Electronic Supporting Information.

1. Line-shape analysis by g-NMR best-fitting

Was achieved in order to confirm 2D-EXSY results albeit the large number of variables makes this method less accurate. Here we show a good best-fitting guess obtained by feeding the g-NMR with the EXSY results.

2. ESI-MS Spectra of 1 and 2 in H_2O^{18}

Were recorded in order to rule out the dominating effect of an external water nucleophilic attack in **2** (the enhancement, respect to **1**, does not justify the 10^4 overall rate increase).

Fig.1 ESI-MS spectra of $1 \text{ inH}_2^{18}\text{O}$

Fig.2 ESI-MS spectra of $2 \text{ inH}_2^{18}\text{O}$

Tables listing mutarotation rate constants vs. temperatures used for thermodynamic calculations;

table of the $k_{(\alpha p - \beta p)}$ vs. pD referred to 1.

Table S1. Mutarotation rate constants at variable temperature for the activation parameter calculation.

$k_{(\alpha p-\beta p)}(s^{-1})$	$k_{(\alpha f-\beta f)}(s^{-1})$		
$3.9 \cdot 10^{-5}$ (285K)			
18·10 ⁻⁵ (298K)	-		
70·10 ⁻⁵ (315K)	-		
300·10 ⁻⁵ (330K)	-		
1.4 (298K)	2.64 (298K)		
3.6 (311K)	10.3 (311K)		
207.5 (368K)	135 (345K)		
	$\begin{array}{c} k_{(\alpha p - \beta p)}(s^{-1})\\ 3.9 \cdot 10^{-5} (285 \mathrm{K})\\ 18 \cdot 10^{-5} (298 \mathrm{K})\\ 70 \cdot 10^{-5} (315 \mathrm{K})\\ 300 \cdot 10^{-5} (330 \mathrm{K})\\ 1.4 (298 \mathrm{K})\\ 3.6 (311 \mathrm{K})\\ 207.5 (368 \mathrm{K}) \end{array}$		

Table S2. Mutarotation rate constant $k_{(\alpha p \cdot \beta p)}$ for 1 vs. pD.

pD*	6.5	6.1	5.2	4.5	4.0	3.7	3.3	2.3	2.0
$\mathbf{k}_{(\alpha p-\beta p)} \cdot 10^{4} (s-1)$	6.0	3.8	1.9	1.7	1.7	1.8	1.8	2	2.3