Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2007 data_global _journal_name_full 'Dalton Trans.' _journal_coden_cambridge 0222 _publ_contact_author_name 'Sundargopal Ghosh' _publ_contact_author_address ; Department of Chemistry Indian Institute of Technology Metallaborane Lab Chennai Tamilnadu 600036 INDIA ; _publ_contact_author_email SGHOSH@IITM.AC.IN _publ_section_title ; Expansion of Iridaborane Clusters by Addition of Monoborane: Novel Metallaboranes and Mechanistic Detail ; loop_ _publ_author_name S.Ghosh B.Noll T.P.Fehlner data_bcn132t5 _database_code_depnum_ccdc_archive 'CCDC 662576' _audit_creation_method SHELXL-97 _chemical_name_systematic ? _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C20 H43 B8.50 Ir2' _chemical_formula_sum 'C20 H43 B8.50 Ir2' _chemical_formula_weight 759.83 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' B B 0.0013 0.0007 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ir Ir -1.4442 7.9887 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/n' _symmetry_space_group_name_Hall '-P 2yn' _symmetry_int_tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 8.3424(2) _cell_length_b 15.4752(3) _cell_length_c 19.7068(4) _cell_angle_alpha 90.00 _cell_angle_beta 94.178(1) _cell_angle_gamma 90.00 _cell_volume 2537.39(9) _cell_formula_units_Z 4 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 9204 _cell_measurement_theta_min 2.6323 _cell_measurement_theta_max 36.3196 _exptl_crystal_description plate _exptl_crystal_colour 'clear yellow' _exptl_crystal_size_max 0.24 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.04 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.989 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1438 _exptl_absorpt_coefficient_mu 10.485 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.1884 _exptl_absorpt_correction_T_max 0.6555 _exptl_absorpt_process_details ; Blessing, R. H. (1995) Acta Cryst. A51, 33-38. Sheldrick, G. M. (2004) TWINABS v1.05, Univeristy of G\"ottingen, Germany ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type 'Siemens KFFMO2K-90' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART APEX CCD area detector' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean 8.33 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 96994 _diffrn_reflns_av_R_equivalents ? _diffrn_reflns_av_sigmaI/netI 0.0270 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 20 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 26 _diffrn_reflns_theta_min 1.67 _diffrn_reflns_theta_max 28.28 _reflns_number_total 9056 _reflns_number_gt 7224 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX2 (Bruker, 2004)' _computing_cell_refinement 'APEX2/SAINT (Bruker, 2004)' _computing_data_reduction 'SAINT/XPREP (Bruker, 2004; Sheldrick, 2003)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'XP (Sheldrick, 1998)' _computing_publication_material 'XCIF (Sheldrick, 2001)' _refine_special_details ; The data indicated the presence of non-merohedral twinning. A second domain was found using TWINABS (Sheldrick, 2004). This domain was rotated from the first by 175.7 degrees about reciprocal axis 0.001 1.000 0.019 and real axis 0.004 1.000 0.012. The twin law to convert hkl from first to this domain (SHELXL TWIN matrix) is: -0.992 0.002 0.032 0.010 1.000 0.023 -0.178 0.039 -1.002 The scale factor between these domains is 0.0399(7). There is disorder in the structure. Borons B9 and B9' were modeled at 0.25 site occupancy. This necessitated modeling terminal hydrogens H1, H2, H5, and H6 at 0.75 site occupancy. It cannot be determined whether B9 and B9' are present together, forming a B~10~ complex, or separately to form a B~9~ complex. While two hydrogens are expected on B9 and B9', only one could be located on each. THese were fixed in position and their isotropic thermal parameters were set to 1.2\\times the equivalent isotropic U of the parent atom. Remaining hydrogens attached to boron were also located by difference map, but their positions were allowed to refine freely. Isotropic thermal parameters for these borons were also set to to 1.2\\times the equivalent isotropic U of the parent atom. The methyl hydrogens of the pentamethylcyclopentadiene ligands were placed at calculated geometries and allowed to ride on the position of the parent atom. Isotropic thermal parameters were set to 1.5\\times the equivalent isotropic U of the parent atom. The largest peak in the final difference map, 2.116 e^-^/\%A^3^, was located 0.888 \%A from Ir1. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0157P)^2^+32.6581P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 9056 _refine_ls_number_parameters 327 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0477 _refine_ls_R_factor_gt 0.0364 _refine_ls_wR_factor_ref 0.0826 _refine_ls_wR_factor_gt 0.0803 _refine_ls_goodness_of_fit_ref 1.226 _refine_ls_restrained_S_all 1.226 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ir1 Ir 0.86309(2) 0.623510(16) 0.164504(12) 0.01358(6) Uani 1 1 d . E . Ir2 Ir 1.10386(2) 0.623294(16) 0.341220(12) 0.01297(6) Uani 1 1 d . E . B1 B 1.0819(8) 0.6353(5) 0.2312(4) 0.0167(14) Uani 1 1 d . . . H1 H 1.161(11) 0.689(6) 0.211(5) 0.020 Uiso 0.75 1 d P A 1 B2 B 1.0771(8) 0.5451(5) 0.1730(4) 0.0158(14) Uani 1 1 d . E . H2 H 1.147(11) 0.542(6) 0.133(5) 0.019 Uiso 0.75 1 d P B 1 H23 H 1.020(8) 