Supporting Information:

Unanticipated demetalation of a Zn(salphen) complex provoked by N-heterocycles

Eduardo C. Escudero-Adán,[§] Jordi Benet-Buchholz,[§] Arjan W. Kleij^{§,†}*

Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007

Tarragona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg.

Lluís Companys 23, 08010 Barcelona, Spain

Contents:¹

- Page S2: 1 H NMR spectrum (d₆-acetone) of Zn(salphen)compound 1a.
- Page S3: ¹H NMR spectrum (CDCl₃) of Ni(salphen)compound **1b**.
- Page S4: ¹H NMR spectrum (d_6 -acetone) of Ru(CO)(salphen)compound 1c.
- Page S5: Typical NMR shifts for compound 1a·4b as compared to free 4b.
- Page S6: Crystallographic details for 2, 1a·4b and 1a·5b.
- Page S8: MALDI-TOF-MS spectrum for the product of the reaction between 1a and purine 3.
- Page S9: MALDI-TOF-MS spectrum for the product of the reaction between 1a and imidazole 5a.
- Page S10: ¹H NMR analysis (d₆-acetone) of the yellow crystals obtained after reaction of **1a** with purine **3**.
- Page S11: Typical NMR shifts (d_6 -acetone) upon demetalation of complex 1a in the presence of purine 3 and imidazole 5a.
- Page S13: Literature pKa data for a series of N-heterocyclic compounds.
- Page S14: Full ¹H NMR spectra (d₆-acetone) of compounds **1a**•**4b**, **1a**•**5b** and **1a**•**7**.
- Page S17: Typical procedure involving complexes 1 and the N-heterocycles 3-7.

¹ All ¹H NMR spectra were recorded at 400 MHz. The CDCl₃ contained TMS as internal standard.

¹H NMR spectrum (d₆-acetone) of Zn(salphen)compound **1a**.

¹H NMR spectrum (CDCl₃) of Ni(salphen)compound **1b**.

¹H NMR spectrum (d_6 -acetone) of Ru(CO)(salphen)compound 1c.

Typical NMR shifts for compound **1a**·**4b** as compared to free **4b**.

Compound	1a•4b	1a·5b	2
Formula	$C_{44}H_{54}N_4O_2Zn_1$	$C_{40}H_{52}N_4O_2Zn_1$	C ₇₈ H ₁₀₅ N ₇ O ₄ *
Solvents in crystal			$3/2 \times Acetonitrile^*$
Formula weight	736.28	686.23	1204.69
Crystal size (mm ³)	$0.14 \times 0.12 \times 0.07$	$0.30 \times 0.30 \times 0.10$	$0.20 \times 0.10 \times 0.10$
Crystal color	orange	yellow	orange
Temp (K)	100	100	100
Crystal system	triclinic	orthorhombic	triclinic
Space group	$P\overline{1}$	<i>I</i> bam	Pī
A (Å)	9.4787(6)	32.9872(19)	9.9668(6)
B (Å)	14.6726(11)	9.8259(6)	11.7206(5)
C (Å)	14.9753(10)	23.0204(13)	33.5724(16)
α (deg)	103.503(4)	90.00	81.394(2)
β (deg)	107.774(3)	90.00	82.282(2)
γ (deg)	91.800(4)	90.00	69.164(2)
V (Å ³)	1916.6(2)	7461.6(8)	3610.1(3)
Z	2	4	2
ρ (g/cm ³)	1.276	1222	1.108
μ (mm ⁻¹)	0.683	0.696	0.068
θ _{max} (°)	39.97	39.87	35.18
Reflec. measured	37644	45014	58825
Unique reflections	$16419 [R_{int} = 0.0288]$	11013 [$R_{int} = 0.0370$]	29202 [$R_{int} = 0.0491$]
Absorp. correct.	SADABS (Bruker)	SADABS (Bruker)	SADABS (Bruker)
Trans. min/max	0.8433/1.0000	0.8486/1.0000	0.8123/1.0000
Parameters	473	230	833
R1/wR2 [I>2σ(I)]	0.0332/0.0867	0.0307/0.0850	0.0781/0.1862
R1/wR2 [all data]	0.0404/0.0905	0.0386/0.0899	0.1219/0.2059
Goodness-of-fit (F ²)	1.059	1.033	1.062
Peak/hole (e/Å ³)	0.667/-0.301	0.834/-0.297	0.954/-0.532

Crystallographic details for 2, 1a·4b and 1a·5b.

* The elementary cell contains two independent molecules of the main compound.

X-ray Structure Determination: Crystals of $1a \cdot 4b$, $1a \cdot 4b$ and 2 were obtained from CH₃CN in the presence of suitable ligands. The measured crystals were prepared under inert conditions immersed in perfluoropolyether as protecting oil for manipulation.

<u>Data Collection</u>: Measurements were made on a Bruker-Nonius diffractometer equipped with a APPEX 2 4K CCD area detector, a FR591 rotating anode with MoK α radiation, Montel mirrors as monochromator and a Kryoflex low temperature device (T = -173°C). Full-sphere data collection was used with ω and φ scans. Programs used: Data collection Apex2 V. 1.0-22 (Bruker-Nonius 2004), data reduction Saint + Version 6.22 (Bruker-Nonius 2001) and absorption correction SADABS V. 2.10 (2003). Structure Solution and Refinement: SHELXTL Version 6.10 (Sheldrick, 2000) was used.²

Comments:

The proposed structure for the **1a**·**4b** could be elucidated unambiguously by single crystal X-ray diffraction. The compound crystallizes in the triclinic space group $P\overline{1}$. The elementary cell contains one molecule of the complex.

