Electronic Supplementary Information

A template-directed synthetic approach to halogen-bridged mixed-valence platinum complexes on artificial peptides in solution

Kentaro Tanaka,^{*a,b*} Kenji Kaneko,^{*a*} Yusuke Watanabe^{*a*} and Mitsuhiko Shionoya^{**a*}

^a Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Fax: +81 3 5841 8061; Tel: +81 3 5841 8061; E-mail: shionoya@chem.s.u-tokyo.ac.jp

^b Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Fax: +81 52 789 2940; Tel: +81 52 789 2940; E-mail: kentaro@chem.nagoya-u.ac.jp

Contents

1. General experimental methods page S2

2. Syntheses of the Pt complex-pendant peptides $([1a-d(Pt(IV)Br_2(en))_n](RSO_3)_{2n})$ and $[1a-d(Pt(II)(en))_n](RSO_3)_{2n}$: (n = 2, 3, 9, 10) and mononuclear Pt complexes (R = $(C_{12}H_{25}OCH_2)_2CHO(CH_2)_3$ -) page S3

3. Photometric titration spectra of $[1b(Pt(IV)Br_2(en))_3](RSO_3)_6$ with $[1a(Pt(II)(en))_2](RSO_3)_4$ (Fig. S1) \cdots page S21

4. Photometric titration spectra of $[1d(Pt(IV)Br_2(en))_{10}](RSO_3)_{20}$ with $[1c(Pt(II)(en))_9](RSO_3)_{18}$ (Fig. S2) page S22

5. ¹H NMR titration spectra of $[1a(Pt(IV)Br_2(en))_2](RSO_3)_4$ with $[Pt(II)(en)_2](RSO_3)_2$ (Fig. S3) page S23

6. References ···· page S24

General experimental methods

All reactions were carried out in oven dried glasswares with commercial dehydrated solvents (Wako Pure $N\alpha$ -*t*-Boc- β -amino-L-alanine.¹ 1-amino-11-azido-3.6.9-trioxaundecane.² Industries). Chemical 1,3-bis-dodecyloxy-propan-2-ol,³ $[Pt(II)Br_2(en)]$,⁴ $[Pt(II)(en)_2]Br_2^4$ and $[Pt(IV)Br_2(en)_2]Br_2^4$ were prepared according to previously published procedures. 0.5 M NH₃/1,4-dioxane was purchased from Sigma-Aldrich. 40% Methylamine/methanol, 4 Μ HCl/1,4-dioxane, *N*-methyl morpholine and 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide HCl were purchased from Tokyo Chemical Industry. 9-fluorenylmethyloxycarbonyl-*N*-hydroxysuccinimide (Fmoc-OSu), Rink Amide AM-resin and 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HBTU) were purchased from Novabiochem. Reverse-phase-high performance liquid chromatography (RP-HPLC) eluents were purchased from Kanto Chemical. All other reagents were purchased from Wako Pure Chemical Industries and were used without further purification. Column chromatography was performed using Wakogel C-300 silica gel (Wako Pure Chemical Industries). Reverse-phase column chromatography was performed using Wakogel 50C18 silica gel (Wako Pure Chemical Industries). Thin-layer chromatography was performed on silica gel 60 F₂₅₄ 1.0554 (Merck). Anion exchange column chromatography was carried out on Amberlite IRA-400 (Organo). ¹H, ¹³C and ¹H-¹H COSY NMR spectra were recorded on a Bruker DRX 500 (500 MHz¹H; 125.65 MHz¹³C) spectrometer. The spectra are referenced to either Me₄Si in acetonitrile- d_3 , chloroform-d, dichloromethane- d_2 and methanol- d_4 or the signal of the solvent (acetonitrile- d_3 ; 1.94 ppm). Chemical shifts (δ) are reported in ppm; multiplicities are indicated by: s (singlet), d (doublet), t (triplet), dd (double doublet), dt (double triplet), m (multiplet), br (broad). Coupling constants, J, are reported in Hz. Electrospray ionization-time-of-flight (ESI-TOF) mass spectra were recorded on a Micromass LCT spectrometer. RP-HPLC was carried out on a TOSOH instrument equipped with a solvent delivery pump (preparative; CCPP-M, analysis; CCPM-II), an UV-vis absorbance detector (UV-8020) and a temperature controller (CO-8020) with Wakopak Navi C18-5 (preparative; 20 × 250 mm, analysis; 4.6×250 mm) columns and eluents specialized in HPLC. Gel permeation chromatography (GPC) was performed on a recycling preparative HPLC (Japan Analytical Industry; LC-928R/U) with an UV-vis absorbance detector (S-3740) with a JAIGEL-2H-40 (40×600 mm) column. UV-vis absorption spectra were recorded on a Hitachi U-3500 spectrometer equipped with a Peltier thermoelectric temperature control unit.

Syntheses of the Pt complex-pendant peptides $([1a-d(Pt(IV)Br_2(en))_n](RSO_3)_{2n}$ and $[1a-d(Pt(II)(en))_n](RSO_3)_{2n}$: (n = 2, 3, 9, 10) and mononuclear Pt complexes (R = $(C_{12}H_{25}OCH_2)_2CHO(CH_2)_{3}$ -)

The building block 1 of the template peptides was prepared according to Scheme S1.

Scheme S1 Synthetic route to the building block 1.

Pt complex-pendant peptides ($[1a-d(Pt(II)(en))_n](RSO_3)_{2n}$ and $[1a-d(Pt(IV)Br_2(en))_n](RSO_3)_{2n}$: (n = 2, 3, 9, 10)) were prepared according to Scheme S2.

Scheme S2 A synthetic route to Pt complex-pendant peptides $([1a-d(Pt(II)(en))_n](RSO_3)_{2n})_{2n}$ and $[1a-d(Pt(IV)Br_2(en))_n](RSO_3)_{2n})_{2n}$.

A sodium dialkylsulfonate, RSO₃Na, was synthesized according to Scheme S3.

Synthesis of (S)-N,N'-di-t-Boc-2,3-diaminopropanol 2

To a solution of Nα-t-Boc-β-amino-L-alanine (6.60 g, 32.3 mmol) and NaHCO₃ (2.72 g, 32.3 mmol) in THF/water (1:1, 66 cm³) was added dropwise a solution of di-t-butyl-dicarbonate (Boc₂O, 7.42 cm³, 32.3 mmol) in THF (50 cm³) at 0 °C under a nitrogen atmosphere. After stirring for 15 h at room temperature, THF was removed under reduced pressure and dried in vacuo. 5% KHSO₄ aqueous solution (250 cm³) was added to the residue, and di-Boc compound was extracted with ethyl acetate (3 \times 250 cm³). The combined organic layer was washed with 5% KHSO₄ aqueous solution (100 cm³) and water (100 cm³). The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure and dried *in vacuo*. To a solution of the residue (10.4 g) in THF (170 cm³) was added dropwise N-methyl morpholine (3.76 cm³, 34.2 mmol) and isopropyl chloroformate (3.92 cm³, 34.2 mmol) at -15 °C under a nitrogen atmosphere. After stirring for 15 min at -15 °C, sodium tetrahydroborate (1.94 g, 51.2 mmol) was carefully added to the mixture and stirred for 45 min at room temperature. The reaction was quenched by adding methanol (100 cm³), and then the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (300 cm³) and washed with 5% KHSO₄/brine (3 \times 150 cm³) and water (2 \times 100 cm³). The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure and dried *in vacuo*. The crude material was chromatographed on silica gel with CH₂Cl₂/methanol (100:0 - 99:1) to give compound 2 (5.50 g, 59% (3 steps)) as a colorless solid (Found: C, 53.59; H, 9.02; N, 9.50. C₁₃H₂₆N₂O₅ requires C, 53.78; H, 9.02; N, 9.65); *R*_f 0.50 (chloroform/methanol/acetic acid (90:10:1)); $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3; \text{Me}_4\text{Si}) 5.14 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}, \text{Boc-NHCH-}), 5.06 \text{ (br, 1H, Boc-NHCH}_2-),$ 3.75-3.72 (m, 1H, -OH, D₂O exchangable), 3.69-3.67 (m, 1H, -CHHOH), 3.57 (br, 1H, methine), 3.51 (br, 1H, -CHHOH), 3.34-3.19 (m, 2H, Boc-NHCH₂-), 1.44 (s, 9H, t-Bu), 1.44 (s, 9H, t-Bu); $\delta_{C}(125)$ MHz; CDCl₃; Me₄Si) 157.9, 155.9, 80.5, 79.8, 61.7, 52.4, 40.3, 28.5, 28.4; *m/z* (ESI-TOF) 313.23 (M $+ Na^{+}$. C₁₃H₂₆N₂NaO₅ requires 313.18).