0.465(4) 0.177(4) 0.019 Uiso 1 1 d . . . B3 B 0.8776(9) 0.4896(5) 0.1689(4) 0.0172(15) Uani 1 1 d . . . H3 H 0.811(8) 0.446(4) 0.128(4) 0.021 Uiso 1 1 d . . . H34 H 0.823(8) 0.462(4) 0.234(4) 0.021 Uiso 1 1 d . . . B4 B 0.7750(9) 0.5389(5) 0.2404(4) 0.0185(15) Uani 1 1 d . E . H4 H 0.644(8) 0.529(4) 0.244(4) 0.022 Uiso 1 1 d . . . B5 B 0.8848(8) 0.6310(5) 0.2751(4) 0.0165(14) Uani 1 1 d . E . H5 H 0.802(11) 0.682(6) 0.300(5) 0.020 Uiso 0.75 1 d P C 1 B6 B 0.8978(8) 0.5385(5) 0.3304(4) 0.0152(14) Uani 1 1 d . . . H6 H 0.816(11) 0.528(6) 0.373(5) 0.018 Uiso 0.75 1 d P D 1 H67 H 0.951(10) 0.465(5) 0.325(5) 0.05(3) Uiso 1 1 d . . . B7 B 1.1026(9) 0.4900(5) 0.3334(4) 0.0181(15) Uani 1 1 d . E . H7 H 1.164(8) 0.441(4) 0.374(4) 0.022 Uiso 1 1 d . . . H78 H 1.151(8) 0.470(4) 0.267(4) 0.022 Uiso 1 1 d . . . B8 B 1.1997(8) 0.5453(4) 0.2632(4) 0.0154(14) Uani 1 1 d . E . H8 H 1.309(8) 0.543(4) 0.255(4) 0.018 Uiso 1 1 d . . . C1 C 0.8249(8) 0.7620(4) 0.1317(4) 0.0186(13) Uani 1 1 d . . . C2 C 0.6722(7) 0.7228(4) 0.1389(4) 0.0177(13) Uani 1 1 d . E . C3 C 0.6516(8) 0.6531(4) 0.0914(4) 0.0178(13) Uani 1 1 d . . . C4 C 0.7925(8) 0.6478(4) 0.0539(4) 0.0218(15) Uani 1 1 d . E . C5 C 0.9007(8) 0.7158(4) 0.0789(4) 0.0208(14) Uani 1 1 d . E . C6 C 0.8922(9) 0.8395(4) 0.1694(4) 0.0260(16) Uani 1 1 d . E . H6A H 0.8532 0.8922 0.1461 0.039 Uiso 1 1 calc R . . H6B H 1.0098 0.8379 0.1710 0.039 Uiso 1 1 calc R . . H6C H 0.8576 0.8390 0.2159 0.039 Uiso 1 1 calc R . . C7 C 0.5498(8) 0.7524(5) 0.1854(4) 0.0240(15) Uani 1 1 d . . . H7A H 0.4806 0.7962 0.1624 0.036 Uiso 1 1 calc R E . H7B H 0.6042 0.7773 0.2266 0.036 Uiso 1 1 calc R . . H7C H 0.4842 0.7031 0.1978 0.036 Uiso 1 1 calc R . . C8 C 0.5054(9) 0.5962(5) 0.0814(4) 0.0284(17) Uani 1 1 d . E . H8A H 0.4277 0.6227 0.0479 0.043 Uiso 1 1 calc R . . H8B H 0.4562 0.5896 0.1247 0.043 Uiso 1 1 calc R . . H8C H 0.5369 0.5393 0.0650 0.043 Uiso 1 1 calc R . . C9 C 0.8208(9) 0.5862(5) -0.0024(4) 0.0287(17) Uani 1 1 d . . . H9B H 0.9367 0.5786 -0.0055 0.043 Uiso 1 1 calc R E . H9C H 0.7727 0.6093 -0.0455 0.043 Uiso 1 1 calc R . . H9A H 0.7717 0.5303 0.0069 0.043 Uiso 1 1 calc R . . C10 C 1.0608(8) 0.7353(5) 0.0531(4) 0.0294(17) Uani 1 1 d . . . H10A H 1.1012 0.6839 0.0308 0.044 Uiso 1 1 calc R E . H10B H 1.1365 0.7519 0.0912 0.044 Uiso 1 1 calc R . . H10C H 1.0499 0.7829 0.0203 0.044 Uiso 1 1 calc R . . C11 C 1.0763(8) 0.7468(4) 0.4007(4) 0.0204(14) Uani 1 1 d . . . C12 C 1.2240(8) 0.7503(4) 0.3655(4) 0.0203(14) Uani 1 1 d . E . C13 C 1.3269(8) 0.6826(4) 0.3930(4) 0.0207(14) Uani 1 1 d . . . C14 C 1.2433(7) 0.6369(4) 0.4431(4) 0.0190(13) Uani 1 1 d . E . C15 C 1.0904(8) 0.6764(4) 0.4470(4) 0.0193(14) Uani 1 1 d . E . C16 C 0.9418(9) 0.8101(5) 0.3915(5) 0.0337(19) Uani 1 1 d . E . H16A H 0.8406 0.7817 0.4006 0.050 Uiso 1 1 calc R . . H16B H 0.9349 0.8319 0.3447 0.050 Uiso 1 1 calc R . . H16C H 0.9616 0.8584 0.4232 0.050 Uiso 1 1 calc R . . C17 C 1.2665(10) 0.8178(5) 0.3157(4) 0.0355(19) Uani 1 1 d . . . H17A H 1.3818 0.8304 0.3220 0.053 Uiso 1 1 calc R E . H17B H 1.2051 0.8705 0.3230 0.053 Uiso 1 1 calc R . . H17C H 1.2407 0.7966 0.2693 0.053 Uiso 1 1 calc R . . C18 C 1.4949(8) 0.6652(5) 0.3732(4) 0.0344(19) Uani 1 1 d . E . H18A H 1.5365 0.6128 0.3961 0.052 Uiso 1 1 calc R . . H18B H 1.5644 0.7143 0.3868 0.052 Uiso 1 1 calc R . . H18C H 1.4933 0.6574 0.3238 0.052 Uiso 1 1 calc R . . C19 C 1.3131(11) 0.5637(5) 0.4852(4) 0.0365(19) Uani 1 1 d . . . H19A H 1.3868 0.5866 0.5219 0.055 Uiso 1 1 calc R E . H19B H 1.3718 0.5249 0.4565 0.055 Uiso 1 1 calc R . . H19C H 1.2263 0.5317 0.5049 0.055 Uiso 1 1 calc R . . C20 C 0.9648(9) 0.6541(5) 0.4956(4) 0.0349(19) Uani 1 1 d . . . H20A H 0.9839 0.5955 0.5132 0.052 Uiso 1 1 calc R E . H20B H 0.8579 0.6571 0.4716 0.052 Uiso 1 1 calc R . . H20C H 0.9712 0.6953 0.5335 0.052 Uiso 1 1 calc R . . B9 B 1.243(4) 0.633(3) 0.161(2) 0.038(8) Uiso 0.25 1 d P E 2 H9 H 1.3249 0.6207 0.1663 0.045 Uiso 0.25 1 d P F 2 B9' B 0.753(5) 0.630(3) 0.341(2) 0.046(10) Uiso 0.25 1 d P E 2 H9'A H 0.6439 0.5987 0.3383 0.055 Uiso 0.25 1 d P G 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ir1 0.01475(10) 0.01223(11) 0.01365(12) 0.00040(10) 0.00036(9) 0.00222(9) Ir2 0.01403(10) 0.01147(11) 0.01336(12) -0.00027(10) 0.00057(8) -0.00198(9) B1 0.013(3) 0.014(3) 0.023(4) 0.001(3) 0.007(3) -0.001(3) B2 0.014(3) 0.017(3) 0.017(4) -0.004(3) 0.001(3) 0.003(2) B3 0.020(3) 0.018(4) 0.014(4) 0.000(3) -0.001(3) 0.001(3) B4 0.016(3) 0.020(4) 0.019(4) 0.000(3) -0.002(3) -0.004(3) B5 0.016(3) 0.014(3) 0.019(4) 0.002(3) 0.002(3) 0.001(3) B6 0.016(3) 0.017(3) 0.012(3) 0.001(3) 0.000(3) -0.004(3) B7 0.020(3) 0.018(4) 0.015(4) -0.001(3) -0.001(3) -0.002(3) B8 0.013(3) 0.015(3) 0.018(4) -0.002(3) -0.001(3) 0.003(2) C1 0.023(3) 0.015(3) 0.018(3) 0.006(3) 0.002(3) 0.006(2) C2 0.019(3) 0.015(3) 0.019(3) 0.004(3) 0.002(3) 0.006(2) C3 0.021(3) 0.017(3) 0.015(3) 0.004(3) -0.004(3) 0.005(2) C4 0.029(3) 0.021(3) 0.015(3) 0.005(3) -0.003(3) 0.014(3) C5 0.021(3) 0.022(3) 0.019(4) 0.009(3) 0.004(3) 0.007(2) C6 0.034(4) 0.017(3) 0.027(4) -0.001(3) 0.000(3) 0.002(3) C7 0.022(3) 0.029(4) 0.021(4) 0.004(3) 0.003(3) 0.013(3) C8 0.031(4) 0.025(4) 0.027(4) 0.006(3) -0.015(3) 0.000(3) C9 0.038(4) 0.033(4) 0.014(4) -0.003(3) -0.006(3) 0.020(3) C10 0.025(3) 0.033(4) 0.031(4) 0.016(3) 0.010(3) 0.008(3) C11 0.023(3) 0.019(3) 0.018(3) -0.006(3) -0.002(3) -0.001(2) C12 