Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2007

Half-sandwich Ru^{II}-[9]aneS₃ complexes with dicarboxylate ligands: synthesis, characterization and chemical behavior.

Ioannis Bratsos, Giovanni Birarda, Stephanie Jedner, Ennio Zangrando, and Enzo Alessio*

Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.

SUPPORTING INFORMATION

Figure S1. ORTEP drawing (40% probability level) of $[Ru([9]aneS_3)(dmso-S)(\eta^2-mal)] \cdot (H_2O)$ (2).

Figure S2. ORTEP drawing (40% probability level) of the dinuclear cation of [{Ru([9]aneS₃)(dmso-

S)}(η^4 , μ -ox){Ru(dmso-S)₃(CF₃SO₃)}][CF₃SO₃]·0.5(CHCl₃) (**5**).

Figure S3. Packing arrangement of **3** in the solid state achieved through ionic K...O interactions (CF₃SO₃ anions colored in black). The coordination sphere about K ions is a distorted trigonal bipyramid.

Figure S4. Time evolution of UV-Vis spectra of a) complex 2 (1.0 mM), and b) complex 3 (1.0 mM) in H_2O at 25.0 °C.

Figure S5. Time evolution of UV-Vis spectra of complex 5 (top, a: first step, b: second step, 0.5 mM), and complex 6 (bottom, c: first step, d: second step, 0.5 mM) in H₂O at 25.0 °C.

Figure S6. Time evolution of UV-Vis difference spectra during the hydrolysis of a) **1**, b) **2**, and c) **3** in H₂O at 25.0 °C. $\Delta A = A_t - A_0$, where A_t = absorbance at time *t* and A_0 = absorbance at *t* = 2 min (i.e. the time at which the first spectrum was recorded).

Figure S7. Time evolution of UV-Vis difference spectra during the hydrolysis of **4** (a: first step, a': second step), **5** (b: first step, b': second step), and **6** (c: first step, c': second step) in H₂O at 25 °C. $\Delta A = A_t - A_0$, where A_t = absorbance at time *t* and A_0 = absorbance at time obtained the first spectrum (i.e. 1 min for the first step of **4** – **6**, 123 min for second step of **4**, 40 min for second step of **5**, and 60 min for second step of **6**).

Figure S8. Time-dependence of the absorbance at selected wavelengths for a) the hydrolysis of complexes 1 - 3, b) the first step of the hydrolysis of complexes 4 - 6, and c) the second step of the hydrolysis of complexes 4 - 6 in H₂O at 25.0 °C. Full lines represent computer fits giving the first-order rate constants listed in Table S1.

Table S1. Hydrolysis rate constants and half-lives at 25.0 °C for complexes 1 - 3 and for the second step of dimers 4 - 6.

Compound	$\lambda_{max}^{*}[nm]$	λ_{\min}^{*} [nm]	Isosbestic points [nm]	$k_{\rm H2O} [10^{-4} {\rm sec}^{-1}]$	$(t_{1/2})_{\rm H2O}$ [min]
1	251, 324, 399	281 , 353	269, 302, 347, 359	1.10 ± 0.01	105.0 ± 1.0
2	254, 405	305, 350	289, 370	1.50 ± 0.01	77.0 ± 0.5
3	256, 406	307, 352	292, 372	3.20 ± 0.01	36.1 ± 0.1
4	252, 324, 402	286 , 353	274, 306, 340, 365	1.00 ± 0.01	115.5 ± 1.2
5	252, 408	294, 350	280, 376	1.50 ± 0.03	77.0 ± 1.5
6	253, 408	297, 350	278, 376	1.40 ± 0.01	82.5 ± 0.3

* Wavelengths obtained from the time evolution difference electronic absorption spectra. In bold are indicated the wavelengths selected for the kinetic studies.