Synthesis of (S)-2,3-bis(phthalimido)propanol 3

A solution of compound 2 (5.00 g, 17.2 mmol) in 4 M HCl/1,4-dioxane (25 cm³, 100 mmol) was stirred for 11 h at room temperature. After the solvent was evaporated, the residue was dissolved in THF (60 cm³) and then triethylamine (3.48 cm³, 34.4 mmol) and phthalic anhydride (5.10 g, 34.4 mmol) were added to the solution. The reaction mixture was stirred for 3 h at room temperature, and then heated at reflux for 10 h at 80 °C. The solvent was removed under reduced pressure and 5% KHSO₄ aqueous solution (100 cm³) was added to the residue, which was extracted with ethyl acetate $(3 \times 100 \text{ cm}^3)$ and the combined organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The crude solid was washed with cooled ethanol to afford compound **3** (3.85 g) as a colorless solid. The resulting filtrate was recrystallized with ethanol (30 cm³) to afford compound **3** (0.74 g) as colorless needles (4.59 g, 76% in total (2 steps)) (Found: C, 64.80; H, 4.31; N, 7.79. C₁₉H₁₄N₂O₅ requires C, 65.14; H, 4.03; N, 8.00); R_f 0.80 (n-butanol/pyridine/acetic acid/water (4:1:1:2)); $\delta_{\rm H}(500 \text{ MHz}; \text{ CDCl}_3; \text{ Me}_4\text{Si})$ 7.82-7.67 (m, 8H, 2 × phthalimide), 4.68-4.63 (m, 1H, methine), 4.34 (dd, J = 14.6, 8.5 Hz, 1H, -NCHHCH-), 4.14 (dd, J = 7.0, 5.3 Hz, 2H, -CH₂OH), 4.09 (dd, J = 14.6, 3.5 Hz, 1H, -NCHHCH-), 3.44 (t, J = 7.0 Hz, 1H, -OH, D₂O exchangeable); $\delta_{C}(125)$ MHz; CDCl₃; Me₄Si) 169.1, 168.5, 134.4, 134.3, 131.9, 131.7, 123.6, 123.6, 61.8, 52.8, 37.3; m/z (ESI-TOF) 373.10 (M + Na⁺. $C_{19}H_{14}N_2NaO_5$ requires 373.08).

Synthesis of methyl (S)-5,6-bis(phthalimido)-3-oxahexanoate 4

To a solution of compound **3** (767 mg, 2.19 mmol) in THF (10 cm^3) was added sodium hydride (in oil (60%), 350 mg, 8.75 mmol) at room temperature. After stirring for 5 min at room temperature, methyl

bromoacetate (0.83 cm³, 8.75 mmol) was added and then stirred for 48 h at room temperature. The mixture was poured into 10 cm³ of ice water and 5% KHSO₄/brine (50 cm³) was added, which was extracted with ethyl acetate (3 × 50 cm³). The combined organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography with *n*-hexane/ethyl acetate (3:1) to obtain compound **4** (735 mg, 79%) as a colorless syrup; R_f 0.74 (chloroform/methanol/acetic acid (90:10:1)); $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 7.82-7.67 (m, 8H, 2 × phthalimide), 4.80-4.75 (m, 1H, methine), 4.31 (dd, *J* = 14.3, 8.4 Hz, 1H, -NCHHCH-), 4.18 (dd, *J* = 14.3, 8.4 Hz, 1H, -CHCHHO-), 4.13 (s, 2H, -OCH₂CO-), 4.12 (dd, *J* = 14.3, 4.0 Hz, 1H, -NCHHCH-), 3.69 (s, 3H, methyl); $\delta_{\rm C}$ (125 MHz; CDCl₃; Me₄Si) 173.4, 168.5, 168.3, 134.3, 131.8, 131.8, 131.8, 123.6, 123.6, 69.2, 68.0, 50.5, 37.2, 31.1; *m/z* (ESI-TOF) 445.18 (M + Na⁺. C₂₂H₁₈N₂NaO₆ requires 445.10).

Synthesis of (S)-5,6-bis(phthalimido)-3-oxahexanoic acid 5

To a solution of compound 4 (1.05 g, 2.49 mmol) in formic acid (25 cm³) was added methane sulfonic acid (0.16 cm³, 2.49 mmol) at room temperature. After stirring for 16 h at 80 °C, the mixture was poured into 150 cm³ of water, and then **5** was extracted with chloroform (3 × 150 cm³). The combined organic layer was washed with brine (100 cm³) and dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography with chloroform/methanol (99:1) to afford compound **5** (0.86 g, 85%) as a colorless syrup; R_f 0.45 (chloroform/methanol/acetic acid (90:10:1)); $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 7.82-7.69 (m, 8H, 2 × phthalimide), 4.79-4.74 (m, 1H, methine), 4.33 (dd, J = 14.3, 8.0 Hz, 1H, -NC*H*HCH-), 4.20-4.11 (m, 5H, -NCH*H*CH-, -CHC*H*₂O-, -OCH₂CO-); $\delta_{\rm C}$ (125 MHz; CDCl₃; Me₄Si) 174.1, 168.5, 168.3, 134.3, 134.3, 131.8, 131.8, 123.6, 123.6 69.2, 67.9, 50.5, 37.2; *m/z* (ESI-TOF) 431.16 (M + Na⁺. C₂₁H₁₆N₂NaO₇ requires 431.09).

Synthesis of (S)-N,N'-di-t-Boc-5,6-diamino-3-oxahexanoic acid 6

Compound **5** (850 mg, 2.08 mmol) was dissolved in 40% methylamine/methanol (10 cm³, 253 mmol) and stirred for 8 h at room temperature. After removal of the solvent and dried *in vacuo*, the residue was dissolved in water (100 cm³) and washed with chloroform/THF (4:1, 8 × 100 cm³). The solvent of the aqueous layer was removed under reduced pressure and dried *in vacuo*. To a solution of the crude material (362 mg) in THF/water (1:1, 10 cm³) was added NaHCO₃ (350 mg, 4.16 mmol) and Boc₂O (1.00 cm³, 4.16 mmol). After stirring for 11 h at room temperature, THF was removed under reduced pressure, and then 5% KHSO₄ aqueous solution (30 cm³) was added, which was extracted with ethyl acetate (3 × 40 cm³). The combined organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The crude material was purified by silica gel column chromatography with chloroform/methanol (100:0 - 99:1) to obtain compound **6** (584 mg, 81% (2 steps)) as a colorless syrup; *R_f* 0.72 (*n*-butanol/pyridine/acetic acid/water (4:1:1:2)); $\delta_{\rm H}(500 \text{ MHz};$ CDCl₃; Me₄Si) 5.35-5.20 (m, 2H, Boc-N*H*CH-, Boc-N*H*CH₂-), 4.18-4.05 (m, 2H, -OCH₂CO-), 3.81 (br, 1H, methine), 3.67-3.65 (m, 1H, -CHC*H*HO-), 3.55-3.52 (m, 1H, -CHC*HH*O-), 3.41-3.32 (m, 2H, Boc-NHC*H₂*-), 1.44 (m, 18H, 2 × Boc); $\delta_{\rm C}(125 \text{ MHz}; \text{CDCl}_3; \text{ Me}_4\text{Si})$ 172.9, 157.0, 156.1, 80.0, 79.8, 71.4, 68.3, 50.7, 41.6, 28.4; *m/z* (ESI-TOF) 371.19 (M + Na⁺, C₁₅H₂₈N₂NaO₇ requires 371.18).

