Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2007

Supplementary Information

for

Kinetics and Mechanism of the Oxidation of Water Soluble Porphyrin Fe^{III}TPPS with Hydrogen Peroxide and Peroxomonosulfate Ion

Gábor Lente* and István Fábián

University of Debrecen, Department of Inorganic and Analytical Chemistry, Debrecen 10, P.O.B.

21, Hungary, H-4010

e-mail: lenteg@delfin.unideb.hu Tel: + 36 52 512-900/22373 Fax: + 36 52 489-667

Fig. S1 Comparison of normalized absorbance changes for the first phase (a, with HSO₅⁻) and normalized initial rates (b, with H₂O₂) as a function of wavelength during the reaction of Fe^{III}TPPS with HSO₅⁻ and H₂O₂. [Fe^{III}TPPS] = 6.9 μ M (a), 9.5 μ M (b); [HSO₅⁻] = 2.95 mM (a); [H₂O₂] = 8.77 mM (b); pH = 1.30 (a), 3.05 (b); optical path length = 1.00 cm; T = 25.0 °C; I = 0.1 M (NaClO₄). The relatively strong noise in the data is due to the fact that values are obtained from the differences of very small absorbance readings.

Fig. S2 Dependence of initial rates on the concentration of Fe^{III} TPPS during the reaction of Fe^{III} TPPS with H_2O_2 .[H_2O_2] = 30.6 mM; pH = 3.05; optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S3 Dependence of initial rates on the concentration of H_2O_2 during the reaction of Fe^{III}TPPS with H_2O_2 .[Fe^{III}TPPS] = 9.5 μ M; pH = 3.05; optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S4 Dependence of pseudo first order rate constant k_{obs3} on the oxidant concentration during the reaction of Fe^{III}TPPS with H₂O₂. [Fe^{III}TPPS] = 9.5 μ M; pH = 3.05; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S5 Dependence of pseudo first order rate constant k_{obs1} on the oxidant concentration during the reaction of Fe^{III}TPPS with HSO₅⁻. [Fe^{III}TPPS] = 6.9 μ M; pH = 1.30; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S6 Dependence of pseudo first order rate constant k_{obs2} on the oxidant concentration during the reaction of Fe^{III}TPPS with HSO₅⁻. [Fe^{III}TPPS] = 6.9 μ M; pH = 1.30; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S7 Dependence of pseudo first order rate constant k_{obs3} on the oxidant concentration during the reaction of Fe^{III}TPPS with HSO₅⁻. [Fe^{III}TPPS] = 6.9 μ M; pH = 1.30; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S8 Dependence of initial rates on pH during the reaction of $\text{Fe}^{\text{III}}\text{TPPS}$ with H₂O₂. [Fe^{III}TPPS] = 9.5 μ M; [H₂O₂] = 8.77 mM; optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄).

Fig. S9 Comparison of initial rates measured at two different pH values as a function of wavelength during the reaction of Fe^{III}TPPS with H₂O₂. [Fe^{III}TPPS] = 9.5 μ M; [H₂O₂] = 30.6 mM; optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄). The curves are identical within experimental error limits proving that a change in pH does not influence the first reaction.

Fig. S10 Three kinetic traces measured at different pH values during the reaction of Fe^{III}TPPS with H₂O₂. [Fe^{III}TPPS] = 9.5 μ M; [H₂O₂] = 3.91 mM; pH = 1.30, 1.58, 1.97); optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄). The curves are identical within experimental error limits proving that a change in pH does not influence the reaction.

Fig. S11 Chloride ion concentration as a function of time during the reaction of 2,4,6-trichlorophenol with HSO₅ catalyzed by Fe^{III}TPPS. [Fe^{III}TPPS] = 3.1μ M; [HSO₅⁻] = 101μ M; [2,4,6-trichlorophenol] = 1.80μ ; pH = 1; T = 25.0 °C; I = 0.3 M (KNO₃). The dotted line is the initial concentration of 2,4,6-trichlorophenol and confirms that one equivalent of chloride ion is formed within a minute.

Fig. S12 Spectral observations during the reaction of Fe^{III}TPPS with HSO₅⁻. [Fe^{III}TPPS] = 6.9 μ M; [HSO₅⁻] = 2.95 mM; pH = 3.05; optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄); reaction times: increasing time intervals from 0.01 s to 50 s.

Fig. S13 Sample kinetic trace measured during the reaction of Fe^{III}TPPS with HSO₅ on two time scales. [Fe^{III}TPPS] = 6.9 μ M; [HSO₅⁻] = 2.95 mM; pH = 1.30; optical path length = 1.00 cm; *T* = 25.0 °C; *I* = 0.1 M (NaClO₄);

Fig. S14 ESI-MS spectrum of an aqueous solution of Fe^{III}TPPS.

Fig. S15 Detailed ESI mass spectra of the two dominant ions detected in the mass spectrum of an aqueous solution of Fe^{III}TPPS. Large graphs are the measured spectra, insets are simulated spectra for the ion with the composition shown.

Fig. S16 ESI mass spectra of the products formed in the reaction of Fe^{III}TPPS with HSO₅⁻.

