Supporting Information

C-H Activation Motivated by N, N'-Diisopropylcarbodiimide within a Lutetium Complex Stabilized by Amino-Phosphine Ligand

Bo Liu, ^{*a,b*} Yi Yang, ^{*a,b*} Dongmei Cui,*^{*a*} Tao Tang, ^{*a*} Xuesi Chen, ^{*a*} Xiabin Jing ^{*a*}

General conditions: All reactions were carried out under a dry and oxygen-free argon atmosphere by using Schlenk techniques or under a nitrogen atmosphere in a glovebox. Solvents were purified by MBRAUN SPS system. Starting materials for the synthesis of compound 1–4 were purchased from Aldrich or Fluka, and distilled before use.

Instruments and measurements: Organometallic samples for NMR spectroscopic measurements were prepared in a glovebox by use of NMR tubes sealed by paraffin film. ¹H, ¹³C NMR spectra were recorded on a Bruker AV400 (FT, 400 MHz for ¹H; 100 MHz for ¹³C) spectrometer. NMR assignments were confirmed by the ¹H–¹H (COSY), ¹H–¹³C (HMQC) experiments when necessary. Crystals for X-ray analysis were obtained as described in the experimental section. The crystals were manipulated in the glovebox. Data collections were performed at –86.5 °C on a Bruker SMART APEX diffractometer with a CCD area detector, using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out by the SMART program package. The raw frame data were processed using SAINT and SADABS to yield the reflection data file. The structures were solved by using SHELXTL program. Refinement was performed on F^2 anisotropically for all non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Elemental analyses were performed at National Analytical Research Centre of Changchun Institute of Applied Chemistry.

Complex 1. Ligand HL (0.20 g, 0.49 mmol) in toluene (2mL) was gradually added to a solution of Lu(CH₂Si(CH₃)₃)₃(THF)₂ (0.29 g, 0.50 mmol) in toluene (3 mL). The reaction mixture was stirred for 2.5 h at room temperature. After removal of volatiles, the white solid was washed with hexane (1.5 mL) to afford complex 1 (0.25 g, 65%). Recrystallization from benzene/hexane for several days afforded colorless single crystals for X-ray analysis. ¹H NMR (400 MHz, [D6]benzene, 25 °C): $\delta = -0.24(s, 4H, CH_2Si(CH_3)_3), 0.35(s, 18H, CH_2Si(CH_3)_3), 1.19(broad, 1.19)$ 4H, THF), 2.24(s, 6H, NC₆H₃(CH₃)₂), 3.43(broad, 4H, THF, 2H, P CH₂CHN), 4.94(s, 1H, PCH₂CHN), 6.69(t, ³J(H, H) = 6.8 Hz, p-NC₆H₃(CH₃)₂), 6.78(d, ³J(H, H) = 7.6 Hz, m-NC₆H₃(CH₃)₂), 7.03(t, 1H, ³J(H, H) = 6.8 Hz, p-CHC₆ H_5), 7.07(t, ${}^{3}J$ (H, H) = 7.2 Hz, 2H, m-CHC₆ H_5), 7.19(td, ${}^{3}J$ (H, H) = 8.0 Hz, ${}^{4}J$ (H, H) = 1.2 Hz, 2H, $p-P(C_6H_5)_2$, 7.32(td, ${}^{3}J(H, H) = 7.6$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, 4H, $m-P(C_6H_5)_2$), 7.45(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.6$ Hz, ${}^{4}H_1$, ${}^{4}H_2$ 1.6 Hz, 2H, o-CHC₆H₅), 8.04, 8.06 ppm(dd, ${}^{3}J(H, H) = 8.0$ Hz, ${}^{4}J(H, H) = 1.2$ Hz, 4H, o-P(C₆H₅)₂). ${}^{13}C$ NMR (100 MHz, [D6]benzene, 25 °C): $\delta = 4.97(s, 3C, CH_2Si(CH_3)_3), 21.11((s, 2C, NC_6H_3(CH_3)_2), 25.78(s, 2C, THF), 33.04(s, 2C, CH_2Si(CH_3)_2))$ 1C, PCH₂CHN), 48.30(d, ¹J(C,Lu)=10 Hz, 2C, CH₂Si(CH₃)₃), 69.88(s, 2C, THF), 81.70(d, ¹J (C,P)= 28 Hz, 1C, PCH₂CHN), 124.28(s, 2C, o-NC₆H₃Me₂), 127.80, (s, 1C, p-NC₆H₃Me₂), 128.26(s, 2C, m-CHC₆H₅), 128.5(overlap, 2C, o-CHC₆H₅, 1C, p-CHC₆H₅), 129.22(s, 2C, p-P(C₆H₅)₂), 129.31(d, ²J(C,P)= 8 Hz, 4C, o-P(C₆H₅)₂), 130.62(s, 2C, 2C, 2C)) m-NC₆H₃Me₂), 132.32(d, ¹J(C,P) =15 Hz, 2C, *ipso*-P(C₆H₅)₂), 133.45(d, ³J(C,P)=5 Hz, 4C, m-P(C₆H₅)₂), 136.58(s, m-NC₆H₃)) 1C, ipso-CHC₆H₅), 154.56 ppm(s, 1C, ipso-NC₆H₃Me₂). Elemental analysis (%) calcd for C₄₀H₅₇NOSi₂PLu: C 57.88, H 7.28, N 1.69; found: C 57.85, H 7.30, N 1.70.