0.027(3) 0.017(3) 0.016(3) -0.001(3) 0.000(3) -0.013(3) C13 0.018(3) 0.027(4) 0.016(3) -0.003(3) -0.003(3) -0.006(2) C14 0.021(3) 0.018(3) 0.018(3) -0.001(3) 0.002(3) -0.001(2) C15 0.021(3) 0.022(3) 0.016(3) -0.003(3) 0.002(3) -0.005(2) C16 0.035(4) 0.023(4) 0.042(5) -0.014(4) -0.006(4) 0.008(3) C17 0.054(5) 0.029(4) 0.023(4) -0.003(3) 0.001(4) -0.024(3) C18 0.019(3) 0.052(5) 0.031(5) -0.011(4) 0.001(3) -0.006(3) C19 0.054(5) 0.029(4) 0.023(4) 0.003(4) -0.016(4) 0.000(3) C20 0.039(4) 0.040(4) 0.027(4) -0.011(4) 0.010(4) -0.008(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ir1 B3 2.078(7) . ? Ir1 B2 2.156(7) . ? Ir1 B4 2.156(8) . ? Ir1 B5 2.176(8) . ? Ir1 B1 2.178(7) . ? Ir1 C3 2.242(6) . ? Ir1 C2 2.244(6) . ? Ir1 C4 2.248(7) . ? Ir1 C5 2.251(7) . ? Ir1 C1 2.255(6) . ? Ir2 B7 2.068(7) . ? Ir2 B8 2.153(7) . ? Ir2 B6 2.161(7) . ? Ir2 B5 2.170(7) . ? Ir2 B1 2.170(8) . ? Ir2 C12 2.242(6) . ? Ir2 C13 2.252(6) . ? Ir2 C15 2.252(7) . ? Ir2 C14 2.255(7) . ? Ir2 C11 2.263(7) . ? B1 B8 1.791(10) . ? B1 B2 1.805(10) . ? B1 B5 1.913(9) . ? B1 B9 2.00(4) . ? B1 H1 1.15(9) . ? B2 B3 1.870(10) . ? B2 B9 1.97(4) . ? B2 B8 1.985(11) . ? B2 H2 1.01(10) . ? B2 H23 1.33(7) . ? B3 B4 1.864(11) . ? B3 H23 1.24(7) . ? B3 H3 1.17(7) . ? B3 H34 1.45(8) . ? B4 B5 1.801(10) . ? B4 B6 1.982(11) . ? B4 H34 1.27(7) . ? B4 H4 1.11(7) . ? B5 B9' 1.76(5) . ? B5 B6 1.799(10) . ? B5 H5 1.18(9) . ? B6 B7 1.862(10) . ? B6 B9' 1.89(4) . ? B6 H6 1.14(10) . ? B6 H67 1.22(8) . ? B7 B8 1.861(11) . ? B7 H67 1.32(8) . ? B7 H7 1.19(7) . ? B7 H78 1.42(8) . ? B8 H78 1.24(7) . ? B8 H8 0.94(7) . ? C1 C2 1.427(9) . ? C1 C5 1.446(9) . ? C1 C6 1.498(9) . ? C2 C3 1.431(9) . ? C2 C7 1.494(9) . ? C3 C4 1.435(9) . ? C3 C8 1.506(9) . ? C4 C5 1.450(10) . ? C4 C9 1.493(10) . ? C5 C10 1.494(9) . ? C6 H6A 0.9800 . ? C6 H6B 0.9800 . ? C6 H6C 0.9800 . ? C7 H7A 0.9800 . ? C7 H7B 0.9800 . ? C7 H7C 0.9800 . ? C8 H8A 0.9800 . ? C8 H8B 0.9800 . ? C8 H8C 0.9800 . ? C9 H9B 0.9800 . ? C9 H9C 0.9800 . ? C9 H9A 0.9800 . ? C10 H10A 0.9800 . ? C10 H10B 0.9800 . ? C10 H10C 0.9800 . ? C11 C15 1.422(10) . ? C11 C12 1.458(9) . ? C11 C16 1.490(9) . ? C12 C13 1.435(10) . ? C12 C17 1.495(10) . ? C13 C14 1.435(9) . ? C13 C18 1.507(9) . ? C14 C15 1.422(9) . ? C14 C19 1.498(10) . ? C15 C20 1.509(10) . ? C16 H16A 0.9800 . ? C16 H16B 0.9800 . ? C16 H16C 0.9800 . ? C17 H17A 0.9800 . ? C17 H17B 0.9800 . ? C17 H17C 0.9800 . ? C18 H18A 0.9800 . ? C18 H18B 0.9800 . ? C18 H18C 0.9800 . ? C19 H19A 0.9800 . ? C19 H19B 0.9800 . ? C19 H19C 0.9800 . ? C20 H20A 0.9800 . ? C20 H20B 0.9800 . ? C20 H20C 0.9800 . ? B9 H1 1.52(10) . ? B9 H9 0.71(4) . ? B9' H5 1.23(10) . ? B9' H9'A 1.03(4) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag B3 Ir1 B2 52.4(3) . . ? B3 Ir1 B4 52.2(3) . . ? B2 Ir1 B4 85.8(3) . . ? B3 Ir1 B5 90.6(3) . . ? B2 Ir1 B5 86.8(3) . . ? B4 Ir1 B5 49.1(3) . . ? B3 Ir1 B1 90.8(3) . . ? B2 Ir1 B1 49.2(3) . . ? B4 Ir1 B1 86.8(3) . . ? B5 Ir1 B1 52.1(3) . . ? B3 Ir1 C3 105.7(3) . . ? B2 Ir1 C3 140.7(3) . . ? B4 Ir1 C3 106.1(3) . . ? B5 Ir1 C3 129.6(2) . . ? B1 Ir1 C3 163.0(3) . . ? B3 Ir1 C2 137.0(3) . . ? B2 Ir1 C2 166.8(3) . . ? B4 Ir1 C2 107.5(3) . . ? B5 Ir1 C2 101.2(3) . . ? B1 Ir1 C2 128.9(3) . . ? C3 Ir1 C2 37.2(2) . . ? B3 Ir1 C4 102.6(3) . . ? B2 Ir1 C4 109.1(3) . . ? B4 Ir1 C4 134.1(3) . . ? B5 Ir1 C4 163.5(2) . . ? B1 Ir1 C4 136.1(3) . . ? C3 Ir1 C4 37.3(2) . . ? C2 Ir1 C4 62.3(2) . . ? B3 Ir1 C5 130.8(3) . . ? B2 Ir1 C5 104.8(3) . . ? B4 Ir1 C5 168.1(3) . . ? B5 Ir1 C5 135.3(3) . . ? B1 Ir1 C5 104.1(3) . . ? C3 Ir1 C5 62.3(2) . . ? C2 Ir1 C5 62.1(2) . . ? C4 Ir1 C5 37.6(3) . . ? B3 Ir1 C1 165.2(3) . . ? B2 Ir1 C1 131.0(3) . . ? B4 Ir1 C1 136.7(3) . . ? B5 Ir1 C1 103.7(3) . . ? B1 Ir1 C1 100.9(3) . . ? C3 Ir1 C1 62.2(2) . . ? C2 Ir1 C1 37.0(2) . . ? C4 Ir1 C1 62.7(2) . . ? C5 Ir1 C1 37.4(2) . . ? B7 Ir2 B8 52.3(3) . . ? B7 Ir2 B6 52.2(3) . . ? B8 Ir2 B6 85.6(3) . . ? B7 Ir2 B5 90.6(3) . . ? B8 Ir2 B5 86.7(3) . . ? B6 Ir2 B5 49.1(3) . . ? B7 Ir2 B1 90.6(3) . . ? B8 Ir2 B1 49.0(3) . . ? B6 Ir2 B1 86.8(3) . . ? B5 Ir2 B1 52.3(3) . . ? B7 Ir2 C12 152.9(3) . . ? B8 Ir2 C12 117.4(3) . . ? B6 Ir2 C12 153.3(3) . . ? B5 Ir2 C12 115.1(3) . . ? B1 Ir2 C12 98.2(3) . . ? B7 Ir2 C13 116.1(3) . . ? B8 Ir2 C13 102.4(3) . . ? B6 Ir2 C13 156.6(3) . . ? B5 Ir2 C13 151.9(3) . . ? B1 Ir2 C13 115.1(3) . . ? C12 Ir2 C13 37.2(2) . . ? B7 Ir2 C15 115.6(3) . . ? B8 Ir2 C15 155.7(3) . . ? B6 Ir2 C15 102.7(3) . . ? B5 Ir2 C15 116.1(3) . . ? B1 Ir2 C15 152.6(3) . . ? C12 Ir2 C15 62.2(2) . . ? C13 Ir2 C15 61.8(2) . . ? B7 Ir2 C14 99.2(3) . . ? B8 Ir2 C14 119.6(2) . . ? B6 Ir2 C14 120.0(3) . . ? B5 Ir2 C14 152.5(2) . . ? B1 Ir2 C14 151.8(2) . . ? C12 Ir2 C14 62.2(2) . . ? C13 Ir2 C14 37.1(2) . . ? C15 Ir2 C14 36.8(2) . . ? B7 Ir2 C11 151.8(3) . . ? B8 Ir2 C11 154.2(3) . . ? B6 Ir2 C11 117.0(3) . . ? B5 Ir2 C11 98.7(3) . . ? B1 Ir2 C11 116.2(3) . . ? C12 Ir2 C11 37.8(2) . . ? C13 Ir2 C11 62.1(2) . . ? C15 Ir2 C11 36.7(2) . . ? C14 Ir2 C11 61.7(2) . . ? B8 B1 B2 67.0(4) . . ? B8 B1 B5 106.4(5) . . ? B2 B1 B5 106.3(5) . . ? B8 B1 B9 81.5(12) . . ? B2 B1 B9 61.9(12) . . ? B5 B1 B9 162.6(12) . . ? B8 B1 Ir2 65.0(4) . . ? B2 B1 Ir2 124.4(4) . . ? B5 B1 Ir2 63.8(3) . . ? B9 B1 Ir2 132.9(12) . . ? B8 B1 Ir1 124.2(4) . . ? B2 B1 Ir1 64.7(3) . . ? B5 B1 Ir1 63.9(3) . . ? B9 B1 Ir1 98.8(12) . . ? Ir2 B1 Ir1 127.0(3) . . ? B8 B1 H1 111(5) . . ? B2 