Silylenediamido $[(CH_3)_2Si(NTs)_2^{2-}; Ts = p-CH_3C_6H_4SO_2]$ complexes of iridium: synthesis, structures and facile Si–N bond cleavage

Koji Ishiwata, Shigeki Kuwata* and Takao Ikariya*

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan. Fax: +81 3 5734 2637; Tel: +81 3 5734 2150; E-mail: skuwata@apc.titech.ac.jp; tikariya@apc.titech.ac.jp

Experimental Details

All manipulations were performed under an atmosphere of argon using standard Schlenk technique unless otherwise specified. Solvents were dried by refluxing over sodium benzophenone ketyl (toluene, hexane, THF, diethyl ether), CaH₂ (CH₂Cl₂), Drierite (acetone) and distilled before use. Reagents were commercially obtained and used as received. ¹H (300.4 MHz), and ³¹P{¹H} (121.6 MHz) NMR spectra were obtained on a JEOL JNM-LA300 spectrometer. ¹H NMR shifts are relative to the residual protiated solvent: CHCl₃, δ 7.26; C₆D₅H, δ 7.15. ³¹P NMR shifts are relative to an external 85% H₃PO₄. Infrared spectra were recorded on a JASCO FT/IR-610 spectrometer. Elemental analyses were performed by the Analytical Facility at the Research Laboratory of Resources Utilization, Tokyo Institute of Technology or on a Perkin-Elmer 2400II CHN analyzer.

Preparation of (CH₃)₂Si(NHTs)₂ (1). To a solution of TsNH₂ (6.85 g, 40.0 mmol) in THF (100 mL) was added a hexane solution of *n*-C₄H₉Li (1.59 M, 26 mL, 41.3 mmol) at 0 °C, and the mixture was slowly warmed to room temperature with stirring. After 1 h, dimethyldichlorosilane (2.4 mL, 20.1 mmol) was added to the resultant white suspension at 0 °C, and the mixture was slowly warmed to room temperature with stirring. After 1 h, the resultant white suspension at 0 °C, and the mixture was slowly warmed to room temperature with stirring. After 1 h, the resultant colorless solution was dried up, washed with toluene (50 mL), and extracted with acetone (50 mL). Recrystallization from THF/hexane (20 mL/20 mL) afforded **1** as colorless crystals (4.61 g, 11.6 mmol, 58%). δ_H(300 MHz; CDCl₃) 7.75, 7.28 (d, 4H each, ${}^{3}J_{\rm HH} = 8.4$ Hz, SO₂C₆H₄CH₃), 4.98 (br, 2H, NH), 2.42 (s, 6H, SO₂C₆H₄CH₃), 0.44 (s, 6H, Si(CH₃)₂). Satisfactory analytical data were not available for **1** due to its hygroscopic nature.

Preparation of [Cp*Ir(NTs)₂Si(CH₃)₂] (2). To a suspension of [Cp*IrCl₂]₂ (1.00 g, 1.26 mmol)¹ in toluene/CH₂Cl₂ (80 mL/20 mL) was added triethylamine (1.40 ml, 10.04 mmol) and CaH₂ (1 g). After stirring for 3 h, **1** (1.21 g, 3.04 mmol) was added to the orange suspension and the suspension immediately turned into dark red. After stirring for 1 h, the resultant suspension was filtered and the filtrate was evacuated to dryness and washed with water (30 mL), diethyl ether (30 mL). Recrystallization from CH₂Cl₂/hexane (5 mL/50 mL) afforded **2** as dark red crystals (1.28 g, 1.77 mmol, 73%). δ_H(300 MHz; C₆D₆) 7.98, 6.82 (d, 4H each, ³J_{HH} = 8.1 Hz, SO₂C₆H₄CH₃), 1.95 (s, 6H, SO₂C₆H₄CH₃), 1.25 (s, 15H, Cp*), 0.60 (s, 6H, Si(CH₃)₂). Anal. Calcd for C₂6H₃SIrN₂O₄S₂Si: C, 43.13; H, 4.87; N, 3.87. Found: C, 43.44; H, 4.96; N, 3.93.

Preparation of $[Cp*Ir(NTs)_2Si(CH_3)_2\{P(C_6H_5)_3\}]$ (3a). To a solution of 2 (100.3 mg, 0.14 mmol) in THF (2 mL) was added