Complex 2. N,N'-diisopropylcarbodiimide (0.025 g, 0.20 mmol) in hexane (1 mL) was added to a suspension of complex **1** (0.16 g, 0.20 mmol) in hexane (3 mL). The precipitation gradually disappeared, then the reaction mixture was kept stirring for 10 h at room temperature. Concentrated to 1 mL, cooled at – 34 °C for several days afoorded colorless crystals of **2** (0.08 g, 40%). ¹H NMR (400 MHz, [D6]benzene, 25 °C): $\delta = 0.27(s, 9H, CH_2Si(CH_3)_3)$, 0.60 (d, ³*J*(H,H) = 6.0 Hz, 3H, (CH_3)_2CHN=C), 0.79(d, ³*J*(H,H) = 5.2 Hz, 3H, (CH_3)_2CHNLu), 1.07(d, ³*J*(H, H) = 5.2 Hz,

3H, $(CH_3)_2$ CHN=C), 1.22(d, ${}^{3}J(H,H) = 5.2$ Hz, 3H, $(CH_3)_2$ CHNLu), 1.34(s, 2H, CH_2 Si(CH₃)₃), 1.38(d, ${}^{3}J(H,H) = 5.2$ Hz, 6H, (CH₃)₂CHNCCH₂Si(CH₃)₃), 1.53(broad, 4H, THF), 1.65(d, ${}^{3}J(H,H) = 5.6 Hz,$ 6H, $(CH_3)_2$ CHNCCH₂Si(CH₃)₃), 2.03, 2.17(AB, ²J(H,H) = 12.0 Hz, 2H, CH₂C₆H₃), 2.45(s, 3H, C₆H₃CH₃), 3.36(multi, 1H, (CH₃)₂CHN=C), 3.57, 4.50(AB, ²J(H,H) =15.6 Hz, 2H, Ph₂PCH₂), 3.71(broad, 4H, THF, 1H, (CH₃)₂CHNLu), 3.83(multi, 1H, (CH₃)₂CHNCCH₂Si(CH₃)₃), 4.39(multi, 1H, (CH₃)₂CHNCCH₂Si(CH₃)₃), 4.73(s, 1H, PCH₂CHN), $6.80(d, {}^{3}J(H,H) = 6.4 Hz, 1H, m-N(CH_2)C_6H_3(CH_3)), 6.83((d, {}^{3}J(H,H) = 6.8 Hz, 1H, m-N(CH_2)C_6H_3(CH_3))),$ 7.04(multi, 1H, *p*-N(CH₂)C₆H₃(CH₃), 1H, *p*-CHC₆H₅), 7.16(multi, 2H, *m*-CHC₆H₅, 4H, *m*-P(C₆H₅)₂), 7.34(t, ³J(H,H) = 6.8 Hz, 