Synthesis of N-(11-azido-3,6,9-trioxaundecyl)glycine t-butyl ester 7

To a solution of 1-amino-11-azido-3,6,9-trioxaundecane (19.5 g, 89.3 mmol) and triethylamine (24.8 cm³, 179 mmol) in CH₂Cl₂ (200 cm³) was added dropwise within 1 h a solution of *t*-butyl bromoacetate (13.1 cm³, 89.3 mmol) in CH₂Cl₂ (300 cm³) at 0 °C with a dropping funnel under a nitrogen atmosphere. After stirring for 17 h at room temperature, the mixture was washed with brine (3 × 500 cm³). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure and dried *in vacuo*. The crude material (31.2 g) was purified by silica gel column chromatography with chloroform/methanol (50:1 - 20:1) to obtain compound 7 (23.5 g, 79%) as a yellow-brown solution; R_f 0.61 (*n*-butanol/pyridine/water (4:1:2)); $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si)

3.70-3.63 (m, 10H, N₃CH₂CH₂O-, -OCH₂CH₂OCH₂CH₂O-), 3.59 (t, J = 5.6 Hz, 2H, -NHCH₂CH₂-), 3.40 (t, J = 5.1 Hz, 2H, N₃CH₂-), 3.33 (m, 2H, -NHCH₂CO-), 2.80 (t, J = 5.6 Hz, 2H, -NHCH₂CH₂-), 1.47 (s, 9H, *t*-Bu); δ_{C} (125 MHz; CDCl₃; Me₄Si) 171.5, 81.0, 70.7, 70.7, 70.6, 70.6, 70.3, 70.0, 51.7, 51.7, 50.6, 48.7.

Synthesis of

N-[(*S*)-*N*,*N*'-di-*t*-Boc-2,3-diaminopropoxy]acetyl-*N*-(11-azido-3,6,9-trioxaundecyl)glycine *t*-butyl ester 8

To a solution of compound 7 (7.36 g, 22.1 mmol) and compound 6 (7.71 g, 22.1 mmol) in THF (50 cm³) was added 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide·HCl (8.49 g, 44.3 mmol) at 0 °C under a nitrogen atmosphere. After stirring for 12 h at room temperature, THF was removed under reduced pressure and ethyl acetate (600 cm³) was added. The mixture was washed with 1% NaHCO₃ aqueous solution (600 cm³) and brine (2 × 600 cm³). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure and dried *in vacuo*. The crude material (15.6 g) was purified by silica gel column chromatography with *n*-hexane/ethyl acetate (1:2) to obtain compound **8** (12.9 g, 88%) as a pale yellow syrup; R_f 0.67 (chloroform/methanol (9:1)); $\delta_{\rm H}$ (500 MHz; CD₃CN) 5.83-5.75 (br, 2H, 2 × Boc-NH-), 4.33-3.92 (m, 4H, -OCH₂CO-, -NCH₂CO-), 3.64-3.36 (m, 19H, -CHNH-, -OCH₂CH₂N-, -OCH₂CH₂OCH₂CH₂O-, N₃CH₂CH₂O-, -OCH₂CH-), 3.20-3.16 (m, 2H, Boc-NHCH₂-), 1.47-1.41 (m, 27H, *t*-Bu, 2 × Boc); *m/z* (ESI-TOF) 685.30 (M + Na⁺. C₂₉H₅₄N₆NaO₁₁ requires 685.37).

Synthesis of

N-[(*S*)-*N*,*N*'-di-*t*-Boc-2,3-diaminopropoxy]acetyl-*N*-(11-amino-3,6,9-trioxaundecyl)glycine *t*-butyl ester 9

To a solution of compound **8** (12.9 g, 19.6 mmol) in methanol/ethyl acetate (1:1, 100 cm³) was added a suspension of Lindlar catalyst (5% Pd, 1.21 g, 0.57 mmol as Pd) in methanol/ethyl acetate (1:1, 100 cm³) at room temperature. After stirring for 4 h at room temperature under a hydrogen atmosphere, the catalyst was filtered off. The solvent of the filtrate was removed under reduced pressure and dried *in vacuo*. The crude material was purified by silica gel column chromatography with chloroform/methanol/triethylamine (99.9:0:0.1 - 89.9:10:0.1) to give compound **9** (12.4 g, 100%) as a colorless syrup; R_f 0.15 (chloroform/methanol (9:1)); $\delta_{\rm H}$ (500 MHz; CD₃CN) 5.98-5.80 (m, 2H, 2 × Boc-NH-), 4.33-3.96 (m, 4H, -OCH₂CO-, -NCH₂CO-), 3.65 (br, 1H, -CHNH-), 3.57-3.40 (m, 16H, -OCH₂CH₂N-, -OCH₂CH₂OCH₂CH₂O-, H₂NCH₂CH₂O-, -OCH₂CH-), 3.20-3.17 (m, 2H, Boc-NHCH₂-), 2.73-2.71 (m, 2H, H₂NCH₂-), 1.47-1.41 (m, 27H, *t*-Bu, 2 × Boc); *m/z* (ESI-TOF) 659.48 (M + Na⁺. C₂₉H₅₆N₄NaO₁₁ requires 659.38).

Synthesis of

N-[(*S*)-*N*,*N*'-di-*t*-Boc-2,3-diaminopropoxy]acetyl-*N*-(*N*-Fmoc-11-amino-3,6,9-trioxaundecyl) glycine *t*-butyl ester 10

To a solution of compound **9** (162 mg, 0.25 mmol) and *N*,*N*-diisopropylethylamine (DIPEA, 43.4 mm³, 0.25 mmol) in CH₂Cl₂ (3.0 cm³) was added Fmoc-OSu (85.6 mg, 0.25 mmol) at 0 °C under a nitrogen atmosphere. After stirring for 50 min at room temperature, ethyl acetate (50 cm³) was added into the mixture, and then the organic layer was washed with brine (3 × 50 cm³). The organic layer was dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure and dried *in vacuo*. The crude material (217 mg) was purified by silica gel column chromatography with *n*-hexane/ethyl acetate (2:3 - 1:2) to obtain compound **10** (210 mg, 96%) as a colorless syrup; R_f 0.75 (chloroform/methanol/triethylamine (9:1:1)); $\delta_{\rm H}$ (500 MHz; CD₃CN) 7.84 (d, J = 7.5 Hz, 2H, 4,5-fluoren), 7.67 (d, J = 7.4 Hz, 2H, 1,8-fluoren), 7.43 (dd, J = 7.4, 7.4 Hz, 2H, 3,6-fluoren), 7.35 (dd, J = 7.4, 7.4 Hz, 2H, 2,7-fluoren), 5.84-5.74 (br, 3H, Fmoc-N*H*-, 2 × Boc-N*H*-), 4.37-4.35 (m, 2H, fluoren-CH₂), 4.31-3.94 (m, 5H, 9-fluoren, -OCH₂CO-, -NCH₂CO-), 3.65 (1H, br, -C*H*NH-), 3.55-3.37 (m, 16H, -OCH₂CH₂N-, -OCH₂CH₂OCH₂CH₂O-, -NHCH₂CH₂O-, -OCH₂CH-), 3.25 (dt, J = 5.5, 5.6 Hz, 2H, Fmoc-NHCH₂-), 3.18 (dd, J = 6.2, 6.5 Hz, 2H, Boc-NHCH₂-), 1.45-1.39 (m, 27H, *t*-Bu, 2 × Boc); *m/z* (ESI-TOF) 881.52 (M + Na⁺, C₄₄H₆₆N₄NaO₁₃ requires 881.45).