B1 H1 109(5) . . ? B5 B1 H1 136(5) . . ? B9 B1 H1 49(5) . . ? Ir2 B1 H1 113(5) . . ? Ir1 B1 H1 109(5) . . ? B1 B2 B3 111.2(5) . . ? B1 B2 B9 64.0(13) . . ? B3 B2 B9 160.7(12) . . ? B1 B2 B8 56.2(4) . . ? B3 B2 B8 116.0(5) . . ? B9 B2 B8 77.8(13) . . ? B1 B2 Ir1 66.0(3) . . ? B3 B2 Ir1 61.7(3) . . ? B9 B2 Ir1 100.8(12) . . ? B8 B2 Ir1 116.0(4) . . ? B1 B2 H2 123(5) . . ? B3 B2 H2 120(5) . . ? B9 B2 H2 59(5) . . ? B8 B2 H2 114(5) . . ? Ir1 B2 H2 119(5) . . ? B1 B2 H23 132(3) . . ? B3 B2 H23 42(3) . . ? B9 B2 H23 155(3) . . ? B8 B2 H23 96(3) . . ? Ir1 B2 H23 103(3) . . ? H2 B2 H23 103(6) . . ? B4 B3 B2 103.6(5) . . ? B4 B3 Ir1 66.1(3) . . ? B2 B3 Ir1 66.0(3) . . ? B4 B3 H23 121(4) . . ? B2 B3 H23 45(3) . . ? Ir1 B3 H23 111(3) . . ? B4 B3 H3 123(4) . . ? B2 B3 H3 132(4) . . ? Ir1 B3 H3 122(3) . . ? H23 B3 H3 108(5) . . ? B4 B3 H34 43(3) . . ? B2 B3 H34 116(3) . . ? Ir1 B3 H34 108(3) . . ? H23 B3 H34 99(4) . . ? H3 B3 H34 106(5) . . ? B5 B4 B3 111.2(5) . . ? B5 B4 B6 56.5(4) . . ? B3 B4 B6 116.0(5) . . ? B5 B4 Ir1 66.0(3) . . ? B3 B4 Ir1 61.7(3) . . ? B6 B4 Ir1 116.3(4) . . ? B5 B4 H34 129(3) . . ? B3 B4 H34 51(3) . . ? B6 B4 H34 87(3) . . ? Ir1 B4 H34 112(3) . . ? B5 B4 H4 124(4) . . ? B3 B4 H4 120(4) . . ? B6 B4 H4 113(4) . . ? Ir1 B4 H4 121(4) . . ? H34 B4 H4 101(5) . . ? B9' B5 B6 64.0(16) . . ? B9' B5 B4 86.9(16) . . ? B6 B5 B4 66.8(4) . . ? B9' B5 B1 159.4(15) . . ? B6 B5 B1 106.6(5) . . ? B4 B5 B1 106.6(5) . . ? B9' B5 Ir2 95.8(15) . . ? B6 B5 Ir2 65.2(3) . . ? B4 B5 Ir2 124.5(4) . . ? B1 B5 Ir2 63.8(3) . . ? B9' B5 Ir1 136.6(15) . . ? B6 B5 Ir1 124.1(5) . . ? B4 B5 Ir1 64.9(4) . . ? B1 B5 Ir1 64.0(3) . . ? Ir2 B5 Ir1 127.1(3) . . ? B9' B5 H5 44(5) . . ? B6 B5 H5 107(5) . . ? B4 B5 H5 113(4) . . ? B1 B5 H5 135(5) . . ? Ir2 B5 H5 106(5) . . ? Ir1 B5 H5 116(5) . . ? B5 B6 B7 110.7(5) . . ? B5 B6 B9' 57.0(15) . . ? B7 B6 B9' 153.2(14) . . ? B5 B6 B4 56.7(4) . . ? B7 B6 B4 116.3(5) . . ? B9' B6 B4 78.6(15) . . ? B5 B6 Ir2 65.7(3) . . ? B7 B6 Ir2 61.3(3) . . ? B9' B6 Ir2 92.5(14) . . ? B4 B6 Ir2 116.2(4) . . ? B5 B6 H6 124(5) . . ? B7 B6 H6 121(5) . . ? B9' B6 H6 67(5) . . ? B4 B6 H6 111(5) . . ? Ir2 B6 H6 122(5) . . ? B5 B6 H67 134(4) . . ? B7 B6 H67 45(4) . . ? B9' B6 H67 161(4) . . ? B4 B6 H67 96(4) . . ? Ir2 B6 H67 106(4) . . ? H6 B6 H67 100(6) . . ? B8 B7 B6 103.8(5) . . ? B8 B7 Ir2 66.2(3) . . ? B6 B7 Ir2 66.5(3) . . ? B8 B7 H67 120(4) . . ? B6 B7 H67 41(4) . . ? Ir2 B7 H67 107(4) . . ? B8 B7 H7 127(3) . . ? B6 B7 H7 129(4) . . ? Ir2 B7 H7 126(3) . . ? H67 B7 H7 105(5) . . ? B8 B7 H78 42(3) . . ? B6 B7 H78 112(3) . . ? Ir2 B7 H78 107(3) . . ? H67 B7 H78 99(5) . . ? H7 B7 H78 110(5) . . ? B1 B8 B7 111.2(5) . . ? B1 B8 B2 56.8(4) . . ? B7 B8 B2 116.2(5) . . ? B1 B8 Ir2 66.0(3) . . ? B7 B8 Ir2 61.5(3) . . ? B2 B8 Ir2 116.5(4) . . ? B1 B8 H78 125(3) . . ? B7 B8 H78 50(4) . . ? B2 B8 H78 85(4) . . ? Ir2 B8 H78 110(4) . . ? B1 B8 H8 119(4) . . ? B7 B8 H8 127(4) . . ? B2 B8 H8 106(5) . . ? Ir2 B8 H8 125(4) . . ? H78 B8 H8 108(5) . . ? C2 C1 C5 107.6(6) . . ? C2 C1 C6 126.6(6) . . ? C5 C1 C6 125.8(6) . . ? C2 C1 Ir1 71.1(3) . . ? C5 C1 Ir1 71.1(4) . . ? C6 C1 Ir1 125.3(5) . . ? C1 C2 C3 108.7(6) . . ? C1 C2 C7 125.9(6) . . ? C3 C2 C7 125.3(6) . . ? C1 C2 Ir1 71.9(3) . . ? C3 C2 Ir1 71.3(3) . . ? C7 C2 Ir1 125.3(5) . . ? C2 C3 C4 108.5(6) . . ? C2 C3 C8 125.7(6) . . ? C4 C3 C8 125.8(6) . . ? C2 C3 Ir1 71.5(4) . . ? C4 C3 Ir1 71.6(4) . . ? C8 C3 Ir1 123.8(5) . . ? C3 C4 C5 107.2(6) . . ? C3 C4 C9 126.8(6) . . ? C5 C4 C9 125.9(6) . . ? C3 C4 Ir1 71.1(4) . . ? C5 C4 Ir1 71.3(4) . . ? C9 C4 Ir1 124.7(4) . . ? C1 C5 C4 108.0(6) . . ? C1 C5 C10 126.4(7) . . ? C4 C5 C10 125.5(7) . . ? C1 C5 Ir1 71.4(4) . . ? C4 C5 Ir1 71.1(4) . . ? C10 C5 Ir1 124.1(5) . . ? C1 C6 H6A 109.5 . . ? C1 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? C1 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? C2 C7 H7A 109.5 . . ? C2 C7 H7B 109.5 . . ? H7A C7 H7B 109.5 . . ? C2 C7 H7C 109.5 . . ? H7A C7 H7C 109.5 . . ? H7B C7 H7C 109.5 . . ? C3 C8 H8A 109.5 . . ? C3 C8 H8B 109.5 . . ? H8A C8 H8B 109.5 . . ? C3 C8 H8C 109.5 . . ? H8A C8 H8C 109.5 . . ? H8B C8 H8C 109.5 . . ? C4 C9 H9B 109.5 . . ? C4 C9 H9C 109.5 . . ? H9B C9 H9C 109.5 . . ? C4 C9 H9A 109.5 . . ? H9B C9 H9A 109.5 . . ? H9C C9 H9A 109.5 . . ? C5 C10 H10A 109.5 . . ? C5 C10 H10B 109.5 . . ? H10A C10 H10B 109.5 . . ? C5 C10 H10C 109.5 . . ? H10A C10 H10C 109.5 . . ? H10B C10 H10C 109.5 . . ? C15 C11 C12 107.5(6) . . ? C15 C11 C16 127.5(7) . . ? C12 C11 C16 124.9(7) . . ? C15 C11 Ir2 71.2(4) . . ? C12 C11 Ir2 70.3(4) . . ? C16 C11 Ir2 126.6(5) . . ? C13 C12 C11 107.3(6) . . ? C13 C12 C17 126.4(7) . . ? C11 C12 C17 126.0(7) . . ? C13 C12 Ir2 71.7(4) . . ? C11 C12 Ir2 71.9(3) . . ? C17 C12 Ir2 126.6(5) . . ? C12 C13 C14 108.2(6) . . ? C12 C13 C18 125.1(7) . . ? C14 C13 C18 126.7(6) . . ? C12 C13 Ir2 71.0(4) . . ? C14 C13 Ir2 71.6(4) . . ? C18 C13 Ir2 124.3(5) . . ? C15 C14 C13 108.0(6) . . ? C15 C14 C19 127.5(7) . . ? C13 C14 C19 124.5(6) . . ? C15 C14 Ir2 71.5(4) . . ? C13 C14 Ir2 71.3(4) . . ? C19 C14 Ir2 125.3(5) . . ? C14 C15 C11 109.1(6) . . ? C14 C15 C20 127.2(7) . . ? C11 C15 C20 123.6(6) . . ? C14 C15 Ir2 71.7(4) . . ? C11 C15 Ir2 72.1(4) . . ? C20 C15 Ir2 126.0(5) . . ? C11 C16 H16A 109.5 . . ? C11 C16 H16B 109.5 . . ? H16A C16 H16B 109.5 . . ? C11 C16 H16C 109.5 . . ? H16A C16 H16C 109.5 . . ? H16B