Electronic Supplementary Information to:

Rapid phosphorus(III) ligand evaluation utilising potassium selenocyanate

Alfred Muller^{a‡}, Stefanus Otto^{b**}and Andreas Roodt^{b*}

^a Department of Chemistry, University of Johannesburg, P.O. Box 524, Johannesburg, 2006, South

Africa

^b Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa

Figure S1: ³¹P NMR spectra in CDCl₃ of PPh₂(2-OMe-C₆H₄) (top) and SePPh₂(2-OMe-C₆H₄) (bottom) indicating the difference in chemical shifts and the ⁷⁷Se-³¹P first order coupling.

Figure S2: Plot of $\log k_1 vs. \chi d$. Reaction rates are at 298.2 K in MeOH; χd values for 1 - 10 are taken from the qale website (references therein); χd values for 11 - 14 were calculated by adding individual substituent contribution values from Ref. 31.

Table S1: Kinetic results for the reaction between SeCN⁻ and PPh₃ in MeOH at different temperatures; $\lambda = 310$ nm, [PPh₃] = 9.535 x 10⁻⁴ mol dm⁻³.

Table S2: Kinetic results for the reaction between SeCN⁻ and PPhCy₂ in MeOH at different temperatures; $\lambda = 295$ nm, [PPhCy₂] = 9.660 x 10⁻⁴ mol dm⁻³.

Table S3: Kinetic results for the reaction between SeCN⁻ and P(2-Me-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 330 \text{ nm}, [P(2-Me-C_6H_4)_3] = 8.215 \text{ x } 10^{-4} \text{ mol dm}^{-3}$.

Table S4: Kinetic results for the reaction between SeCN⁻ and P(4-Me-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 315 \text{ nm}$, [P(4-Me-C₆H₄)₃] = 8.215 x 10⁻⁴ mol dm⁻³.

Table S5: Kinetic results for the reactions between SeCN⁻ and P(4-C1-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 310 \text{ nm}$, [P(4-Cl-C₆H₄)₃] = 6.838 x 10⁻⁴ mol dm⁻³.

Table S6: Kinetic results for the reaction between SeCN⁻ and PPh₂(2-OMe-C₆H₄) in MeOH at different temperatures; $\lambda = 305 \text{ nm}, [PPh_2(2-OMe-C_6H_4)] = 8.553 \text{ x } 10^{-4} \text{ mol dm}^{-3}.$

Table S7: Kinetic results for the reactions between SeCN⁻ and PPh(2-OMe-C₆H₄)₂ in MeOH at different temperatures; $\lambda = 320 \text{ nm}, [PPh(2-OMe-C_6H_4)_2] = 7.756 \text{ x } 10^{-4} \text{ mol dm}^{-3}.$

Table S8: Kinetic results for the reaction between SeCN⁻ and PPh(2,4-OMe-C₆H₃)₂ in MeOH at different temperatures; $\lambda = 305 \text{ nm}, [PPh(2,4-OMe-C_6H_3)_2] = 6.538 \times 10^{-4} \text{ mol dm}^{-3}.$

Table S9: Kinetic results for the reaction between SeCN⁻ and P(4-OMe-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 315 \text{ nm}$, [P(4-OMe-C₆H₄)₃] = 7.095 x 10⁻⁴ mol dm⁻³.

Table S10: Kinetic results for the reaction between SeCN⁻ and PTA in MeOH at different temperatures; $\lambda = 275$ nm, [PTA] = 1.750 x 10⁻³ mol dm⁻³.

[‡] Currently employed at: University of the Free State, Bloemfontein 9300, South Africa

^{*} Currently employed at: Sasol Technology Research & Development, P.O. Box 1, Sasolburg, 1947, South Africa. * Corresponding authors. (AR)Tel.: +27 51 401 2547; fax: +27 51 444 6384. E-mail address: roodta.sci@ufs.ac.za;

⁽SO) Tel.: +27 16 960 4456; fax: +27 11 522 3218. E-mail address: fanie.otto@sasol.com

Table S11: Kinetic results for the reactions between SeCN⁻ and P(2-furyl)₃ in MeOH at different temperatures; $\lambda = 290$ nm, [P(2-furyl)₃] = 1.163 x 10⁻³ mol dm⁻³.

Table S12: Compiled activation parameters for selected phosphines.