 $\begin{array}{l} P(C_6H_5)_3 \ (40.0 \ \text{mg}, \ 0.15 \ \text{mmol}). \ \text{After stirring for 1 h, hexane (10 mL) was layered on the solution. The yellow crystals that formed were filtered off and dried in vacuo (129.1 mg, 0.131 mmol, 94%). \\ \delta_H(300 \ \text{MHz}; \ C_6D_6) \ 7.95-6.63 \ (m, 15H, aryl), \ 7.24, \ 6.59 \ (d, \ 4H each, \ ^3J_{HH} = 8.1 \ \text{Hz}, \ \text{SO}_2C_6H_4\text{CH}_3), \ 1.89 \ (s, \ 6H, \ \text{SO}_2C_6H_4\text{CH}_3), \ 1.62 \ (d, \ 15H, \ ^4J_{PH} = 2.0 \ \text{Hz}, \ \text{Cp}^*), \ 0.95, \ -0.75 \ (s, \ 3H \ each, \ \text{Si}(\text{CH}_3)_2). \ \delta_P(122 \ \text{MHz}; \ C_6D_6) \ 16.6 \ (s). \ \text{Anal. Calcd for} \ C_{44}H_{50}\text{IrN}_2\text{O}_4\text{PS}_2\text{Si: C}, \ 53.58; \ \text{H}, \ 5.11; \ \text{N}, \ 2.84. \ \text{Found: C}, \ 53.53; \ \text{H}, \ 4.96; \ \text{N}, \ 2.84. \end{array}$

Preparation of [Cp*Ir(NTs)₂Si(CH₃)₂{P(OC₂H₅)₃}] (3b). To a solution of **2** (100.3 mg, 0.14 mmol) in THF (2 mL) was added P(OC₂H₅)₃ (25 μL, 0.14 mmol). After stirring for 1 h, hexane (10 mL) was layered on the solution. The yellow crystals that formed were filtered off and dried in vacuo (113.1 mg, 0.127 mmol, 92%). $\delta_{\rm H}(300 \text{ MHz}; \text{ C}_{6}\text{D}_{6})$ 8.02, 6.84 (d, 4H each, ³*J*_{HH} = 8.1 Hz, SO₂C₆*H*₄CH₃), 3.82 (dq, 6H, ³*J*_{PH} = ³*J*_{HH} = 7.1 Hz, P(OCH₂CH₃)₃), 1.96 (s, 6H, SO₂C₆*H*₄CH₃), 1.77 (d, 15H, ⁴*J*_{PH} = 3.4 Hz, Cp*), 1.04 (t, 9H, ³*J*_{HH} = 7.1 Hz, P(OCH₂CH₃)₃), 0.52, 0.42 (s, 3H each, Si(CH₃)₂). $\delta_{\rm P}(122 \text{ MHz}; \text{ C}_{6}\text{D}_{6})$ 79.2 (s). Anal. Calcd for C₃₂H₅₀IrN₂O₇PS₂Si: C, 43.18; H, 5.66; N, 3.15. Found: C, 42.80; H, 5.68; N, 3.11.

Preparation of [Cp*Ir(NTs)₂Si(CH₃)₂(CO)]·CH₂Cl₂ (3c·CH₂Cl₂). A solution of **2** (33.5 mg, 0.05 mmol) in CH₂Cl₂ (3 mL) was stirred for 1 h under CO atmosphere. Hexane (10 mL) was layered on the concentrated solution (*ca.* 1 mL) under CO atmosphere. The yellow crystals of **3c**·CH₂Cl₂ were filtered off and dried in vacuo (34.0 mg, 0.04 mmol, 88%). δ_H(300 MHz; C₆D₆) 7.88, 6.81 (d, 4H each, ³J_{HH} = 8.1 Hz, SO₂C₆H₄CH₃), 1.86 (s, 6H, SO₂C₆H₄CH₃), 1.57 (s, 15H, Cp*), 0.77, 0.58 (s, 3H each, Si(CH₃)₂). ν_{max}(KBr)/cm⁻¹ 2036 (CO). Anal. Calcd for C₂₈H₃₇Cl₂IrN₂O₅S₂Si: C, 40.18; H, 4.46; N, 3.35. Found: C, 40.31; H, 4.24; N, 3.40.

Preparation of [Cp*Ir(NHTs)₂{P(C₆H₅)₃}] (5). To a solution of **3a** (37.5 mg, 0.04 mmol) in CH₂Cl₂ (5 mL) was added water (10.0 μL, 0.55 mmol) and the mixture was stirred for 20 h. Addition of hexane (10 mL) to the concentrated solution (*ca.* 1 mL) afforded **5** as yellow solid (26.8 mg, 0.03 mmol, 76%) along with small amount of yellow crystals of **5**·CH₂Cl₂. δ_H(300 MHz; C₆D₆) 7.52, 6.99 (br, 15H, aryl), 7.44, 6.65 (d, 4H each, ³J_{HH} = 8.1 Hz, SO₂C₆H₄CH₃), 2.65 (d, 2H, ³J_{PH} = 3.4 Hz, NH), 1.97 (s, 6H, SO₂C₆H₄CH₃), 1.56 (d, 15H, ⁴J_{PH} = 2.4 Hz, Cp*). δ_P(122 MHz; C₆D₆) 7.3 (s). v_{max} (KBr)/cm⁻¹ 3346, 3281 (NH). Anal. Calcd for C₄₂H₄₆IrN₂O₄PS₂: C, 54.23; H, 4.98; N, 3.01. Found: C, 54.09; H, 4.93; N, 2.92.