Synthesis of

N-[(*S*)-*N*,*N*^{*}-di-*t*-Boc-2,3-diaminopropoxy]acetyl-*N*-(*N*-Fmoc-11-amino-3,6,9-trioxaundecyl) glycine 1 A solution of compound 10 (10.3 g, 12.0 mmol) in 4 M HCl/1,4-dioxane (100 cm³, 400 mmol) was stirred for 3 h at room temperature. The solvent was removed under reduced pressure and dried *in vacuo*. To a solution of the residue in THF/water (1:1, 200 cm³) was added NaHCO₃ (3.02 g, 35.9 mmol) and Boc₂O (5.23 g, 24.0 mmol) at 0 °C. After stirring for 12 h at room temperature, 5% KHSO₄/brine (500 cm³) was added to the solution and compound 1 was extracted with ethyl acetate (500 cm³). The organic layer was washed with brine (3 × 500 cm³) and dried over anhydrous Na₂SO₄, and then the solvent was removed under reduced pressure and dried *in vacuo*. The crude material was purified by silica gel column with chloroform/methanol (100:0 - 50:1), GPC with chloroform and silica gel column chromatography with CH₂Cl₂/methanol (100:1) to obtain compound 1 (7.24 g, 75%) as a colorless syrup (Found: C, 58.59; H, 7.48; N, 6.71. C₄₀H₅₈N₄O₁₃·H₂O requires C, 58.52; H, 7.37;

N, 6.82); R_f 0.59 (chloroform/methanol (3:1)); $\delta_{\rm H}$ (500 MHz; CD₃CN; Me₄Si) 7.84 (d, J = 7.5 Hz, 2H, 4,5-fluoren), 7.67 (d, J = 7.3 Hz, 2H, 1,8-fluoren), 7.43 (dd, J = 7.5, 7.5 Hz, 2H, 3,6-fluoren), 7.35 (dd, J = 7.4, 7.4 Hz, 2H, 2,7-fluoren), 5.90-5.73 (m, 3H, Fmoc-NH-, 2 × Boc-NH-), 4.36 (m, 2H, fluoren-CH₂), 4.30-4.04 (m, 5H, 9-fluoren, -OCH₂CO-, -NCH₂CO-), 3.64 (br, 1H, -CHNH-), 3.57-3.41 (m, 16H, -OCH₂CH₂N-, -OCH₂CH₂OCH₂CH₂O-, -NHCH₂CH₂O-, -OCH₂CH-), 3.28-3.24 (m, 2H, Fmoc-NHCH₂-), 3.18-3.14 (m, 2H, Boc-NHCH₂-), 1.40 (m, 18H, $2 \times Boc$); m/z (ESI-TOF) $825.46 (M + Na^{+}. C_{40}H_{58}N_4NaO_{13} requires 825.39).$

1a-d(CF₃COOH)_{2n}: (n = 2, 3, 9, 10)

Synthesis of peptide trifluoroacetate salts 1a-d(CF₃COOH)_{2n}: (n = 2, 3, 9, 10)

Peptide trifluoroacetate salts $(1a-d(CF_3COOH)_{2n}: (n = 2, 3, 9, 10))$ were manually synthesized using standard solid phase methods in Fmoc chemistry with HBTU/hydroxybenzotriazole (HOBt)/DIPEA activation methods. A polypropylene tube equipped with a polypropylene filter and a luer-lock cap was used as a reaction vessel. Rink Amide AM-resin (0.71 mmol/g) was used to synthesize peptide amides. The resin was swollen in DMF (5 cm³) for 30 min and Fmoc-deprotected with 20% piperidine in DMF (5 cm³) twice for 30 min. The resin was filtered and washed with DMF (4×5 cm³), CH₂Cl₂ (3 \times 5 cm³) and DMF (5 \times 5 cm³). The building block 1 (2 equiv) was combined with the resin twice, along with HBTU (2 equiv), HOBt (2 equiv) and DIPEA (4 equiv). The mixture was shaken for 2 h at room temperature, after which the resin was filtered and washed with DMF (3×5 cm³), CH₂Cl₂ (3×5 cm³), methanol (3 \times 5 cm³), CH₂Cl₂ (3 \times 5 cm³) and DMF (3 \times 5 cm³). The deprotection/coupling cycles were repeated in total twice, three, nine and ten times for 1a-d(CF₃COOH)_{2n}, respectively. After removal of the final Fmoc protecting group with 30-min treatment with 20% piperidine in DMF (5 cm³) twice, the N-teminal of the resin-bound peptides were acetylated with Ac₂O (3 equiv) and DIPEA (6 equiv) in DMF (5 cm³) by shaking for 2 h at room temperature. Then the resin was filtered and washed with DMF ($3 \times 5 \text{ cm}^3$), CH₂Cl₂ ($3 \times 5 \text{ cm}^3$), methanol ($3 \times 5 \text{ cm}^3$) and CH₂Cl₂ ($3 \times 5 \text{ cm}^3$) and finally dried in vacuo. Cleavage from the resin and deprotection of the Boc groups were carried out in standard cleavage cocktail (TFA/triisopropylsilane/water (95:2.5:2.5), 5 cm³) for 4 h at room temperature. The resin was filtered off and the resulting filtrate was poured into cold diethyl ether (50

cm³). The formed precipitation was isolated by centrifugation (3000 rpm) for 5 min and decantation and dried *in vacuo*. The crude peptides were purified by preparative RP-HPLC to give **1a-d**(CF₃COOH)_{2n} (**1a**; 81%, **1b**; 65%, **1c**; 61%, **1d**; 40%) as colorless syrup; $\delta_{\rm H}(500 \text{ MHz}; \text{CD}_3\text{OD};$ Me₄Si) for **1a** 4.64-4.10 (m, 8H, 2 × -OCH₂CO-, 2 × -NCH₂CO-), 3.88-3.81 (m, 4H), 3.78-3.76 (m, 2H), 3.69-3.52 (m, 26H), 3.51-3.47 (m, 2H), 3.44-3.34 (m, 8H), 1.95 (m, 3H, Ac), for **1b** 4.64-4.10 (m, 12H, 3 × -OCH₂CO-, 3 × -NCH₂CO-), 3.88-3.84 (m, 6H), 3.78-3.76 (m, 3H), 3.68-3.47 (m, 42H), 3.43-3.34 (m, 12H), 1.95 (m, 3H, Ac), for **1c** 4.63-4.09 (m, 36H, 9 × -OCH₂CO-, 9 × -NCH₂CO-), 3.85 (m, 16H), 3.76 (m, 10H), 3.68-3.53 (m, 114H), 3.51-3.47 (m, 13H), 3.42-3.35 (m, 36H), 1.95 (m, 3H, Ac), for **1d** 4.64-4.09 (m, 40H, 10 × -OCH₂CO-, 10 × -NCH₂CO-), 3.88-3.85 (m, 18H), 3.78 (m, 11H), 3.62-3.53 (m, 124H), 3.49-3.47 (m, 15H), 3.42-3.38 (m, 42H), 1.99-1.93 (m, 3H, Ac); *m/z* (ESI-TOF) for **1a** 806.46 (M + Na⁺. C₄₀H₆₉F₁₂N₉NaO₂₁ requires 806.46), for **1c** 416.02 (M -18CF₃COO⁻ - 10H⁺. C₁₃₇H₂₇₅N₃₇O₅₅ requires 416.01), for **1d** 737.45 (M - 20CF₃COO⁻ - 15H⁺. C₁₅₂H₃₀₅N₄₁O₆₁ requires 737.45).

Preparative RP-HPLC was performed at room temperature with buffer *A* 0.1vol% TFA in water, buffer *B* 0.1 vol% TFA in acetonitrile, a flow of 10 cm³/min, wavelength at 210 nm and a linear gradient from 0-80 vol% B (0-150 min). For analysis of **1a-d**(CF₃COOH)_{2n} to check their purity, analytical RP-HPLC was performed under the following condition: 30 °C, a linear gradient from 0-80 vol% B (0-150 min), buffer *A* 0.1 vol% TFA in water, buffer *B* 0.1 vol% TFA in acetonitrile, a flow of 0.7 cm³/min and UV detection at 210 nm. The retention time (t_R) for **1a-d**(CF₃COOH)_{2n} were 27.5, 30.6, 35.8 and 36.2 min, respectively.