Table S13: Kinetic results for the reaction between SeCN⁻ and various phosphines in MeOH at 298.2 K.

Table S14: Kinetic results for the reactions between SeCN⁻ and PPh₃ in various solvents at 298.2 K; $[PPh_3] = 9.535 \text{ x}$ 10⁻⁴ mol dm⁻³.

Figure S1: ³¹P NMR spectra in CDCl₃ of PPh₂(2-OMe-C₆H₄) (top) and SePPh₂(2-OMe-C₆H₄) (bottom) indicating the difference in chemical shifts and the ⁷⁷Se-³¹P first order coupling.

Figure S2: Plot of $\log k_1 vs. \chi d$. Reaction rates are at 298.2 K in MeOH; χd values for 1 - 10 are taken from the qale website (references therein); χd values for 11 - 14 were calculated by adding individual substituent contribution values from Ref. 31.

Table S1: Kinetic results for the reaction between SeCN⁻ and PPh₃ in MeOH at different temperatures; $\lambda = 310$ nm, [PPh₃] = 9.535 x 10⁻⁴ mol dm⁻³.

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^{1}/{\rm s}^{-1}$	k_1 /mol ⁻¹ dm ³ s ⁻¹
288.2	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.05219 \pm 0.00003 \\ 0.11156 \pm 0.00008 \\ 0.17064 \pm 0.00012 \\ 0.23858 \pm 0.00017 \end{array}$	0.60 ± 0.03
298.2	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\\ 0.048575\end{array}$	$\begin{array}{c} 0.092511 \pm 0.000015 \\ 0.19357 \pm 0.00011 \\ 0.30028 \pm 0.00019 \\ 0.4098 \pm 0.0005 \\ 0.5156 \pm 0.0008 \end{array}$	1.05 ± 0.02
308.2	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.14771 \pm 0.00011 \\ 0.31483 \pm 0.00002 \\ 0.5008 \pm 0.0015 \\ 0.6879 \pm 0.0011 \end{array}$	1.73 ± 0.03
318.2	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.2418 \pm 0.0002 \\ 0.5074 \pm 0.0004 \\ 0.7875 \pm 0.0013 \\ 1.0962 \pm 0.0018 \end{array}$	2.75 ± 0.03

 $\Delta H^{\neq} = 35.7 \pm 3 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -124.8 \pm 1.1 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S2: Kinetic results for the reaction between SeCN⁻ and PPhCy₂ in MeOH at different temperatures; $\lambda = 295$ nm, [PPhCy₂] = 9.660 x 10⁻⁴ mol dm⁻³.

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^1 / {\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
	0.009787	0.967 ± 0.002	
288.2	0.019573	1.887 ± 0.006	0.7(4)
288.2	0.024466	2.501 ± 0.006	9.7(4)
	0.029360	2.724 ± 0.009	
	0.009715	1.3437 ± 0.0016	
	0.014719	2.076 ± 0.005	
298.2	0.019625	2.681 ± 0.004	14.4(4)
	0.024532	3.548 ± 0.006	
	0.029438	4.136 ± 0.008	
	0.009787	1.944 ± 0.004	
	0.014680	3.06 ± 0.02	
308.2	0.019573	4.024 ± 0.012	20.4(5)
	0.024466	4.972 ± 0.015	
	0.009787	2.756 ± 0.007	
	erature/K [SeCN ⁻]/mol dm ⁻³ $k_{obs} \ge 10^{1}/s^{-1}$ 0.009787 0.967 ± 0.002 0.019573 1.887 ± 0.006 0.024466 2.501 ± 0.006 0.029360 2.724 ± 0.009 0.009715 1.3437 ± 0.0016 0.014719 2.076 ± 0.005 298.2 0.019625 0.024432 3.548 ± 0.006 0.029380 4.136 ± 0.008 0.029438 4.136 ± 0.004 0.029438 4.136 ± 0.004 0.029466 4.972 ± 0.015 0.024466 4.972 ± 0.015 0.014680 4.347 ± 0.014 0.024466 6.89 ± 0.02 0.019573 5.754 ± 0.014 0.029360 9.17 ± 0.03		
318.2	0.019573	5.754 ± 0.014	29.9(4)
	0.024466	6.89 ± 0.02	
	0.029360	9.17 ± 0.03	