C16 H16C 109.5 . . ? C12 C17 H17A 109.5 . . ? C12 C17 H17B 109.5 . . ? H17A C17 H17B 109.5 . . ? C12 C17 H17C 109.5 . . ? H17A C17 H17C 109.5 . . ? H17B C17 H17C 109.5 . . ? C13 C18 H18A 109.5 . . ? C13 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 . . ? C13 C18 H18C 109.5 . . ? H18A C18 H18C 109.5 . . ? H18B C18 H18C 109.5 . . ? C14 C19 H19A 109.5 . . ? C14 C19 H19B 109.5 . . ? H19A C19 H19B 109.5 . . ? C14 C19 H19C 109.5 . . ? H19A C19 H19C 109.5 . . ? H19B C19 H19C 109.5 . . ? C15 C20 H20A 109.5 . . ? C15 C20 H20B 109.5 . . ? H20A C20 H20B 109.5 . . ? C15 C20 H20C 109.5 . . ? H20A C20 H20C 109.5 . . ? H20B C20 H20C 109.5 . . ? B2 B9 B1 54.1(11) . . ? B2 B9 H1 88(4) . . ? B1 B9 H1 35(4) . . ? B2 B9 H9 118(4) . . ? B1 B9 H9 126(4) . . ? H1 B9 H9 121(6) . . ? B5 B9' B6 59.0(14) . . ? B5 B9' H5 42(5) . . ? B6 B9' H5 100(5) . . ? B5 B9' H9'A 124(4) . . ? B6 B9' H9'A 102(3) . . ? H5 B9' H9'A 128(6) . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 2.116 _refine_diff_density_min -1.984 _refine_diff_density_rms 0.187 _chemical_compound_source synthesized data_bcn135a _database_code_depnum_ccdc_archive 'CCDC 662577' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C20 H42 B8 Ir2' _chemical_formula_sum 'C20 H42 B8 Ir2' _chemical_formula_weight 753.42 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' B B 0.0013 0.0007 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ir Ir -1.4442 7.9887 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'F d d 2' _symmetry_space_group_name_Hall 'F 2 -2d' _symmetry_int_tables_number 43 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/4, -y+1/4, z+1/4' '-x+1/4, y+1/4, z+1/4' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' 'x+1/4, -y+3/4, z+3/4' '-x+1/4, y+3/4, z+3/4' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' 'x+3/4, -y+1/4, z+3/4' '-x+3/4, y+1/4, z+3/4' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' 'x+3/4, -y+3/4, z+1/4' '-x+3/4, y+3/4, z+1/4' _cell_length_a 40.5755(5) _cell_length_b 8.32060(10) _cell_length_c 15.3233(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 5173.34(11) _cell_formula_units_Z 8 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 7932 _cell_measurement_theta_min 4.02 _cell_measurement_theta_max 35.07 _exptl_crystal_description parallelepiped _exptl_crystal_colour 'clear yellow' _exptl_crystal_size_max 0.24 _exptl_crystal_size_mid 0.12 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.935 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2848 _exptl_absorpt_coefficient_mu 10.285 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.1933 _exptl_absorpt_correction_T_max 0.5126 _exptl_absorpt_process_details ; Blessing, R. H. (1995) Acta Cryst. A51, 33-38. Sheldrick, G. M. (2004) SADABS, University of G\"ottingen, Germany. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type 'Siemens KFFMO2K-90' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART APEX CCD area detector' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean 8.33 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 43338 _diffrn_reflns_av_R_equivalents 0.0319 _diffrn_reflns_av_sigmaI/netI 0.0176 _diffrn_reflns_limit_h_min -56 _diffrn_reflns_limit_h_max 56 _diffrn_reflns_limit_k_min -11 _diffrn_reflns_limit_k_max 11 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 2.01 _diffrn_reflns_theta_max 30.00 _reflns_number_total 3780 _reflns_number_gt 3662 _reflns_threshold_expression >2sigma(I) _publ_section_references ; Bruker-Nonius AXS. (2004). APEX2 and SAINT. Bruker-Nonius AXS, Madison, Wisconsin, USA. CCDC. (2005). enCIFer. The Cambridge Crystallographic Data Centre, Cambridge, UK. Sheldrick, G. M. (2004). SADABS. University of G\"ottingen, Germany. Sheldrick, G. M. (2001). XCIF, XL, and XS. Bruker-Nonius AXS, Madison, Wisconsin, USA. Sheldrick, G. M. (2003). XPREP. Bruker-Nonius AXS, Madison, Wisconsin, USA. ; _computing_data_collection 'APEX2 (Bruker, 2004)' _computing_cell_refinement 'APEX2/SAINT (Bruker, 2004)' _computing_data_reduction 'SAINT/XPREP (Bruker, 2004; Sheldrick, 2003)' _computing_structure_solution 'XS (Sheldrick, 2001)' _computing_structure_refinement 'XL (Sheldrick, 2001)' _computing_molecular_graphics 'XP (Sheldrick, 1998)' _computing_publication_material 'XCIF (Sheldrick, 2001)/enCIFer (CCDC, 2005)' _refine_special_details ; The pentamethylcyclopentadiene ligand is severely disordered. A second orientation of the Cp core was modeled. Even after this modeling, thermal ellipsoids for these atoms are distorted to suggest rotation of this ligand. The principal orientation was modeled at 0.578(10) site occupancy and the second orientation of the Cp* group was modeled at 0.424(10) site occupancy. During refinement, a third set of methyl positions was observed, but could not be modeled successfully, due to the large thermal motion of the first and second orientations. All non-hydrogen atoms were refined with parameters for anisotropic thermal motion. The indicated motion of the carbon atoms necessitated tight restraints on the thermal parameters (ISOR in SHELXTL/XL). These restraints account for 120 of the 122 restraints in the model. There is an additional restraint for the Flack test, and a final restraint for the SUMP command used to refine the two site occupancies of the Cp*. Hydrogen atoms were placed at calculated geometries on the methyl carbons and allowed to ride on the position of the parent atom. Hydrogen thermal parameters were set to 1.5\\times the equivalent isotropic U of the parent atom. No hydrogens could be located for the boron cage. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0311P)^2^+70.7419P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.02(3) _refine_ls_number_reflns 3780 _refine_ls_number_parameters 188 _refine_ls_number_restraints 122 _refine_ls_R_factor_all 0.0286 _refine_ls_R_factor_gt 0.0273 _refine_ls_wR_factor_ref 0.0692 _refine_ls_wR_factor_gt 0.0680 _refine_ls_goodness_of_fit_ref 1.089 _refine_ls_restrained_S_all 1.084 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ir1 Ir 0.043965(5) 0.39763(3) 0.13021(2) 0.03753(6) Uani 1 1 d . . . B1 B -0.01005(16) 0.3988(10) 0.1171(5) 0.0432(17) Uani 1 1 d . . . B2 B 0.0074(4) 0.290(2) 0.2069(9) 0.091(4) Uani 1 1 d . . . B3 B 0.0422(3) 0.4097(17) 0.2673(7) 0.073(3) Uani 1 1 d . A . B4 B 0.0408(3) 0.6095(13) 0.2038(6) 0.064(3) Uani 1 1 d . . . C1 C 0.05849(15) 0.3495(7) -0.0128(4) 0.0301(19) Uani 0.578(10) 1 d PGU A 1 C2 C 0.05703(15) 0.1984(7) 0.0292(4) 0.035(2) Uani 0.578(10) 1 d PGU A 1 C3 C 0.08008(18) 0.1992(8) 0.0983(4) 0.045(2) Uani 0.578(10) 1 d PGU A 1 C4 C 0.0958(2) 0.3508(9) 0.0991(5) 0.058(3) Uani 0.578(10) 1 d PGU A 1 C5 C 0.0824(2) 0.4437(8) 0.0305(5) 0.064(4) Uani 0.578(10) 1 d PGU A 1 C6 C 0.0382(3) 0.4010(11) -0.0898(6) 0.074(5) Uani 0.578(10) 1 d PGU A 1 H6A H 0.0300 0.5105 -0.0803 0.111 Uiso 0.578(10) 1 calc PR A 1 H6B H 0.0194 0.3278 -0.0967 0.111 Uiso 0.578(10) 1 calc PR A 1 H6C H 0.0518 0.3983 -0.1426 0.111 Uiso 0.578(10) 1 calc PR A 1 C7 C 0.0349(3) 0.0610(11) 0.0045(6) 0.066(4) Uani 0.578(10) 1 d PGU A 1 H7A H 0.0476 -0.0391 0.0043 0.098 Uiso 0.578(10) 1 calc PR A 1 H7B H 0.0257 0.0800 -0.0537 0.098 Uiso 0.578(10) 1 calc PR A 1 H7C H 0.0169 0.0527 0.0470 0.098 Uiso 0.578(10) 1 calc PR A 1 C8 C 0.0867(3) 0.0628(13) 0.1601(7) 0.125(10) Uani 0.578(10) 1 d PGU A 1 H8A H 0.0690 0.0571 0.2035 0.187 Uiso 0.578(10) 1 calc PR A 1 H8B H 0.1078 0.0807 0.1897 0.187 Uiso 0.578(10) 1 calc PR A 1 H8C H 0.0876 -0.0383 0.1274 0.187 Uiso 0.578(10) 1 calc PR A 1 C9 C 0.1220(3) 0.4039(14) 0.1620(8) 0.159(14) Uani 0.578(10) 1 d PGU A 1 H9A H 0.1395 0.3226 0.1643 0.239 Uiso 0.578(10) 1 calc PR A 1 H9B H 0.1124 0.4171 0.2202 0.239 Uiso 0.578(10) 1 calc PR A 1 H9C H 0.1313 0.5064 0.1424 0.239 Uiso 0.578(10) 1 calc PR A 1 C10 C 0.0920(3) 0.6129(13) 0.0075(8) 0.124(9) Uani 0.578(10) 1 d PGU A 1 H10A H 0.1079 0.6112 -0.0407 0.185 Uiso 0.578(10) 1 calc PR A 1 H10B H 0.1021 0.6647 0.0584 0.185 Uiso 0.578(10) 1 calc PR A 1 H10C H 0.0724 0.6731 -0.0102 0.185 Uiso 0.578(10) 1 calc PR A 1 C1' C 0.09419(17) 0.2909(8) 0.1155(4) 0.023(2) Uani 0.424(10) 1 d PGU A 2 C2' C 0.07013(19) 0.2008(9) 0.0699(5) 0.049(4) Uani 0.424(10) 1 d PGU A 2 C3' C 0.05731(19) 0.2987(9) 0.0025(5) 0.039(3) Uani 0.424(10) 1 d PGU A 2 C4' C 0.07343(18) 0.4492(8) 0.0064(5) 0.030(2) Uani 0.424(10) 1 d PGU A 2 C5' C 0.09623(16) 0.4444(8) 0.0763(4) 0.029(2) Uani 0.424(10) 1 d PGU A 2 C6' C 0.1141(3) 0.2335(13) 0.1922(7) 0.083(7) Uani 0.424(10) 1 d PGU A 2 H6'1 H 0.1036 0.1383 0.2176 0.125 Uiso 0.424(10) 1 calc PR A 2 H6'2 H 0.1152 0.3188 0.2362 0.125 Uiso 0.424(10) 1 calc PR A 2 H6'3 H 0.1364 0.2061 0.1728 0.125 Uiso 0.424(10) 1 calc PR A 2 C7' C 0.0600(3) 0.0309(13) 0.0897(8) 0.079(6) Uani 0.424(10) 1 d PGU A 2 H7'1 H 0.0616 -0.0342 0.0366 0.118 Uiso 0.424(10) 1 calc PR A 2 H7'2 H 0.0372 0.0299 0.1108 0.118 Uiso 0.424(10) 1 calc PR A 2 H7'3 H 0.0745 -0.0139 0.1346 0.118 Uiso 0.424(10) 1 calc PR A 2 C8' C 0.0311(3) 0.2510(15) -0.0620(8) 0.085(7) Uani 0.424(10) 1 d PGU A 2 H8'1 H 0.0351 0.1408 -0.0819 0.128 Uiso 0.424(10) 1 calc PR A 2 H8'2 H 0.0317 0.3241 -0.1121 0.128 Uiso 0.424(10) 1 calc PR A 2 H8'3 H 0.0094 0.2570 -0.0340 0.128 Uiso 0.424(10) 1 calc PR A 2 C9' C 0.0674(3) 0.5897(13) -0.0532(8) 0.065(5) Uani 0.424(10) 1 d PGU A 2 H9'1 H 0.0437 0.6038 -0.0617 0.097 Uiso 0.424(10) 1 calc PR A 2 H9'2 H 0.0780 0.5697 -0.1097 0.097 Uiso 0.424(10) 1 calc PR A 2 H9'3 H 0.0767 0.6873 -0.0271 0.097 Uiso 0.424(10) 1 calc PR A 2 C10' C 0.1187(3) 0.5789(12) 0.1039(7) 0.070(6) Uani 0.424(10) 1 d PGU A 2 H10D H 0.1089 0.6364 0.1533 0.105 Uiso 0.424(10) 1 calc PR A 2 H10E H 0.1218 0.6535 0.0551 0.105 Uiso 0.424(10) 1 calc PR A 2 H10F H 0.1401 0.5346 0.1214 0.105 Uiso 0.424(10) 1 calc PR A 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ir1 0.02568(8) 0.05452(11) 0.03240(9) -0.00143(10) -0.00318(8) 0.01518(8) B1 0.029(3) 0.070(4) 0.031(4) 0.007(3) 0.006(2) 0.018(3) B2 0.096(10) 0.104(10) 0.073(7) 0.034(7) 0.011(7) -0.025(8) B3 0.060(6) 0.114(10) 0.046(5) -0.004(5) 0.002(4) 0.033(6) B4 0.085(7) 0.067(6) 0.041(4) -0.010(4) -0.005(4) 0.019(5) C1 0.030(2) 0.030(2) 0.030(2) 0.0010(18) 0.0031(17) 0.0029(18) C2 0.036(3) 0.036(3) 0.034(2) -0.0022(18) 0.0011(18) 0.0016(18) C3 0.046(3) 0.045(3) 0.043(3) -0.0029(18) -0.0021(19) 0.0073(19) C4 0.056(4) 0.060(4) 0.058(4) -0.0031(19) -0.0009(19) -0.0002(19) C5 0.064(4) 0.064(4) 0.063(4) -0.003(2) 0.002(2) -0.002(2) C6 0.076(5) 0.075(5) 0.073(5) 0.001(2) 0.000(2) 0.003(2) C7 0.067(4) 0.064(4) 0.065(4) -0.002(2) 0.002(2) -0.003(2) C8 0.125(10) 0.125(10) 0.125(10) 0.000(2) 0.000(2) 0.002(2) C9 0.159(14) 0.160(14) 0.159(14) -0.001(2) 0.000(2) 0.000(2) C10 0.124(9) 0.123(9) 0.124(10) -0.001(2) 0.002(2) -0.001(2) C1' 