2H, $p-P(C_6H_5)_2$), 7.74(d, ${}^{3}J(H,H)$ = 7.6 Hz, 2H, $o-CHC_6H_5$), 7.94 ppm(multi, 4H, $o-P(C_6H_5)_2$). ${}^{13}C$ NMR (100 MHz, [D6]benzene, 25 °C): $\delta = 0.67(s, 3C, CH_2Si(CH_3)_3), 18.35(s, 1C, CH_2C_6H_3), 21.40 (s, 1C, C_6H_3CH_3), 21.40 (s, 1C, C_6H_3), 2$ 26.05(s, 2C, THF), 26.21(s, 1C, (CH₃)₂CHNLu), 26.39(s, 1C, (CH₃)₂CHN=C), 26.84(s, 1C, (CH₃)₂CHNLu), 26.99(s, 1C, (CH₃)₂CHN=C), 27.66(s, 2C, (CH₃)₂CHNCCH₂Si(CH₃)₃), 28.02(s, 2C, (CH₃)₂CHNCCH₂Si(CH₃)₃), 37.04(s, 1C, PCH₂CHN), 47.89(s, 1C, (CH₃)₂CHN=C), 48.49(s, 1C, (CH₃)₂CHNCCH₂Si(CH₃)₃), 49.02(s, 1C, (CH₃)₂CHNLu), 50.11(s, 1C, (CH₃)₂CHNCCH₂Si(CH₃)₃), 68.51(s, 2C, THF), 75.25(s, 1C, PCH₂CHN), 122.67(s, 1C, $m-N(CH_2)C_6H_3(CH_3))$, 127.56(s, 4C, $m-P(C_6H_5)_2)$, 127.74(s, 2C, $m-CHC_6H_5)$, 128.50(overlap, 1C, *p*-N(CH₂)C₆H₃(CH₃), 2C, *p*-P(C₆H₅)₂), 129.02(s, 2C, *o*-CHC₆H₅), 129.51(s, 1C, *p*-CHC₆H₅), 130.14(s, 1C, $m-N(CH_2)C_6H_3(CH_3)$, 132.43, 134.04(d, ²J(C,P) = 13 Hz, 4C, $o-P(C_6H_5)_2$, 135.67, 137.05(s, 2C, o-N(CH₂)C₆H₃(CH₃)), 137.27, 137.59(s, 1C, *ipso*-CHC₆H₅), 141.55, 145.82(d, ¹J(C,P)=11 Hz, 2C, *ipso*-P(C₆H₅)₂), 153.76(s, 1C, *ipso*-N(CH₂)C₆H₃(CH₃)), 176.29(s, 1C, ((CH₃)₂CH)N(Lu)C[CH₂Si(CH₃)₃]N(CH(CH₃)₂)), 178.39 ppm(s, 1C, (CH₃)₂CH)N(Lu)C[CH₂C₆H₃(CH₃)]N(CH(CH₃)₂)). Elemental analysis (%) calcd for C₅₀H₇₁N₅OSiPLu: C 60.53, H 7.21, N 7.06; found: C 60.49, H 7.24, N 7.08.