 $\Delta H^{\neq} = 27 \pm 1 \text{ kJ mol}^{-1}; \Delta S^{\neq} = 132 \pm 3 \text{ J K}^{-1} \text{ mol}^{-1}$

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^4/{\rm s}^{-1}$	$k_1 \ge 10^3 / \text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$	$k_{-1} \ge 10^6 / \mathrm{s}^{-1}$
288.2	0.009715 0.019430 0.029145	$\begin{array}{c} 0.0753 \pm 0.0003 \\ 0.1823 \pm 0.0003 \\ 0.276 \pm 0.006 \end{array}$	0.84 ± 0.11	1 ± 3
298.2	0.038860 0.009715 0.019430 0.029145 0.028860	0.3153 ± 0.0006 0.2313 ± 0.0006 0.4118 ± 0.0004 0.5315 ± 0.0004 0.7161 ± 0.0006	1.62 ± 0.09	8 ± 2
308.2	$\begin{array}{c} 0.009787\\ 0.014680\\ 0.019573\\ 0.024466\\ 0.029360\end{array}$	$\begin{array}{c} 0.4083 \pm 0.0014 \\ 0.5668 \pm 0.0012 \\ 0.704 \pm 0.003 \\ 0.863 \pm 0.003 \\ 1.030 \pm 0.004 \end{array}$	3.15 ± 0.06	9.9 ± 1.2

Table S3: Kinetic results for the reaction between SeCN⁻ and P(2-Me-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 330 \text{ nm}, [P(2-Me-C_6H_4)_3] = 8.215 \text{ x } 10^{-4} \text{ mol dm}^{-3}$.

 $\Delta H^{\neq} = 47 \pm 1 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -140 \pm 3 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S4: Kinetic results for the reaction between SeCN⁻ and P(4-Me-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 315 \text{ nm}, [P(4-Me-C_6H_4)_3] = 8.215 \text{ x } 10^{-4} \text{ mol dm}^{-3}$.

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^1 / {\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
	0.009787	0.1409 ± 0.0010	
	0.014680	0.210 ± 0.008	
288.2	0.019573	0.2724 ± 0.0009	1.42 ± 0.05
	0.024466	0.3554 ± 0.0017	
	0.029360	0.4098 ± 0.0014	
	0.009787	0.2180 ± 0.0009	
	0.014680	0.3380 ± 0.0018	
298.2	0.019573	0.415 ± 0.002	2.25 ± 0.05
	0.024466	0.521 ± 0.004	
	0.029360	0.695 ± 0.003	
	0.000787	0.3430 ± 0.0008	
208.2	0.009787	0.3430 ± 0.0008 0.481 ± 0.003	3.24 ± 0.07
508.2	0.024466	0.481 ± 0.005 0.778 ± 0.005	3.24 ± 0.07
	0.009787	0.469 ± 0.002	
	0.014680	0.780 ± 0.002	
318.2	0.019573	1.042 ± 0.002	5.30 ± 0.05
	0.024466	1.286 ± 0.003	
	0.029360	1.580 ± 0.002	

 $\Delta H^{\neq} = 32 \pm 2 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -131 \pm 7 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S5: Kinetic results for the reactions between SeCN	$\sqrt{1}$ and P(4-C1-C ₆ H ₄) ₃ in MeOH at different temperatures; $\lambda =$
$310 \text{ nm}, [P(4-Cl-C_6H_4)_3] = 6.838 \text{ x } 10^{-4} \text{ mol dm}^{-3}.$	

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^2 / {\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
288.4	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\\ 0.048575\end{array}$	$\begin{array}{c} 0.31313 \pm 0.00017 \\ 0.6497 \pm 0.0005 \\ 0.9771 \pm 0.0009 \\ 1.3022 \pm 0.0013 \\ 1.673 \pm 0.002 \end{array}$	0.339 ± 0.007
298.2	0.009715 0.019430 0.029145 0.038860 0.048575	$\begin{array}{c} 0.5746 \pm 0.0003 \\ 1.1722 \pm 0.0007 \\ 1.7968 \pm 0.0013 \\ 2.431 \pm 0.002 \\ 3.026 \pm 0.004 \end{array}$	0.621 ± 0.007
308.2	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\\ 0.048575\end{array}$	$\begin{array}{c} 0.9991 \pm 0.0019 \\ 2.074 \pm 0.006 \\ 3.126 \pm 0.012 \\ 4.26 \pm 0.02 \\ 5.47 \pm 0.03 \end{array}$	1.102 ± 0.007
317.3	0.009715 0.019430 0.029145 0.048575	$\begin{array}{c} 1.6232 \pm 0.0017 \\ 3.235 \pm 0.005 \\ 5.006 \pm 0.011 \\ 8.31 \pm 0.03 \end{array}$	1.707 ± 0.009

