11.67 (3H, br s, ring-H_{ax}), 9.03, 8.4, 6.06, -6.5, -9.33, -11.0, -13.63, -17.8, -18.25, -19.03; m/z (ES⁺) after addition of CF₃COOH: 463 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 926.3899. C₃₉H₆₃N₇O₉Eu requires MH⁺ 926.3894).

Tb.L⁷

The title compound was prepared following a method similar to that for Yb.L³, using Tb.L⁶ (0.040 g, 0.028 mmol), dissolved in the minimum amount of methanol and an aqueous sodium hydroxide solution (0.02 M, 5.6 ml). A yellow solid resulted (0.010 g, 38%), m.p. > 250 °C; ν_{max} (solid)/cm⁻¹ 1623 (br, CONH, COO); δ_{H} (200 MHz, CD₃OD) partial assignment 574.0, 404.3, 257.6, 235.5, 168.0, 131.4, -139.2, -157.9, -176.4, -185.9, -195.8, -214.7, -228.6, -250.6, -278.8, -291.6, -369.3 (1H, br s, ring-H_{ax}); m/z (ES⁺) after addition of CF₃COOH: 466 (100%, [M + 2H⁺]²⁺) (Found: MH⁺, 932.3937. C₃₉H₆₃N₇O₉Tb requires MH⁺ 932.3935).