The structure of **1a·5b** was proved by X-ray single crystal structure analysis. The compound is crystallizing in the orthorhombic space group *I*bam with a *C*m symmetry for the molecule. The hydrogen atoms at C22 are disordered in two orientations.

After different attempts, the structure of 2 could be solved using tiny crystals obtained from acetonitrile. In sake of the bad quality of the crystals, the structure could be elucidated with enough quality for reporting. Compound 2 crystallizes as an acetonitrile solvate with two independent molecules of the main compound and three independent molecules of acetonitrile in the elementary cell.

Structure of ligand 2:

The X-ray molecular structure determined for **2**; hydrogen atoms and co-crystallized solvent molecules are omitted for clarity. Only one of the crystallographically independent molecules is shown.

² Sheldrick, G. M., 'SHELXTL Crystallographic System Ver. 5.10', Bruker AXS Inc., Madison, Wisconsin 1998.

MALDI-TOF-MS spectrum for the product of the reaction between 1a and purine 3.

Please note: MS analysis carried out for the mother liquor

MALDI-TOF-MS spectrum for the product of the reaction between 1a and imidazole 5a.

Please note: MS analysis carried out for the mother liquor. An enlargement is presented for part of the higher mass region, showing the presence of mono-Zn species.

¹H NMR analysis (d₆-acetone) of the yellow crystals obtained after reaction of 1a with purine 3.

Directly below the spectrum recorded in CDCl₃:

Typical NMR shifts (d_6 -acetone) upon demetalation of complex 1a in the presence of purine 3 and imidazole 5a.

For the reaction that involved purine, the product after isolation is presented. For the other three spectra the product(s) after 4 h are presented. For all samples both the full spectra as well as the *t*-Bu regions are given. In order to establish a reliable conversion of 1a into 2, NMR signal integration was carried out in the *t*-Bu region.

Please note the small changes in shifts of the *t*-Bu resonances for the isolated reaction product in the presence of pyridine; in this case the 1:1 assembly 1a pyridine was identified, and the coordination of pyridine to the Zn metal center causes small changes in the magnetic environment of the *t*-Bu groups within the assembly.

Assignments:

δ = 1.47, 1.34 ppm; compound **2** δ = 1.55, 1.31 ppm; compound **1a**

Compound	pKa (H ₂ O)	pKa (dmso)
H_2O	15.7	32
Phenol	9.95	18.0
Indole		20.95
Benzimidazole	6.0	16.4
Imidazole		18.6
2-Me-imidazole	7.75	
2-Me-benzimidazole	6.1	
2-Me-pyridine ¹	5.94	
Pyridine ¹	5.14	
Purine	2.39	
МеОН	15.5	27.9
CH ₃ CN		31.3

Literature pKa data for a series of N-heterocyclic compounds³⁻⁶

⁻¹ Of the corresponding <u>pyridinium</u> derivative.

 ³ <u>http://daecr1.harvard.edu/pdf/evans_pKa_table.pdf</u>.
⁴ Lailach, G. E.; Thompson, T. D.; Brindley, G. W. *Clays and Clay Minerals* 1968, *16*, 285.
⁵ <u>http://research.chem.psu.edu/brpgroup/pKa_compilation.pdf</u>
⁶ <u>www.chem.wisc.edu/areas/reich/pkatable</u>

Full ¹H NMR spectra (d₆-acetone) of compounds **1a·4b**, **1a·5b** and **1a·7**. <u>In order of mentioning:</u>

Typical procedure involving complexes 1 and the N-heterocycles 3-7.

Typical procedure for the reaction of complexes 1a-c with the N-heterocycles. A mixture of Zn(salphen) 1a (61.3 mg, 0.101 mmol) and imidazole 5a (13.0 mg, 0.191 mmol) in acetonitril (6 mL) was heated in a glass vial until all solids had dissolved. After cooling to ambient temperature the mixture was left unstirred for 4 h, and then a homogenized sample was taken for ¹H NMR analysis. The solvent was removed in vacuo and the residue dissolved in the appropriate NMR solvent directly followed by analysis. Data for **1a**: ¹H NMR (400 MHz, d_6 -acetone): $\delta = 9.10$ (s, 2H), 7.94-7.91 (m, 2H), 7.45 (d, ${}^{4}J$ = 2.7 Hz, 2H), 7.37-7.35 (m, 2H), 7.26 (d, ${}^{4}J$ = 2.7 Hz, 2H), 1.55 (s, 18H), 1.34 (s, 18H). MS (MALDI-TOF, positive mode) m/z 603.3 (M+H)⁺. Data for 1b: ¹H NMR (400 MHz, CDCl₃): δ = 8.24 (s, 2H), 7.73-7.70 (m, 2H), 7.43 (d, ⁴J = 2.0 Hz, 2H), 7.21-7.19 (m, 2H), 7.11 (d, ${}^{4}J$ = 2.0 Hz, 2H), 1.49 (s, 18H), 1.34 (s, 18H). Data for **1c**: ¹H NMR (400 MHz, d_6 -acetone): $\delta = 9.35$ (s, 2H), 8.32-8.29 (m, 2H), 7.49 (d, ⁴J = 2.6 Hz, 2H), 7.42 (d, ${}^{4}J$ = 2.6 Hz, 2H), 7.35-7.32 (m, 2H), 1.57 (s, 18H), 1.35 (s, 18H). Data for 2: ¹H NMR (400 MHz, d_6 -acetone): $\delta = 13.78$ (s, 2H), 8.95 (s, 2H), 7.52-7.48 (m, 6H), 7.44-7.42 (m, 2H), 1.47 (s, 18H), 1.34 (s, 18H). MS (MALDI-TOF, negative mode) m/z 539.4 (M-H)⁻.