 $\Delta H^{\neq} = 39 \pm 1 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -118 \pm 4 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S6: Kinetic results for the reaction between SeCN⁻ and PPh₂(2-OMe-C₆H₄) in MeOH at different temperatures; $\lambda = 305 \text{ nm}$, [PPh₂(2-OMe-C₆H₄)] = 8.553 x 10⁻⁴ mol dm⁻³.

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^2 / {\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
288.2	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\end{array}$	$\begin{array}{c} 0.09049 \pm 0.00012 \\ 0.18994 \pm 0.00018 \\ 0.2907 \pm 0.0003 \\ 0.4023 \pm 0.0005 \end{array}$	0.101 ± 0.007
298.2	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\\ 0.048575\end{array}$	$\begin{array}{c} 0.1536 \pm 0.0005 \\ 0.3273 \pm 0.0013 \\ 0.5142 \pm 0.0019 \\ 0.711 \pm 0.003 \\ 0.924 \pm 0.003 \end{array}$	0.184 ± 0.005
308.2	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.2789 \pm 0.0010 \\ 0.561 \pm 0.003 \\ 0.899 \pm 0.006 \\ 1.245 \pm 0.010 \end{array}$	0.312 ± 0.007
318.2	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\end{array}$	$\begin{array}{c} 0.4494 \pm 0.0016 \\ 0.957 \pm 0.005 \\ 1.4921 \pm 0.0012 \\ 2.10 \pm 0.03 \end{array}$	0.523 ± 0.007

 $\Delta H^{\neq} = 39.0 \pm 3 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -128 \pm 1 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S7: Kinetic results for the reactions between SeCN ⁻ and PPh(2-OMe-C ₆ H ₄) ₂ in MeOI	H at different temperatures;
$\lambda = 320 \text{ nm}, [PPh(2-OMe-C_6H_4)_2] = 7.756 \text{ x } 10^{-4} \text{ mol dm}^{-3}.$	-

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^3 / {\rm s}^{-1}$	$k_1 \ge 10^2 / \text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
288.2	0.00965 0.01930 0.02894 0.03859	$\begin{array}{c} 0.09102 \pm 0.00008 \\ 0.2087 \pm 0.0005 \\ 0.3102 \pm 0.0008 \\ 0.462 \pm 0.003 \end{array}$	1.14 ± 0.09
298.2	0.00965 0.01930 0.02894 0.03859	$\begin{array}{c} 0.17160 \pm 0.00017 \\ 0.3623 \pm 0.0004 \\ 0.5747 \pm 0.0006 \\ 0.817 \pm 0.002 \end{array}$	2.03 ± 0.09
308.2	0.00965 0.01930 0.02894 0.03859	$\begin{array}{c} 0.3079 \pm 0.0006 \\ 0.628 \pm 0.003 \\ 0.988 \pm 0.007 \\ 1.368 \pm 0.011 \end{array}$	3.45 ± 0.09
318.2	0.00965 0.01930 0.02894 0.03859	$\begin{array}{c} 0.05664 \pm 0.00013 \\ 1.225 \pm 0.002 \\ 1.901 \pm 0.005 \\ 2.684 \pm 0.006 \end{array}$	6.72 ± 0.09

 $\Delta H^{\neq} = 46 \pm 3 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -124 \pm 10 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S8: Kinetic results for the reaction between SeCN⁻ and PPh(2,4-OMe-C₆H₃)₂ in MeOH at different temperatures; $\lambda = 305 \text{ nm}, [PPh(2,4-OMe-C_6H_3)_2] = 6.538 \times 10^{-4} \text{ mol dm}^{-3}.$