Synthesis of Pt(II) complex-bearing peptides [1a-d(Pt(II)(en))_n](CF₃COO)_{2n}: (n = 2, 3, 9, 10)

 $1a-d(CF_3COOH)_{2n}$: (n = 2, 3, 9, 10) were neutralized by anion exchange column chromatography with water to give TFA-free peptides **1a-d** as a colorless syrup. To a solution of **1a-d** in ethanol was added [Pt(II)Br₂(en)] (1.1n equiv) at room temperature. The suspension was heated at reflux for 12 h at

80 °C. The suspension was dissolved in water and filtered off with a membrane filter (hydrophilic, pore size; 0.45 µm). The solvent of the filtrate removed under reduced pressure and purified by RP-HPLC with acetonitrile/water containing 0.1% TFA to obtain [1a-d(Pt(II)(en))_n](CF₃COO)_{2n} (1a; 75%, **1b**; 63%, **1c**; 26%, **1d**; 29% (2 steps)) as a colorless syrup (for $[1a(Pt(II)(en))_2](CF_3COO)_4$ Found: C, 29.99; H, 4.80; N, 10.22. C₄₄H₈₁F₁₂N₁₃O₂₁Pt₂ requires C, 30.26; H, 4.68; N, 10.43, for [1b(Pt(II)(en))₃](CF₃COO)₆ Found: C, 29.31; H, 4.87; N, 10.04. C₆₅H₁₁₉F₁₈N₁₉O₃₁Pt₃·3H₂O requires C, 29.53; H, 4.77; N, 10.07, for [1c(Pt(II)(en))₉](CF₃COO)₁₈ Found: C, 28.25; H, 5.09; N, 9.11. $C_{191}H_{347}F_{54}N_{55}O_{91}Pt_9 \cdot 27H_2O$ requires C, 28.19; H, 4.97; N, 9.47, for $[1d(Pt(II)(en))_{10}](CF_3COO)_{20}$ Found: C, 27.82; H, 5.20; N, 9.00. C₂₁₂H₃₈₅F₆₀N₆₁O₁₀₁Pt₁₀·30H₂O requires C, 28.18; H, 4.96; N, 9.46); -NCH₂CO-), 3.75-3.67 (m, 4H, 2 \times NH₂CHCH₂O-), 3.63-3.35 (m, 32H, 2 \times -OCH₂CH₂N-, 2 \times -OCH₂CH₂OCH₂CH₂O-, 2 × -NHCH₂CH₂O-), 3.09 (br, 2H, 2 × NH₂CH-), 2.78-2.75 (m, 2H, 2 × NH₂CHHCH-), 2.69-2.62 (m, 10H, $2 \times$ NH₂CHHCH-, $2 \times$ NH₂CH₂CH₂NH₂), 1.96-1.95 (m, 3H, Ac), for [1b(Pt(II)(en))₃](CF₃COO)₆ 4.50-4.03 (m, 12H, 3 × -OCH₂CO-, 3 × -NCH₂CO-), 3.73-3.67 (m, 6H, 3 × NH₂CHCH₂O-), 3.63-3.35 (m, 48H, 3 × -OCH₂CH₂N-, 3 × -OCH₂CH₂OCH₂CH₂O-, 3 × -NHCH₂CH₂O-), 3.09 (br, 3H, 3 × NH₂CH-), 2.78-2.76 (m, 3H, 3 × NH₂CHHCH-), 2.69-2.60 (m, 15H, $3 \times \text{NH}_2\text{CH}/\text{HCH}$, $3 \times \text{NH}_2\text{C}/\text{H}_2\text{C}/\text{H}_2\text{NH}_2$, 1.96-1.94 (m, 3H, Ac), for $[1c(\text{Pt}(\text{II})(\text{en}))_9](\text{CF}_3\text{COO})_{18}$ 4.50-4.03 (m, 36H, 9 × -OCH₂CO-, 9 × -NCH₂CO-), 3.76-3.73 (m, 18H, 9 × NH₂CHCH₂O-), 3.63-3.35 (m, 144H, 9 × -OCH₂CH₂N-, 9 × -OCH₂CH₂OCH₂CH₂O-, 9 × -NHCH₂CH₂O-), 3.08 (br, 9H, 9 × NH₂CH-), 2.77 (br, 9H, 9 × NH₂CHHCH-), 2.62 (m, 45H, 9 × NH₂CHHCH-, 9 × $NH_2CH_2CH_2NH_2$, 1.96-1.94 (m, 3H, Ac), for $[1d(Pt(II)(en))_{10}](CF_3COO)_{20}$ 4.50-4.03 (m, 40H, 10 × -OCH₂CO-, 10 × -NCH₂CO-), 3.76-3.69 (m, 20H, 10 × NH₂CHCH₂O-), 3.63-3.34 (m, 160H, 10 × -OCH₂CH₂N-, 10 × -OCH₂CH₂OCH₂CH₂O-, 10 × -NHCH₂CH₂O-), 3.10 (br, 10H, 10 × NH₂CH-), 2.76 (br, 10H, 10 \times NH₂CHHCH-), 2.62 (m, 50H, 10 \times NH₂CHHCH-, 10 \times NH₂CH₂CH₂NH₂), 1.99-1.93 (m, 3H, Ac); m/z (ESI-TOF) for [1a(Pt(II)(en))₂](CF₃COO)₄ 759.71 (M - 2CF₃COO⁻. $C_{40}H_{79}F_6N_{13}O_{17}Pt_2$ requires 759.75), for [1b(Pt(II)(en))₃](CF₃COO)₆ 1181.80 (M - 2CF₃COO⁻. $C_{61}H_{117}F_{12}N_{19}O_{27}Pt_3$ requires 1181.86), for [1c(Pt(II)(en))₉](CF₃COO)₁₈ 1162.28 (M - 6CF₃COO⁻. $C_{179}H_{341}F_{36}N_{55}O_{79}Pt_9$ requires 1162.19), for $[1d(Pt(II)(en))_{10}](CF_3COO)_{20}$ 1302.89 (M - 6CF₃COO⁻. 1302.89); $[1a(Pt(II)(en))_2](CF_3COO)_4$ C₂₀₀H₃₇₉F₄₂N₆₁O₈₉Pt₁₀ requires t_R for 29.2, for $[1b(Pt(II)(en))_3](CF_3COO)_6$ 34.3, for $[1c(Pt(II)(en))_{9}](CF_{3}COO)_{18}$ 37.7, for $[1d(Pt(II)(en))_{10}](CF_3COO)_{20}$ 38.9 min (the same condition mentioned above).

Synthesis of 3-[1,3-bis(dodecyoxy)-2-propoxy]propanesulfonic acid RSO₃H

To a suspension of sodium hydride (in oil (60%), 186 mg, 4.66 mmol) in THF (2.3 cm³) was added slowly dropwise a solution of 1,3-bis-dodecyloxy-propan-2-ol (1.00 g, 2.33 mmol) in THF (2.3 cm³) at room temperature with a cannula under a nitrogen atmosphere. After stirring for 30 min at 55 °C, 1,3-propanesultone (246 mm³, 2.80 mmol) was added dropwise within 3 min, and then stirred for 1 h at 55 °C. The reaction was quenched by adding 0.5 cm³ of methanol, and then the reaction mixture was poured into cooled 1 M HCl/brine (300 cm³). The target compound was extracted with ethyl acetate (300 cm³), and then the solvent was removed under reduced pressure and dried *in vacuo*. The crude material (1.56 g) was purified by silica gel column chromatography with *n*-hexane/ethyl acetate (10:1 - 2:1)) to afford RSO₃H (1.08 g, 85%) as a pale yellow syrup; R_f 0.68 (ethyl acetate/methanol (3:1)); $\delta_{\rm H}$ (500 MHz; CD₃OD; Me₄Si) 3.70 (t, J = 6.2 Hz, 2H, -CH₂SO₃H), 3.58 (m, 1H, methine), 3.53-3.42 (m, 8H, 2 × -CH₂OCH₂-), 2.90 (m, 2H, -CH₂CH₂CH₂SO₃H), 2.02 (m, 2H, -CH₂CH₂SO₃H), 1.56 (m, 4H, 2 × -CH₂CH₂OCH₂CH-), 1.37-1.17 (m, 36H, 2 × CH₃(CH₂)₉-), 0.90 (t, J = 6.9 Hz, 6H, 2 × CH₃(CH₂)₉-); *m/z* (ESI-TOF) 551.49 (M + H⁺. C₃₀H₆₃O₆S requires 551.43).

Synthesis of sodium 3-[1,3-bis(dodecyoxy)-2-propoxy]propanesulfonate RSO₃Na

To a solution of RSO₃H (570 mg, 1.03 mmol) in methanol (1.0 cm³) was added a solution of NaOH (42.0 mg, 1.05 mmol) in methanol (1.0 cm³) at room temperature. The resulting precipitate was dissolved in methanol and the remaining insoluble matter was filtered off. The solvent of the filtrate was removed under reduced pressure and dried *in vacuo*. The crude material (611 mg) was purified by recrystallization with methanol/2-propanol (1:1, 5 cm³) to afford RSO₃Na (357 mg, 60%) as a colorless liquid (Found: C, 62.68; H, 10.93. C₃₀H₆₁NaO₆S requires C, 62.90; H, 10.73); $\delta_{\rm H}$ (500 MHz; CD₃OD; Me₄Si) 3.70 (t, *J* = 6.2 Hz, 2H, -CH₂SO₃Na), 3.58 (m, 1H, methine), 3.53-3.42 (m, 8H, 2 × -CH₂OCH₂-), 2.89 (m, 2H, -CH₂CH₂CH₂SO₃Na), 2.02 (m, 2H, -CH₂CH₂SO₃Na), 1.56 (m, 4H, 2 × -CH₂CH₂OCH₂CH-), 1.37-1.29 (m, 36H, 2 × CH₃(CH₂)₉-), 0.90 (t, *J* = 6.9 Hz, 6H, 2 × CH₃(CH₂)₉-); *m/z* (ESI-TOF) 595.48 (M + Na⁺. C₃₀H₆₁Na₂O₆S requires 595.40).