Fig. S17 Detailed ESI mass spectrum of one of the products formed in the reaction of $Fe^{III}TPPS$ with HSO_5^- . The large graph is the measured spectrum, the inset is a simulated spectrum for the ion with the composition shown.

Mathematical bacground of equation 4:

Scheme 1 gives the following differential equations for the special case k_{obs1} (= $k_1^{H}[H_2O_2]$) = k_{obs2} (= $k_{2a}^{H}[H_2O_2] + k_{2b}^{H}$):

$$\frac{d[Fe^{III}TPPS]}{dt} = -k_{obs12}[Fe^{III}TPPS]$$

$$\frac{d[III_1]}{dt} = k_{obs12}[Fe^{III}TPPS] - k_{obs12}[III_1]$$

$$\frac{d[\operatorname{Int}_2]}{dt} = k_{obs12}[\operatorname{Int}_1] - k_{obs3}[\operatorname{Int}_2]$$

$$\frac{d[P_1]}{dt} = k_{obs3}[Int_2]$$

The solution of these simultaneous differential equations is the following (assuming that only Fe^{III}TPPS is present initially and [Fe^{III}TPPS] = c):

$$[Fe^{III}TPPS] = ce^{-k_{obs12}t}$$

$$[Int_1] = k_{obs12} ct e^{-k_{obs12}t}$$

$$[Int_{2}] = -\frac{k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}}e^{-k_{obs12}t} + \frac{k_{obs12}^{2}c}{k_{obs3} - k_{obs12}}te^{-k_{obs12}t} + \frac{k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}}e^{-k_{obs3}t}$$

$$[P_{1}] = c + \frac{k_{obs3}(2k_{obs12} - k_{obs3})c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs12}t} - \frac{k_{obs12}k_{obs3}c}{k_{obs3} - k_{obs12}} t e^{-k_{obs12}t} - \frac{k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs3}t}$$

The fact that these are the solutions are the differential equations is easily checked by substituting into the original equations. For example, the third differential equations is checked as an example:

$$\frac{d[[nt_{2}]}{dt} = \frac{k_{obs12}^{3}c}{(k_{obs3} - k_{obs12})^{2}}e^{-k_{obs12}t} - \frac{k_{obs12}^{3}c}{k_{obs3} - k_{obs12}}te^{-k_{obs12}t} + \frac{k_{obs12}^{2}c}{k_{obs3} - k_{obs12}}e^{-k_{obs12}t} + \frac{-k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}}e^{-k_{obs3}t} = \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}}e^{-k_{obs12}t} - \frac{k_{obs12}^{3}c}{k_{obs3} - k_{obs12}}te^{-k_{obs12}t} - \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}}e^{-k_{obs3}t}$$

$$k_{obs12}[Int_{1}] - k_{obs3}[Int_{2}] = k_{obs12}^{2} cte^{-k_{obs12}t} + \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs12}t} - \frac{k_{obs3}k_{obs12}^{2}c}{k_{obs3} - k_{obs12}} te^{-k_{obs12}t} - \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs12}t} = \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs12}t} - \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs3}t} = \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs12}t} - \frac{k_{obs3}k_{obs12}^{2}c}{(k_{obs3} - k_{obs12})^{2}} e^{-k_{obs3}t}$$

All of Fe^{III}TPPS, Int₁, Int₂, P₁ can contribute to the absorbance signal, which is given as:

$$A = (A_1 + A_2 t)e^{-k_{obs12}t} + A_3 e^{-k_{obs3}t} + E$$

Constants A_1, A_2, A_3 , and E are related to the molar absorbances of the four species in the Scheme 1:

$$\boldsymbol{A}_{1} = \boldsymbol{\varepsilon}_{Fe^{III}TPPS} \boldsymbol{c} - \boldsymbol{\varepsilon}_{Int2} \frac{\boldsymbol{k}_{obs12}^{2} \boldsymbol{c}}{(\boldsymbol{k}_{obs3} - \boldsymbol{k}_{obs12})^{2}} + \boldsymbol{\varepsilon}_{P_{1}} \frac{\boldsymbol{k}_{obs3} (2\boldsymbol{k}_{obs12} - \boldsymbol{k}_{obs3}) \boldsymbol{c}}{(\boldsymbol{k}_{obs3} - \boldsymbol{k}_{obs12})^{2}}$$

$$A_2 = \varepsilon_{Int_1} k_{obs12} \mathbf{c} + \varepsilon_{Int2} \frac{\kappa_{obs12} \mathbf{c}}{k_{obs3} - k_{obs12}} - \varepsilon_{P_1} \frac{\kappa_{obs12} \kappa_{obs32}}{k_{obs3} - k_{obs12}}$$

$$\boldsymbol{A}_{3} = (\boldsymbol{\varepsilon}_{lnt2} - \boldsymbol{\varepsilon}_{P_{1}}) \frac{\boldsymbol{k}_{obs12}^{2} \boldsymbol{c}}{(\boldsymbol{k}_{obs3} - \boldsymbol{k}_{obs12})^{2}}$$

$$E = \varepsilon_{P_1} c$$