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^3/{\rm s}^{-1}$	$k_1 \ge 10^1 / \text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
	0.009715	0.2549 ± 0.0003	
200 2	0.019430	0.5126 ± 0.0008	0.28 + 0.02
200.2	0.029145	0.8100 ± 0.0018	0.28 ± 0.02
	0.038860	1.109 ± 0.003	
	0.009715	0.4412 ± 0.0007	
	0.019430	0.9185 ± 0.0017	
298.2	0.029145	1.461 ± 0.003	0.520 ± 0.019
	0.038860	2.029 ± 0.007	
	0.048575	2.601 ± 0.010	
	0.009715	0.748 ± 0.002	
	0.019430	1.648 ± 0.002	
308.2	0.029145	2.92 ± 0.03	0.92 ± 0.03
	0.038860	3.486 ± 0.010	
	0.009715	1.348 ± 0.002	
210.2	0.019430	2.736 ± 0.011	1.52
318.2	0.029145	4.627 ± 0.013	1.53 ± 0.03
	0.038860	6.100 ± 0.019	

 $\Delta H^{\neq} = 40.5 \ 3 \ \text{kJ mol}^{-1}; \ \Delta S^{\neq} = -133.6 \ 9 \ \text{J} \ \text{K}^{-1} \ \text{mol}^{-1}$

Table S9: Kinetic results for the reaction between SeCN⁻ and P(4-OMe-C₆H₄)₃ in MeOH at different temperatures; $\lambda = 315 \text{ nm}, [P(4-OMe-C_6H_4)_3] = 7.095 \text{ x } 10^{-4} \text{ mol dm}^{-3}$.

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^{1}/{\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
	0.009787	0.21806 ± 0.00019	
	0.014680	0.3430 ± 0.0004	
288.2	0.019573	0.4617 ± 0.0004	2.37 ± 0.09
	0.024466	0.5765 ± 0.0008	
	0.029360	0.7071 ± 0.0003	
	0.009787	0.3629 ± 0.0004	
	0.014680	0.5597 ± 0.0005	
298.2	0.019573	0.7557 ± 0.0004	3.90 ± 0.09
	0.024466	0.9504 ± 0.0007	
	0.029360	1.1642 ± 0.0006	
	0.009787	0.5673 ± 0.0004	
	0.014680	0.8772 ± 0.0006	
308.2	0.019573	1.1797 ± 0.0009	6.12 ± 0.09
	0.024466	1.4924 ± 0.0010	
	0.029360	1.8340 ± 0.0010	
	0.009787	0.880 ± 0.003	
	0.014680	1.217 ± 0.005	
318.2	0.019573	1.751 ± 0.005	9.01 ± 0.09
	0.024466	2.172 ± 0.006	
	0.029360	2.736 ± 0.005	

Table S10: Kinetic results for the reaction between SeCN⁻ and PTA in MeOH at different temperatures; $\lambda = 275$ nm, [PTA] = 1.750 x 10⁻³ mol dm⁻³.

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^2/{\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
288.2	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.14663 \pm 0.00005 \\ 0.3221 \pm 0.0003 \\ 0.5234 \pm 0.0016 \\ 0.683 \pm 0.008 \end{array}$	0.175 ± 0.013
298.2	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.3080 \pm 0.0002 \\ 0.6567 \pm 0.0009 \\ 1.036 \pm 0.004 \\ 1.52 \pm 0.03 \end{array}$	0.371 ± 0.013
35.4	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 0.6235 \pm 0.0006 \\ 1.398 \pm 0.005 \\ 2.107 \pm 0.019 \\ 2.92 \pm 0.13 \end{array}$	0.736 ± 0.013
308.6	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 1.1251 \pm 0.0016 \\ 2.330 \pm 0.010 \\ 3.40 \pm 0.05 \\ 4.3 \pm 0.5 \end{array}$	1.146 ± 0.013

 $\Delta H^{\neq} = 42 \pm 3 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -112 \pm 9 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S11: Kinetic results for the reactions between SeCN	and P(2-furyl) ₃ in MeOH at different temperatures; $\lambda = 290$
nm, $[P(2-furyl)_3] = 1.163 \times 10^{-3} \text{ mol dm}^{-3}$.	