 $[1a-d(Pt(II)(en))_n](RSO_3)_{2n}$

Synthesis of Pt(II) complex-bearing peptides [1a-d(Pt(II)(en))_n](RSO₃)_{2n}: (n = 2, 3, 9, 10)

To a solution of $[1a-d(Pt(II)(en))_n](CF_3COO)_{2n}$: (n = 2, 3, 9, 10) in methanol was added RSO₃Na (2n equiv) at room temperature. After stirring for 12 h at room temperature, the solvent was removed under reduced pressure and dried in vacuo. The residue was washed with water (3 times), reprecipitated with methanol/acetone or dichloromethane/acetone and lyophilized to obtain $[1a-d(Pt(II)(en))_n](RSO_3)_{2n}$ (1a; 94%, 1b; 48%, 1c; 94%, 1d; 72%) as a colorless foam (for [1a(Pt(II)(en))₂](RSO₃)₄ Found: C, 53.41; H, 9.61; N, 4.92. C₁₅₆H₃₂₅N₁₃O₃₇Pt₂S₄ requires C, 53.63; H, 9.38; N, 5.21, for [1b(Pt(II)(en))₃](RSO₃)₆ Found: C, 53.70; H, 9.38; N, 5.11. C₂₃₃H₄₈₅N₁₉O₅₅Pt₃S₆ requires C, 53.56; H, 9.67; N, 4.87, for [1c(Pt(II)(en))₉](RSO₃)₁₈ Found: C, 52.50; H, 9.35; N, 4.73. $C_{695}H_{1445}N_{55}O_{163}Pt_9S_{18}$:21H₂O requires C, 52.52; H, 9.43; N, 4.85, for [1d(Pt(II)(en))_{10}](RSO_3)_{20} Found: C, 53.65; H, 9.65; N, 4.74. C₇₇₂H₁₆₀₅N₆₁O₁₈₁Pt₁₀S₂₀ requires C, 53.81; H, 9.39; N, 4.96); $\delta_{\rm H}(500 \text{ MHz}; \text{CD}_3\text{OD}; \text{Me}_4\text{Si})$ for $[1a(\text{Pt}(\text{II})(\text{en}))_2](\text{RSO}_3)_4$ 4.51-4.02 (m, 8H, 2 × -NCH₂CO-, 2 × -OCH₂CO-), 3.77-3.69 (m, 12H, 2 × -OCH₂CHNH₂, 4 × -CH₂SO₃), 3.64-3.41 (m, 68H, 2 × -OCH₂CH₂N-, 2 \times -OCH₂CH₂OCH₂CH₂O-, 2 \times -NHCH₂CH₂O-, 8 \times -OCH₂CHO- (RSO₃), 4 \times -OCH₂CHO- (RSO₃), 8 × -CH₂OCH₂CHO- (RSO₃)), 3.11 (br, 2H, 2 × -OCH₂CHNH₂), 2.93-2.89 (m, 8H, 4 \times -CH₂CH₂CH₂SO₃), 2.79-2.77 (br, 2H, 2 \times -CHCHHNH₂), 2.69-2.63 (m, 10H, 2 \times -CHCHHNH₂, 2 × NH₂CH₂CH₂NH₂), 2.07-2.01 (m, 8H, 4 × -CH₂CH₂SO₃), 1.96 (m, 3H, Ac), 1.59-1.54 (m, 16H, 8 × -CH₂CH₂OCH₂CHO-), 1.35-1.30 (m, 144H, 8 × CH₃(CH₂)₉-), 0.90 (m, 24H, 8 × $CH_3(CH_2)_{9}$), for [1b(Pt(II)(en))_3](RSO_3)_6 4.51-4.01 (m, 12H, 3 × -NCH_2CO-, 3 × -OCH_2CO-), 3.75-3.69 (m, 18H, $3 \times -OCH_2CHNH_2$, $6 \times -CH_2SO_3$), 3.64-3.41 (m, 102H, $3 \times -OCH_2CH_2N_2$, $3 \times -OCH_2CH_2N_2$), $3 \times -OCH_2CH_2N_2$ -OCH₂CH₂OCH₂CH₂O-, 3 × -NHCH₂CH₂O-, 12 × -OCH₂CHO- (RSO₃), 6 × -OCH₂CHO- (RSO₃), 12 × -CH₂OCH₂CHO- (RSO₃)), 3.10 (br, 3H, 3 × -OCH₂CHNH₂), 2.92-2.89 (m, 12H, 6 × -CH₂CH₂CH₂SO₃), 2.77 (br, 3H, 3 × -CHCHHNH₂), 2.69-2.63 (m, 15H, 3 × -CHCHHNH₂, 3 × $NH_2CH_2CH_2NH_2$, 2.06-2.01 (m, 12H, 6 × -CH₂CH₂SO₃), 1.96-1.95 (m, 3H, Ac), 1.59-1.53 (m, 24H, $12 \times -CH_2CH_2OCH_2CHO_{-}$, 1.35-1.29 (m, 216H, $12 \times CH_3(CH_2)_{9^{-}}$), 0.90 (m, 36H, $12 \times CH_3(CH_2)_{9^{-}}$),

for $[1c(Pt(II)(en))_9](RSO_3)_{18} 4.53-4.07 (m, 36H, 9 \times -NCH_2CO-, 9 \times -OCH_2CO-), 3.75-3.70 (m, 54H, 9 \times -NCH_2CO-), 3.75-3.70 (m, 54H, 9 \times -NCH_2CO-),$ $9 \times -OCH_2CHNH_2$, $18 \times -CH_2SO_3$), 3.64-3.42 (m, 306H, $9 \times -OCH_2CH_2N-$, $9 \times -OCH_2CH_2N-$ -OCH₂CH₂OCH₂CH₂O-, $9 \times$ -NHCH₂CH₂O-, $36 \times$ -OCH₂CHO- (RSO₃), $18 \times$ -OCH₂CHO- (RSO₃), $36 \times -CH_2OCH_2CHO-$ (RSO₃)), 3.13 (br, 9H, 9 × -OCH₂CHNH₂), 2.94-2.90 (m, 36H, 18 × -CH₂CH₂CH₂SO₃), 2.79 (br, 9H, 9 × -CHCHHNH₂), 2.69-2.64 (m, 45H, 9 × -CHCHHNH₂, 9 × $NH_2CH_2CH_2NH_2$, 2.08-2.02 (m, 36H, 18 × - $CH_2CH_2SO_3$), 1.96-1.91 (m, 3H, Ac), 1.59-1.54 (m, 72H, $36 \times -CH_2CH_2OCH_2CHO-$), 1.35-1.29 (m, 648H, $36 \times CH_3(CH_2)_9-$), 0.92-0.89 (m, 108H, $36 \times CH_3(CH_2)_9-$) $CH_3(CH_2)_{9}$ -), for $[1d(Pt(II)(en))_{10}](RSO_3)_{20}$ 4.53-4.07 (m, 40H, 10 × -NCH₂CO-, 10 × -OCH₂CO-), 3.75-3.70 (m, 60H, 10 × -OCH₂CHNH₂, 20 × -CH₂SO₃), 3.64-3.42 (m, 340H, 10 × -OCH₂CH₂N-, 10 × $-OCH_2CH_2OCH_2CH_2O_-$, $10 \times -NHCH_2CH_2O_-$, $40 \times -OCH_2CHO_-$ (RSO₃), $20 \times -OCH_2CHO_-$ (RSO₃), 40 × -CH₂OCH₂CHO- (RSO₃)), 3.14 (br, 10H, 10 × -OCH₂CHNH₂), 2.94-2.91 (m, 40H, 20 × -CH₂CH₂CH₂SO₃), 2.80 (br, 10H, 10 \times -CHCHHNH₂), 2.64 (m, 50H, 10 \times -CHCHHNH₂, 10 \times NH₂CH₂CH₂NH₂), 2.08-2.02 (m, 40H, 20 × -CH₂CH₂SO₃), 1.96-1.91 (m, 3H, Ac), 1.59-1.54 (m, 80H, (ESI-TOF) for $[1a(Pt(II)(en))_2](RSO_3)_4$ 1196.84 $CH_3(CH_2)_{9}$ -); m/z(M $2RSO_3$. $C_{96}H_{201}N_{13}NaO_{25}Pt_2S_2$ requires 1196.69), for [1b(Pt(II)(en))_3](RSO_3)_6 1187.02 (M - 3RSO₃). C₁₄₃H₂₉₉N₁₉O₃₇Pt₃S₃ requires 1187.02).