X-ray Diffraction Studies. Diffraction experiments were performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K α radiation ($\lambda = 0.710$ 70 Å). Single crystals suitable for X-ray analyses were mounted on glass fibers. Intensity data were corrected for Lorentz–polarization effects and for absorption. Details of crystal and data collection parameters are summarized in Table S1.

Structure solution and refinements were carried out by using the CrystalStructure program package.² The heavy-atom positions were determined by a direct methods program (SIR92³ for **3a**, **3b** and **3c**·CH₂Cl₂, SIR2002⁴ for **2** and **5**·CH₂Cl₂) and remaining non-hydrogen atoms were found by subsequent Fourier syntheses. All non-hydrogen atoms were refined anisopropically by full-matrix least-squares techniques based on F^2 . All hydrogen atoms except for the amide hydrogens in **5** were placed at calculated positions; these hydrogen atoms were included in the final stages of the refinements. The atomic scattering factors were taken from ref 5, and anomalous dispersion effects were included; the values of $\Delta f'$ and $\Delta f''$ were taken from ref 6.

References

- 1 C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 230.
- 2 CrystalStructure 3.8: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC, The Woodlands TX 77381 USA, 2000–2006.
- 3 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori and M. Camalli, J. Appl. Cryst., 1994, 27, 435.
- 4 M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori and R. Spagna, J. Appl. Cryst., 2003, 36, 1103.
- 5 International Tables for X-ray Crytallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.
- 6 International Tables for X-ray Crytallography; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C.

(3c)

Fig. S1 Crystal Structures of 3b and 3c·CH₂Cl₂. Hydrogen atoms and the solvating CH₂Cl₂ in 3c·CH₂Cl₂ are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability.

	2	3a	3b	3c·CH ₂ Cl ₂	5.CH2Cl2
Formula	C26H35IrN2O4S2Si	C44H50IrN2O4PS2Si	C32H50IrN2O7PS2Si	C28H37Cl2IrN2O5S2Si	C43H48Cl2IrN2O4PS2
molecular wt	724.00	986.29	890.16	836.94	1015.08
color	dark red	yellow	yellow	yellow	yellow
crystal dimens, mm	$0.20 \times 0.20 \times 0.20$	$0.50 \times 0.20 \times 0.20$	$1.00 \times 0.80 \times 0.50$	$0.70 \times 0.40 \times 0.30$	$0.50 \times 0.30 \times 0.20$
symmetry	monoclinic	monoclinic	monoclinic	orthorhombic	orthorhombic
space group	$P2_1/a$ (#14)	$P2_1/c$ (#14)	$P2_1/c$ (#14)	$P2_{1}2_{1}2_{1}(\#19)$	<i>Pbca</i> (#61)
a. Å	14.045(4)	10.474(4)	11.945(3)	12.605(3)	14.832(5)
b, Å	18.430(5)	19.550(7)	18.337(4)	14.305(4)	19.130(7)
c, Å	22.740(6)	20.356(7)	17.387(4)	18.654(5)	30.389(11)
α,°	90	90	90	90	90
β, °	98.606(3)	91.550(5)	104.708(3)	90	90
γ, °	90	90	90	90	90
$V, Å^3$	5820(2)	4167(2)	3683.8(15)	3363.5(14)	8623(5)
Z	8	4	4	4	8
$D_{\rm calc}$, g cm ⁻¹	1.652	1.572	1.605	1.653	1.564
F ₀₀₀	2880.00	1992.00	1800.00	1664.00	4080.00
μ , cm ⁻¹	48.187	34.253	38.701	43.367	34.062
exposure rate, sec/°	10.0	6.0	2.0	4.0	10.0
no. of data collected	$51953 (R_{int} = 0.059)$	$37870 (R_{int} = 0.065)$	$33325 (R_{int} = 0.073)$	$31426 (R_{int} = 0.049)$	$88525 (R_{int} = 0.091)$
no. of unique data	13188	9542	8396	7623	9869
$(2\theta < 55^\circ)$					
transmission factors	0.250-0.381	0.306-0.504	0.048-0.144	0.118-0.272	0.348-0.506
no. variables	719	546	465	408	542
R (all data)	0.0801	0.0911	0.0480	0.0351	0.0928
$R1 [I > 2\sigma(I)]^a$	0.0394	0.0527	0.0370	0.0284	0.0382
$wR2^a$	0.1302	0.1191	0.1053	0.0924	0.1386
gof ^a	1.008	1.009	1.000	1.006	1.000
max/min residuals, e Å ⁻³	4.35, -4.34	3.60, -2.45	2.22, -1.59	2.20, -1.35	3.68, -2.16