Temperature/K	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^3 / {\rm s}^{-1}$	$k_1 \ge 10^2 / \text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$	$k_{-1} \ge 10^4 / \mathrm{s}^{-1}$
288.2	0.009715 0.01943 0.029145	$\begin{array}{c} 0.0844 \pm 0.0005 \\ 0.1091 \pm 0.0005 \\ 0.192 \pm 0.004 \end{array}$	0.54 ± 0.06	0.24 ± 0.18
298.2	0.048575 0.009715 0.01943 0.029145 0.048575	$\begin{array}{c} 0.2833 \pm 0.0011 \\ 0.1836 \pm 0.0003 \\ 0.3194 \pm 0.0008 \\ 0.432 \pm 0.018 \\ 0.659 \pm 0.002 \end{array}$	1.21 ± 0.04	0.75 ± 0.11
307.9	$\begin{array}{c} 0.009715\\ 0.01943\\ 0.029145\\ 0.03886\end{array}$	$\begin{array}{c} 0.3940 \pm 0.0016 \\ 0.648 \pm 0.003 \\ 0.895 \pm 0.003 \\ 1.086 \pm 0.003 \end{array}$	2.39 ± 0.11	1.7 ± 0.5
319.3	0.009715 0.01943 0.048575	$\begin{array}{c} 0.855 \pm 0.005 \\ 1.451 \pm 0.005 \\ 2.772 \pm 0.013 \end{array}$	4.8 ± 0.3	4.4 ± 1.0

 $\Delta H^{\neq} = 49.0 \pm 1.3 \text{ kJ mol}^{-1}; \Delta S^{\neq} = -117 \pm 4 \text{ J K}^{-1} \text{ mol}^{-1}$

Table S12: Compiled activation parameters for selected phosphines.

Δ <i>H</i> [≠] /kJ mol ⁻¹	$\Delta S^{\neq}/J \text{ K}^{-1} \text{ mol}^{-1}$
35.7 ± 0.4	-124.8 ± 1.1
27 ± 1	-132 ± 3
47 ± 1	-140 ± 3
32 ± 2	-131 ± 7
39 ± 1	-118 ± 4
39.0 ± 0.3	-128 ± 1
46 ± 3	-124 ± 10
40.5 ± 0.3	-133.6 ± 0.9
30.7 ± 0.8	-131 ± 2
49.0 ± 1.3	-117 ± 4
42 ± 3	-112 ± 9
	$\frac{\Delta H^{\neq} \text{/kJ mol}^{-1}}{35.7 \pm 0.4}$ 27 ± 1 47 ± 1 32 ± 2 39 ± 1 39.0 ± 0.3 46 ± 3 40.5 ± 0.3 30.7 ± 0.8 49.0 ± 1.3 42 ± 3