 $[1a-d(Pt(IV)Br_2(en))_n](RSO_3)_{2n}$

Synthesis of Pt(IV) complex-bearing peptides [1a-d(Pt(IV)Br₂(en))_n](RSO₃)_{2n}: (n = 2, 3, 9, 10)

To a solution of $[1a-d(Pt(II)(en))_n](CF_3COO)_{2n}$: (n = 2, 3, 9, 10) in ethanol was added excess bromine at room temperature. After stirring for 15 min at room temperature, the solvent and excess bromine were removed under reduced pressure and dried *in vacuo*. To the residue was added a solution of RSO₃Na (2n equiv) in methanol. After stirring for 4 h at room temperature, the solvent was removed under reduced pressure and dried *in vacuo*. The residue was washed with water (8 times) and lyophilized. The crude material was purified by reprecipitaion with acetone/methanol, methanol/diethyl ether or dichloromethane/diethyl ether to afford $[1a-d(Pt(IV)Br_2(en))_n](RSO_3)_{2n}$ (1a; 49%, **1b**; 65%, **1c**; 82%, **1d**; 76% (2 steps)) as a yellow foam (for [**1a**(Pt(IV)Br₂(en))₂](RSO₃)₄ Found: C, 48.88; H, 8.71; N, 4.54. C₁₅₆H₃₂₅Br₄N₁₃O₃₇Pt₂S₄ requires C, 49.13; H, 8.59; N, 4.77, for [1b(Pt(IV)Br₂(en))₃](RSO₃)₆ Found: C, 49.00; H, 8.83; N, 4.47. C₂₃₃H₄₈₆Br₆N₁₉O₅₅Pt₃S₆ requires C, 49.18; H, 8.59; N, 4.68, for [1c(Pt(IV)Br₂(en))₉](RSO₃)₁₈ Found: C, 47.94; H, 8.72; N, 4.44. $C_{695}H_{1445}Br_{18}N_{55}O_{163}Pt_9S_{18} \cdot 27H_2O$ requires C. 47.86; H, 8.66; N, 4.42. for [1d(Pt(IV)Br₂(en))₁₀](RSO₃)₂₀ Found: C, 49.02; H, 8.64; N, 4.37. C₇₇₂H₁₆₀₅Br₂₀N₆₁O₁₈₁Pt₁₀S₂₀ requires C, 49.24; H, 8.59; N, 4.54); δ_H(500 MHz; CD₃OD; Me₄Si) for [**1a**(Pt(IV)Br₂(en))₂](RSO₃)₄ 4.61-4.10 (m, 8H, 2 × -NCH₂CO-, 2 × -OCH₂CO-), 3.94-3.91 (m, 2H, 2 × -OCHHCHNH₂), 3.78-3.75 (m, 2H, 2 × -OCH*H*CHNH₂), 3.70 (t, J = 6.2 Hz, 8H, 4 × -CH₂SO₃), 3.63-3.39 (m, 70H, 2 × -OCH₂C*H*NH₂, 2 × -OCH₂CH₂N-, 2 \times -OCH₂CH₂OCH₂CH₂O-, 2 \times -NHCH₂CH₂O-, 8 \times -OCH₂CHO- (RSO₃), 4 \times -OCH₂CHO- (RSO₃), 8 × -CH₂OCH₂CHO- (RSO₃)), 3.31-3.30 (2H, 2 × -CHCHHNH₂), 3.07-2.96 (m, 10H, 2 × -CHCH*H*NH₂, 2 × NH₂C*H*₂C*H*₂NH₂), 2.91-2.88 (m, 8H, 4 × -C*H*₂CH₂CH₂SO₃), 2.05-1.99 (m, 8H, $4 \times -CH_2CH_2SO_3$), 1.96-1.95 (m, 3H, Ac), 1.59-1.53 (m, 16H, $8 \times -CH_2CH_2OCH_2CHO_2$), 144H, 8 × CH₃(CH₂)₉-), 0.90 (m, 24H, 8 × CH₃(CH₂)₉-), 1.39-1.29 (m, for $[1b(Pt(IV)Br_2(en))_3](RSO_3)_6$ 4.63-4.11 (m, 12H, 3 × -NCH₂CO-, 3 × -OCH₂CO-), 3.93 (br, 3H, 3 × -OCHHCHNH₂), 3.78-3.76 (m, 3H, $3 \times$ -OCHHCHNH₂), 3.70 (t, J = 6.2 Hz, 12H, $6 \times$ -CH₂SO₃), -NHC H_2 C H_2 O-, 12 × -OC H_2 CHO- (RSO₃), 6 × -OCH₂CHO- (RSO₃), 12 × -C H_2 OCH₂CHO- (RSO₃)), 3.31-3.30 (3H, 3 \times -CHC*H*HNH₂), 3.07-2.98 (m, 15H, 3 \times -CHCH*H*NH₂, 3 \times NH₂C*H*₂C*H*₂NH₂), 2.91-2.88 (m, 12H, 6 × -CH₂CH₂CH₂SO₃), 2.05-1.99 (m, 12H, 6 × -CH₂CH₂SO₃), 1.96-1.95 (m, 3H, Ac), 1.58-1.53 (m, 24H, $12 \times -CH_2CH_2OCH_2CHO_-$), 1.35-1.29 (m, 216H, $12 \times CH_3(CH_2)_{9-}$), 0.91-0.88 (m, 36H, $12 \times CH_3(CH_2)_{9}$), for [1c(Pt(IV)Br₂(en))₉](RSO₃)₁₈ 4.62-4.11 (m, 36H, 9 × -NCH₂CO-, 9 × -OCH₂CO-), 3.93 (br, 9H, 9 × -OCHHCHNH₂), 3.79-3.77 (m, 9H, 9 × -OCH*H*CHNH₂), 3.70 (t, J = 6.2 Hz, 36H, $18 \times$ -CH₂SO₃), 3.63-3.39 (m, 315H, $9 \times$ -OCH₂C*H*NH₂, 9 \times -OCH₂CH₂N-, 9 \times -OCH₂CH₂OCH₂CH₂O-, 9 \times -NHCH₂CH₂O-, 36 \times -OCH₂CHO- (RSO₃), 18 \times -OCH₂CHO- (RSO₃), 36 × -CH₂OCH₂CHO- (RSO₃)), 3.31-3.30 (9H, 9 × -CHCHHNH₂), 3.07-3.00 (m, 45H, 9 × -CHCH*H*NH₂, 9 × NH₂CH₂CH₂NH₂), 2.92-2.89 (m, 36H, 18 × -CH₂CH₂CH₂CH₂SO₃), 2.05-1.99 (m, 36H, 18 × -CH₂CH₂SO₃), 1.96-1.95 (m, 3H, Ac), 1.59-1.53 (m, 72H, 36 × -CH₂CH₂OCH₂CHO-), 1.35-1.29 (m, 648H, 36 \times CH₃(CH₂)₉-), 0.90 (m, 108H, 36 \times CH₃(CH₂)₉-), for $[1d(Pt(IV)Br_2(en))_{10}](RSO_3)_{20}$ 4.62-4.13 (m, 40H, 10 × -NCH₂CO-, 10 × -OCH₂CO-), 3.93 (br, 10H, $10 \times -OCHHCHNH_2$, 3.79 (br, 10H, 10 $\times -OCHHCHNH_2$), 3.70 (t, J = 6.2 Hz, 40H, 20 $\times -CH_2SO_3$), 3.63-3.39 (m, 350H, 10 × -OCH₂CHNH₂, 10 × -OCH₂CH₂N-, 10 × -OCH₂CH₂OCH₂CH₂O-, 10 × -NHC H_2 C H_2 O-, 40 × -OC H_2 CHO- (RSO₃), 20 × -OC H_2 CHO- (RSO₃), 40 × -C H_2 OC H_2 CHO- (RSO₃)), 3.31-3.30 (10H, 10 × -CHCHHNH₂), 3.06-2.96 (m, 50H, 10 × -CHCHHNH₂, 10 × NH₂CH₂CH₂NH₂),