0.021(3) 0.024(3) 0.025(3) 0.0069(18) 0.0014(17) 0.0048(18) C2' 0.048(4) 0.048(4) 0.051(4) -0.002(2) 0.001(2) 0.000(2) C3' 0.038(4) 0.040(4) 0.040(4) -0.0014(19) 0.0008(19) -0.0014(19) C4' 0.027(3) 0.032(3) 0.030(3) 0.0026(18) -0.0002(19) 0.0026(19) C5' 0.028(3) 0.029(3) 0.030(3) 0.0001(18) 0.0004(18) -0.0004(18) C6' 0.083(7) 0.084(7) 0.083(7) 0.001(2) 0.000(2) 0.002(2) C7' 0.079(7) 0.078(7) 0.080(7) 0.001(2) 0.002(2) -0.001(2) C8' 0.085(7) 0.086(7) 0.085(7) -0.002(2) 0.000(2) -0.001(2) C9' 0.064(5) 0.065(5) 0.065(5) 0.002(2) 0.001(2) 0.002(2) C10' 0.069(6) 0.070(6) 0.070(6) -0.002(2) 0.000(2) -0.003(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ir1 B2 2.092(12) . ? Ir1 B4 2.097(10) . ? Ir1 B3 2.104(11) . ? Ir1 C2' 2.159(8) . ? Ir1 C4 2.191(9) . ? Ir1 B1 2.191(7) 2_565 ? Ir1 C3' 2.191(8) . ? Ir1 B1 2.201(6) . ? Ir1 C5 2.218(8) . ? Ir1 C1' 2.234(7) . ? Ir1 C3 2.261(7) . ? Ir1 C4' 2.283(7) . ? B1 B2 1.793(15) . ? B1 B4 1.825(13) 2_565 ? B1 B1 1.871(17) 2_565 ? B1 Ir1 2.191(6) 2_565 ? B2 B3 1.96(2) . ? B2 B4 2.13(2) 2_565 ? B3 B4 1.927(18) . ? B4 B1 1.825(13) 2_565 ? B4 B2 2.13(2) 2_565 ? C1 C5 1.413(4) . ? C1 C2 1.413(4) . ? C1 C6 1.502(5) . ? C2 C3 1.413(4) . ? C2 C7 1.502(5) . ? C3 C4 1.413(4) . ? C3 C8 1.502(5) . ? C4 C5 1.413(4) . ? C4 C9 1.502(5) . ? C5 C10 1.502(5) . ? C6 H6A 0.9800 . ? C6 H6B 0.9800 . ? C6 H6C 0.9800 . ? C7 H7A 0.9800 . ? C7 H7B 0.9800 . ? C7 H7C 0.9800 . ? C8 H8A 0.9800 . ? C8 H8B 0.9800 . ? C8 H8C 0.9800 . ? C9 H9A 0.9800 . ? C9 H9B 0.9800 . ? C9 H9C 0.9800 . ? C10 H10A 0.9800 . ? C10 H10B 0.9800 . ? C10 H10C 0.9800 . ? C1' C5' 1.414(4) . ? C1' C2' 1.415(4) . ? C1' C6' 1.504(5) . ? C2' C3' 1.415(4) . ? C2' C7' 1.504(5) . ? C3' C4' 1.415(4) . ? C3' C8' 1.505(5) . ? C4' C5' 1.415(4) . ? C4' C9' 1.503(5) . ? C5' C10' 1.504(5) . ? C6' H6'1 0.9800 . ? C6' H6'2 0.9800 . ? C6' H6'3 0.9800 . ? C7' H7'1 0.9800 . ? C7' H7'2 0.9800 . ? C7' H7'3 0.9800 . ? C8' H8'1 0.9800 . ? C8' H8'2 0.9800 . ? C8' H8'3 0.9800 . ? C9' H9'1 0.9800 . ? C9' H9'2 0.9800 . ? C9' H9'3 0.9800 . ? C10' H10D 0.9800 . ? C10' H10E 0.9800 . ? C10' H10F 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag B2 Ir1 B4 90.8(6) . . ? B2 Ir1 B3 55.6(6) . . ? B4 Ir1 B3 54.6(5) . . ? B2 Ir1 C2' 105.3(5) . . ? B4 Ir1 C2' 153.9(4) . . ? B3 Ir1 C2' 118.7(4) . . ? B2 Ir1 C4 136.5(5) . . ? B4 Ir1 C4 108.9(4) . . ? B3 Ir1 C4 105.0(3) . . ? C2' Ir1 C4 45.6(3) . . ? B2 Ir1 B1 86.4(5) . 2_565 ? B4 Ir1 B1 50.3(4) . 2_565 ? B3 Ir1 B1 91.9(4) . 2_565 ? C2' Ir1 B1 148.8(3) . 2_565 ? C4 Ir1 B1 136.1(3) . 2_565 ? B2 Ir1 C3' 121.1(5) . . ? B4 Ir1 C3' 144.2(4) . . ? B3 Ir1 C3' 156.6(4) . . ? C2' Ir1 C3' 37.95(15) . . ? C4 Ir1 C3' 60.1(3) . . ? B1 Ir1 C3' 111.3(3) 2_565 . ? B2 Ir1 B1 49.3(5) . . ? B4 Ir1 B1 89.1(4) . . ? B3 Ir1 B1 93.2(3) . . ? C2' Ir1 B1 117.0(3) . . ? C4 Ir1 B1 159.5(3) . . ? B1 Ir1 B1 50.4(4) 2_565 . ? C3' Ir1 B1 99.6(3) . . ? B2 Ir1 C5 163.6(5) . . ? B4 Ir1 C5 105.5(4) . . ? B3 Ir1 C5 134.7(4) . . ? C2' Ir1 C5 59.4(2) . . ? C4 Ir1 C5 37.39(15) . . ? B1 Ir1 C5 104.2(3) 2_565 . ? C3' Ir1 C5 43.6(3) . . ? B1 Ir1 C5 129.6(3) . . ? B2 Ir1 C1' 122.2(5) . . ? B4 Ir1 C1' 116.3(4) . . ? B3 Ir1 C1' 98.7(3) . . ? C2' Ir1 C1' 37.53(14) . . ? C4 Ir1 C1' 14.5(2) . . ? B1 Ir1 C1' 150.5(3) 2_565 . ? C3' Ir1 C1' 62.3(2) . . ? B1 Ir1 C1' 154.3(3) . . ? C5 Ir1 C1' 50.0(2) . . ? B2 Ir1 C3 105.6(5) . . ? B4 Ir1 C3 140.3(4) . . ? B3 Ir1 C3 105.8(3) . . ? C2' Ir1 C3 15.2(2) . . ? C4 Ir1 C3 36.98(14) . . ? B1 Ir1 C3 162.1(2) 2_565 . ? C3' Ir1 C3 51.1(2) . . ? B1 Ir1 C3 129.0(3) . . ? C5 Ir1 C3 61.4(2) . . ? C1' Ir1 C3 25.4(2) . . ? B2 Ir1 C4' 156.7(5) . . ? B4 Ir1 C4' 108.7(4) . . ? B3 Ir1 C4' 147.0(4) . . ? C2' Ir1 C4' 62.0(2) . . ? C4 Ir1 C4' 49.5(2) . . ? B1 Ir1 C4' 96.2(3) 2_565 . ? C3' Ir1 C4' 36.79(14) . . ? B1 Ir1 C4' 116.4(2) . . ? C5 Ir1 C4' 13.2(2) . . ? C1' Ir1 C4' 60.9(2) . . ? C3 Ir1 C4' 67.6(2) . . ? B2 B1 B4 72.1(6) . 2_565 ? B2 B1 B1 106.3(6) . 2_565 ? B4 B1 B1 109.4(5) 2_565 2_565 ? B2 B1 Ir1 124.6(7) . 2_565 ? B4 B1 Ir1 62.2(4) 2_565 2_565 ? B1 B1 Ir1 65.1(4) 2_565 2_565 ? B2 B1 Ir1 62.2(5) . . ? B4 B1 Ir1 128.0(5) 2_565 . ? B1 B1 Ir1 64.5(4) 2_565 . ? Ir1 B1 Ir1 128.4(4) 2_565 . ? B1 B2 B3 113.0(9) . . ? B1 B2 Ir1 68.5(4) . . ? B3 B2 Ir1 62.5(5) . . ? B1 B2 B4 54.6(6) . 2_565 ? B3 B2 B4 118.3(10) . 2_565 ? Ir1 B2 B4 118.1(7) . 2_565 ? B4 B3 B2 100.3(7) . . ? B4 B3 Ir1 62.5(4) . . ? B2 B3 Ir1 61.9(5) . . ? B1 B4 B3 110.7(8) 2_565 . ? B1 B4 Ir1 67.5(4) 2_565 . ? B3 B4 Ir1 62.9(5) . . ? B1 B4 B2 53.2(5) 2_565 2_565 ? B3 B4 B2 110.7(8) . 2_565 ? Ir1 B4 B2 113.4(6) . 2_565 ? C5 C1 C2 108.0 . . ? C5 C1 C6 126.0 . . ? C2 C1 C6 126.0 . . ? C5 C1 Ir1 68.5(3) . . ? C2 C1 Ir1 73.2(2) . . ? C6 C1 Ir1 123.9(2) . . ? C3 C2 C1 108.0 . . ? C3 C2 C7 126.0 . . ? C1 C2 C7 126.0 . . ? C3 C2 Ir1 69.4(2) . . ? C1 C2 Ir1 71.2(2) . . ? C7 C2 Ir1 124.9(3) . . ? C2 C3 C4 108.0 . . ? C2 C3 C8 126.0 . . ? C4 C3 C8 126.0 . . ? C2 C3 Ir1 74.7(3) . . ? C4 C3 Ir1 68.8(3) . . ? C8 C3 Ir1 122.1(2) . . ? C5 C4 C3 108.0 . . ? C5 C4 C9 126.0 . . ? C3 C4 C9 126.0 . . ? C5 C4 Ir1 72.4(3) . . ? C3 C4 Ir1 74.2(3) . . ? C9 C4 Ir1 119.3(2) . . ? C1 C5 C4 108.0 . . ? C1 C5 C10 126.0 . . ? C4 C5 C10 126.0 . . ? C1 C5 Ir1 75.1(3) . . ? C4 C5 Ir1 70.3(3) . . ? C10 C5 Ir1 120.4(2) . . ? C5' C1' C2' 108.0 . . ? C5' C1' C6' 126.0 . . ? C2' C1' C6' 126.0 . . ? C5' C1' Ir1 74.8(3) . . ? C2' C1' Ir1 