Phosphine	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^5/{\rm s}^{-1}$	$k_1 \ge 10^{-1} / \text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$
$PPh_{2}Cy \\ \lambda = 300 \text{ nm} \\ [PPh_{2}Cy] = 9.315 \text{ x } 10^{-4} \text{ mol dm}^{-3}$	0.00972 0.01943 0.02915 0.03886 0.04858	$\begin{array}{c} 0.002855 \pm 0.000007 \\ 0.00604 \pm 0.00003 \\ 0.00910 \pm 0.00006 \\ 0.01266 \pm 0.00013 \\ 0.01573 \pm 0.00015 \end{array}$	0.1605 ± 0.0017
$PCy_{3} \\ \lambda = 280 \text{ nm} \\ [PCy_{3}] = 8.915 \text{ x } 10^{-4} \text{ mol dm}^{-3}$	$\begin{array}{c} 0.009787\\ 0.014680\\ 0.019573\\ 0.024466\\ 0.029360\end{array}$	$\begin{array}{c} 0.000385 \pm 0.000002 \\ 0.000565 \pm 0.000004 \\ 0.000963 \pm 0.000008 \\ 0.001209 \pm 0.000019 \\ 0.00167 \pm 0.00003 \end{array}$	5.1 ± 0.3
$P(3-Me-C_6H_4)_3$ $\lambda = 300 \text{ nm}$ $[P(3-Me-C_6H_4)_3] = 8.215 \text{ x } 10^{-4} \text{ mol } \text{dm}^{-3}$	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\end{array}$	$\begin{array}{l} 0.001488 \pm 0.000011 \\ 0.002995 \pm 0.000004 \\ 0.004719 \pm 0.000007 \\ 0.006628 \pm 0.000012 \end{array}$	0.165 ± 0.004
$P(4-F-C_6H_4)_3$ $\lambda = 310 \text{ nm}$ $[P(4-F-C_6H_4)_3] = 7.905 \text{ x } 10^{-4} \text{ mol dm}^{-3}$	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\\ 0.048575\end{array}$	$\begin{array}{c} 0.087 \pm 0.007 \\ 0.18564 \pm 0.00019 \\ 0.2745 \pm 0.0004 \\ 0.3720 \pm 0.0006 \\ 0.4585 \pm 0.0012 \end{array}$	0.0947 ± 0.0005
$PPh_{2}Fc \\ \lambda = 298 \text{ nm} \\ [PPh_{2}Fc] = 6.753 \text{ x } 10^{-4} \text{ mol dm}^{-3}$	$\begin{array}{c} 0.009787\\ 0.019573\\ 0.024466\\ 0.029360\end{array}$	$\begin{array}{c} 0.0012199 \pm 0.0000007 \\ 0.002700 \pm 0.000003 \\ 0.003236 \pm 0.000004 \\ 0.003790 \pm 0.000007 \end{array}$	0.132 ± 0.002
$PPh_{2}(CH_{2}C_{6}H_{5})$ $\lambda = 300 \text{ nm}$ $[PPh_{2}Fc] = 9.048 \text{ x } 10^{-4} \text{ mol dm}^{-3}$	$\begin{array}{c} 0.009715\\ 0.019430\\ 0.029145\\ 0.038860\\ 0.048575\end{array}$	$\begin{array}{c} 0.06376 \pm 0.00007 \\ 0.1330 \pm 0.0002 \\ 0.2068 \pm 0.0004 \\ 0.2822 \pm 0.0007 \\ 0.3326 \pm 0.0012 \end{array}$	0.0700 ± 0.0009
$P(2-OMe-C_6H_4)_3$ $\lambda = 310 \text{ nm}$ $[P(2-OMe-C_6H_4)_3] = 7.095 \text{ x } 10^{-4} \text{ mol dm}^{-3}$	0.009715 0.019430 0.029145 0.038860	$\begin{array}{c} 1.3549 \pm 0.0007 \\ 2.4262 \pm 0.0017 \\ 3.9381 \pm 0.0018 \\ 5.231 \pm 0.004 \end{array}$	0.000134 ± 0.000002

Table S13: Kinetic results for the reaction between SeCN⁻ and various phosphines in MeOH at 298.2 K.

Table S14 : Kinetic results for the reactions between SeCN ⁻ and PPh ₃ in various solvents at 298.2 K; $[PPh_3] = 9.535 \text{ x}$
$10^{-4} \text{ mol } \text{dm}^{-3}$.

Solvent	[SeCN ⁻]/mol dm ⁻³	$k_{\rm obs} \ge 10^2/{\rm s}^{-1}$	$k_1/\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$	$k_{-1} \ge 10^5 / \mathrm{s}^{-1}$
	0.009715	0.92511 ± 0.00015		
Mathanal	0.019430	1.9357 ± 0.0011		
$\lambda = 310 \text{ nm}$	0.029145	3.0028 ± 0.0019	1.05 ± 0.02	0
	0.038860	4.098 ± 0.005		
	0.048575	5.156 ± 0.008		
	0.009715	0.343354 ± 0.000014		
Ethanol	0.019430	0.7944 ± 0.0015	0.470 ± 0.021	0
$\lambda = 310 \text{ nm}$	0.029145	1.349 ± 0.003	0.470 ± 0.021	0
	0.038860	1.932 ± 0.006		
	0.009715	0.5409 ± 0.0015		
1-Propanol	0.019430	1.244 ± 0.003		<u>^</u>
$\lambda = 310 \text{ nm}$	0.029145	1.916 ± 0.016	0.710 ± 0.003	0
	0.038860	2.95 ± 0.02		
Acetone 0.00 $\lambda = 330 \text{ nm}$ 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.009715	0.003353 ± 0.000019		
	0.019430	0.00538 ± 0.00002		
	0.029145	0.00808 ± 0.00002	0.00230 ± 0.00008	1.1 ± 0.3
	0.038860	0.01027 ± 0.00005		
	0.048575	0.01208 ± 0.00010		