2.91-2.88 (m, 40H, 20 × -C H_2 CH₂CH₂SO₃), 2.05-1.98 (m, 40H, 20 × -C H_2 CH₂SO₃), 1.96-1.95 (m, 3H, Ac), 1.59-1.53 (m, 80H, 40 × -C H_2 CH₂OCH₂CHO-), 1.35-1.29 (m, 720H, 40 × CH₃(C H_2)₉-), 0.90 (m, 120H, 40 × C H_3 (CH₂)₉-); *m/z* (ESI-TOF) for [**1a**(Pt(IV)Br₂(en))₂](RSO₃)₄ 1356.67 (M - 2RSO₃⁻). C₉₆H₂₀₁Br₄N₁₃NaO₂₅Pt₂S₂ requires 1356.52), for [**1b**(Pt(IV)Br₂(en))₃](RSO₃)₆ 1346.89 (M - 3RSO₃⁻). C₁₄₃H₂₉₉Br₆N₁₉O₃₇Pt₃S₃ requires 1346.85).

Lipophilic mononuclear Pt complexes $([Pt(II)(en)_2](RSO_3)_2$ and $[Pt(IV)Br_2(en)_2](RSO_3)_2)$ were prepared according to Scheme S4.

Scheme S4 Preperation of lipophilic mononuclear Pt complexes.

Synthesis of [Pt(II)(en)₂](RSO₃)₂

To a solution of $[Pt(II)(en)_2]Br_2$ (30.0 mg, 63.1 µmol) in water (0.5 cm³) was added RSO₃Na (65.1 mg, 114 µmol) at room temperature. After shaking for 4 h at 55 °C with an ultrasonic cleaning machine, the suspension was centrifuged and the precipitate was lyophilized. The residue was dissolved in methanol/water (1:1, 0.4 cm³) and again shaken for 4 h at 55 °C with an ultrasonic cleaning machine.

The suspension was centrifuged and the precipitate was washed with methanol/water (1:1, 3×0.2 cm³) and lyophilized to obtain [Pt(II)(en)₂](RSO₃)₂ (50.1 mg, 62%) as a white solid (Found: C, 54.13; H, 9.96; N, 3.89. C₆₄H₁₃₈N₄O₁₂PtS₂ requires C, 54.32; H, 9.83; N, 3.96); $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 5.57 (br, 8H, $2 \times \rm NH_2\rm CH_2\rm CH_2\rm NH_2$), 3.74 (t, J = 6.4 Hz, 4H, $2 \times \rm -CH_2\rm SO_3$), 3.65-3.61 (m, 2H, $2 \times \rm methine$), 3.52-3.46 (m, 8H, $4 \times \rm -OCH_2\rm CHO_2$), 3.45-3.39 (m, 8H, $4 \times \rm -CH_2\rm OCH_2\rm CHO_2$), 3.01-2.98 (m, 4H, $2 \times \rm -CH_2\rm CH_2\rm CH_2\rm SO_3$), 2.67 (s, 8H, $2 \times \rm NH_2\rm CH_2\rm CH_2\rm NH_2$), 2.17-2.11 (m, 4H, $2 \times \rm -CH_2\rm CH_2\rm SO_3$), 1.56-1.52 (m, 8H, $4 \times \rm -CH_2\rm O\rm CH_2\rm CHO_2$), 1.31-1.26 (m, 72H, $4 \times \rm CH_3(\rm CH_2)_{9}$ -), 0.88 (t, J = 6.9 Hz, 12H, $4 \times \rm CH_3(\rm CH_2)_{9}$ -); m/z (ESI-TOF) 864.61 (M - 2RSO₃⁻. C₃₄H₇₇N₄O₆PtS requires 864.52).

[Pt(IV)Br₂(en)₂](RSO₃)₂

Synthesis of [Pt(IV)Br₂(en)₂](RSO₃)₂

To a solution of $[Pt(IV)Br_2(en)_2]Br_2$ (50.0 mg, 78.8 µmol) in methanol (1.0 cm³) was added RSO₃Na (81.2 mg, 142 µmol) at room temperature. After stirring for 40 h at room temperature, the solvent was removed under reduced pressure and dried *in vacuo*. The residue was washed with water (0.7 cm³) and acetone/water (1:3, 2 × 0.4 cm³), and then lyophilized. The crude material (92.3 mg) was recrystallized by methanol/2-propanol (1:10, 5.5 cm³) to give $[Pt(IV)Br_2(en)_2](RSO_3)_2$ (60.6 mg, 54%) as a yellow solid (Found: C, 48.65; H, 8.75; N, 3.45. C₆₄H₁₃₈Br₂N₄O₁₂PtS₂ requires C, 48.81; H, 8.83; N, 3.56); $\delta_{\rm H}(500 \text{ MHz}; \text{CD}_3\text{OD}; \text{Me}_4\text{Si})$ 3.70 (t, J = 6.2 Hz, 4H, 2 × -CH₂SO₃), 3.60-3.56 (m, 2H, 2 × methine), 3.53-3.50 (m, 8H, 4 × -OCH₂CHO-), 3.48-3.42 (m, 8H, 4 × -CH₂OCH₂CHO-), 3.04-2.99 (m, 8H, 2 × NH₂CH₂CH₂NH₂), 2.91-2.88 (m, 4H, 2 × -CH₂CH₂CH₂SO₃), 2.05-1.99 (m, 4H, 2 × -CH₂CH₂SO₃), 1.58-1.53 (m, 8H, 4 × -CH₂CH₂OCH₂CHO-), 1.35-1.29 (m, 72H, 4 × CH₃(CH₂)₉-); *m/z* (ESI-TOF) 1025.47 (M - 2RSO₃⁻. C₃₄H₇₇N₄NaO₆PtS requires 1025.36).

Fig. S1 Photometric titration spectra of $[1b(Pt(IV)Br_2(en))_3](RSO_3)_6$ with $[1a(Pt(II)(en))_2](RSO_3)_4$ in CH₂Cl₂ at 293 K (l = 1). $[[1b(Pt(IV)Br_2(en))_3](RSO_3)_6] = 12.5 \mu M$. $[[1a(Pt(II)(en))_2](RSO_3)_4] = 0.0$, 2.5, 5.0, 7.5, 10, 12.5, 15, 17.5, 20, 25, 37.5 and 50 μM .

Fig. S2 Photometric titration spectra of $[1d(Pt(IV)Br_2(en))_{10}](RSO_3)_{20}$ with $[1c(Pt(II)(en))_9](RSO_3)_{18}$ in CH₂Cl₂ at 293 K (l = 1). $[[1d(Pt(IV)Br_2(en))_{10}](RSO_3)_{20}] = 2.5 \mu M$. $[[1c(Pt(II)(en))_9](RSO_3)_{18}] = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 5.0 \mu M$.

Fig. S3 ¹H NMR titration spectra of $[1a(Pt(IV)Br_2(en))_2](RSO_3)_4$ (5 mM) with $[Pt(II)(en)_2](RSO_3)_2$ in CD_2Cl_2 at 293 K. \checkmark is the peak of methylene groups of ethylenediamine in $[1a(Pt(IV)Br_2(en))_2](RSO_3)_4$.

References

1. L. Zhang, G. S. Kauffman, J. A. Pesti, J. Yin, J. Org. Chem., 1997, 62, 6918-6920.

2. A. W. Schwabacher, J. W. Lane, M. W. Schiesher, K. M. Leigh, C. W. Johnson, J. Org. Chem., 1998, 63, 1727-1729.

- 3. F. Basolo, J. C. Bailar, Jr., B. R. Tarr, J. Am. Chem. Soc., 1950, 72, 2433-2438.
- 4. G. W. Watt, R. E. McCarley, J. Am. Chem. Soc., 1957, 79, 3315-3317.