Complex 4: To a hexane solution (3 mL) of complex 3 (0.12 g, 0.15 mmol), N,N'-diisopropylcarbodiimide (0.02 g, 0.15 mmol) in hexane (1 mL) was gradually added. The reaction mixture was kept stirring for 4 h at room temperature. Removal of the volatiles afforded oily residue which was dissolved with hexane (1 mL) and then cooled to -34 to generate white solid of complex 4 (0.08g, Yield: 61%). ¹H NMR (400 MHz, [D₆]benzene, 25°C): $\delta =$ -0.34(s, 2H, LuCH₂Si(CH₃)₃), 0.19(s, 9H, CCH₂Si(CH₃)₃), 0.39(s, 9H, LuCH₂Si(CH₃)₃), 0.95-1.35(multi, 12H, NCH(CH₃)₂), 1.96(s, 2H, CCH₂Si(CH₃)₃), 2.80(s,6H, NC₆H₃(CH₃)₂), 3.57(multi, 2H, NCH(CH₃)₂), 4.97(broad, 2H, -CH₂N), 6.86(t, ${}^{3}J(H, H) = 7.2 \text{ Hz}$, 1H, m-PC₆H₄CH₂), 6.90(multi, 1H, p-PC₆H₄CH₂), 6.96(t, ${}^{3}J(H, H) = 7.2 \text{ Hz}$, 1H, p-NC₆ H_3 (CH₃)₂), 7.18(multi, 1H, o-PC₆ H_4 CH₂), 7.20(d, 3J (H, H) = 7.6 Hz, 2H, m-NC₆ H_3 (CH₃)₂), 7.23(mutil, 4H, $o-P(C_6H_5)_2$, 2H, $p-P(C_6H_5)_2$, 1H, $o-CH_2C_6H_4P$), 7.62(t, ³J(H, H) = 8.0 Hz, 4H, $m-P(C_6H_5)_2$), ¹³C NMR (100 MHz, $[D_6]$ benzene, 25°C): $\delta = 0.22(s, 3C, CCH_2Si(CH_3)_3), 5.12(s, 3C, LuCH_2Si(CH_3)_3), 17.88(s, 2C, CCH_2Si(CH_3)_3), 18.8(s, 2C, CC$ 21.36(s, 2C, NC₆H₃(CH₃)₂), 25.87(s, 4C, NCH(CH₃)₂), 39.77(s, 1C, LuCH₂Si(CH₃)₃), 47.95(s, 2C, NCH(CH₃)₂), 49.30(s, 1C, -CH₂N), 121.01 (s, 1C, o-PC₆H₄CH₂), 127.32(s, 1C, p-NC₆H₃Me₂), 128.5(overlap, 2C, p-P(C₆H₅)₂, 1C, m-PC₆H₄CH₂), 129.34(s, 4C, o-P(C₆H₅)₂), 129.66(s, 1C, o-CH₂C₆H₄P), 129.73(s, 1C, p-PC₆H₄CH₂), 130.18 (s, 2C, *m*-NC₆H₃Me₂), 130.71(s, 1C, ipso-PC₆H₄CH₂), 133.62 (s, 2C, ipso-P(C₆H₅)₂), 134.74 (s, 4C, *m*-P(C₆H₅)₂), 134.88 (s, 2C, $o-NC_6H_3Me_2$), 150.03(d, ²J(C,P)=18.5 Hz, 1C, ipso-CH₂C₆H₄P), 154.02 ppm (s, 1C, ipso-NC₆H₃Me₂), 176.41 ppm(s, 1C, i-Pr₂NC(CH₂Si(CH₃)₃)N i-Pr₂). Elemental analysis (%) calcd for C₄₂H₆₁N₃Si₂PLu: C 57.98, H 7.07, N 4.83; found: C 57.97, H 7.08, N 4.82.

Fig. 1 Chemical shift assignment for $2(^{13}C)$ resonances are underlined)

Fig. 2 Chemical shift assignment for 4 (¹³C resonances are underlined)

Fig. 3 ¹H NMR Spectrum of complex 2

Fig. 4 ¹H-¹H COSY Spectrum of complex 2

Fig. 5 ¹³C NMR Spectrum of Complex 2

Fig. 6 ¹H-¹³C HMQC Spectrum of Complex 2

Fig. 7 ¹H NMR Spectrum of Complex 4

Fig. 8 ¹H-¹H COSY Spectrum of Complex 4

Fig. 9¹³C NMR Spectrum of Complex 4

Fig. 10¹H-¹³C HMQC Spectrum of Complex 4