68.4(3) . . ? C6' C1' Ir1 122.5(2) . . ? C3' C2' C1' 108.0 . . ? C3' C2' C7' 126.0 . . ? C1' C2' C7' 126.0 . . ? C3' C2' Ir1 72.2(3) . . ? C1' C2' Ir1 74.1(3) . . ? C7' C2' Ir1 119.5(3) . . ? C2' C3' C4' 108.0 . . ? C2' C3' C8' 126.0 . . ? C4' C3' C8' 126.0 . . ? C2' C3' Ir1 69.8(3) . . ? C4' C3' Ir1 75.1(3) . . ? C8' C3' Ir1 120.7(2) . . ? C3' C4' C5' 108.0 . . ? C3' C4' C9' 126.0 . . ? C5' C4' C9' 126.0 . . ? C3' C4' Ir1 68.1(3) . . ? C5' C4' Ir1 73.1(3) . . ? C9' C4' Ir1 124.5(2) . . ? C1' C5' C4' 108.0 . . ? C1' C5' C10' 126.0 . . ? C4' C5' C10' 126.0 . . ? C1' C5' Ir1 69.0(2) . . ? C4' C5' Ir1 71.1(3) . . ? C10' C5' Ir1 125.5(3) . . ? C1' C6' H6'1 109.5 . . ? C1' C6' H6'2 109.5 . . ? H6'1 C6' H6'2 109.5 . . ? C1' C6' H6'3 109.5 . . ? H6'1 C6' H6'3 109.5 . . ? H6'2 C6' H6'3 109.5 . . ? C2' C7' H7'1 109.5 . . ? C2' C7' H7'2 109.5 . . ? H7'1 C7' H7'2 109.5 . . ? C2' C7' H7'3 109.5 . . ? H7'1 C7' H7'3 109.5 . . ? H7'2 C7' H7'3 109.5 . . ? C3' C8' H8'1 109.5 . . ? C3' C8' H8'2 109.5 . . ? H8'1 C8' H8'2 109.5 . . ? C3' C8' H8'3 109.5 . . ? H8'1 C8' H8'3 109.5 . . ? H8'2 C8' H8'3 109.5 . . ? C4' C9' H9'1 109.5 . . ? C4' C9' H9'2 109.5 . . ? H9'1 C9' H9'2 109.5 . . ? C4' C9' H9'3 109.5 . . ? H9'1 C9' H9'3 109.5 . . ? H9'2 C9' H9'3 109.5 . . ? C5' C10' H10D 109.5 . . ? C5' C10' H10E 109.5 . . ? H10D C10' H10E 109.5 . . ? C5' C10' H10F 109.5 . . ? H10D C10' H10F 109.5 . . ? H10E C10' H10F 109.5 . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 30.00 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 1.768 _refine_diff_density_min -1.867 _refine_diff_density_rms 0.138 data_bcn131tw _database_code_depnum_ccdc_archive 'CCDC 662578' _audit_creation_method SHELXL-97 _chemical_name_systematic ? _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C10 H24 B5 Ir' _chemical_formula_sum 'C10 H24 B5 Ir' _chemical_formula_weight 390.54 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' B B 0.0013 0.0007 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ir Ir -1.4442 7.9887 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/n' _symmetry_space_group_name_Hall '-P 2yn' _symmetry_int_tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 7.1589(8) _cell_length_b 12.9831(18) _cell_length_c 15.790(2) _cell_angle_alpha 90.00 _cell_angle_beta 99.888(10) _cell_angle_gamma 90.00 _cell_volume 1445.8(3) _cell_formula_units_Z 4 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 3821 _cell_measurement_theta_min 2.6164 _cell_measurement_theta_max 30.4255 _exptl_crystal_description needle _exptl_crystal_colour 'clear colourless' _exptl_crystal_size_max 0.51 _exptl_crystal_size_mid 0.08 _exptl_crystal_size_min 0.07 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.794 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 744 _exptl_absorpt_coefficient_mu 9.203 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.08 _exptl_absorpt_correction_T_max 0.53 _exptl_absorpt_process_details ;Blessing, R. H. (1995) Acta Cryst. A51, 33-38. Sheldrick, G. M. (2004) TWINABS, University of Goettingen, Germany ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type 'Siemens KFFMO2K-90' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART APEX CCD diffractometer' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean 8.33 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 12979 _diffrn_reflns_av_R_equivalents ? _diffrn_reflns_av_sigmaI/netI 0.0267 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 17 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 2.04 _diffrn_reflns_theta_max 28.28 _reflns_number_total 4739 _reflns_number_gt 4597 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX2 (Bruker, 2004)' _computing_cell_refinement 'APEX2/SAINT (Bruker, 2004)' _computing_data_reduction 'SAINT/XPREP (Bruker, 2004; Sheldrick, 2003)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'XP (Sheldrick, 1998)' _computing_publication_material 'XCIF (Sheldrick, 2001)' _refine_special_details ; This crystal is a three-component non-merohedral twin. The scale factors for the second and third components are 0.323(3) and 0.312(2), respectively. The structure was solved using data from the first twin component only. After refining to near completeness, the second and third components were added. The second domain is rotated from first domain by 179.9 degrees about reciprocal axis 0.003 -0.483 1.000 and real axis 0.368 -0.695 1.000 Twin law to convert hkl from first to -0.998 -0.002 0.004 this domain (SHELXL TWIN matrix): -0.268 -0.498 -0.723 0.549 -1.040 0.496 The third domain is rotated from first domain by 120.9 degrees about reciprocal axis 1.000 -0.006 -0.369 and real axis 1.000 0.000 -0.002 Twin law to convert hkl from first to 0.999 -0.002 -0.003 this domain (SHELXL TWIN matrix): 0.253 -0.507 0.712 -0.568 -1.033 -0.519 The molecule is an Ir sandwich complex with Cp* on one side and a B~5~H~9~ ring on the other side. The crystal structure consists of columns of sandwich complexes parallel to the b-axis. It appears that there is substitutional disorder between the boron ring and the Cp*; parameters for thermal motion were inconsistent for all B and C atoms. Boron atoms were refined to a common set of anisotropic thermal parameters using B1 and the EADP command of XL (Sheldrick, 2001). Carbon atoms were also held to common thermal parameters, one set, C1, for the ring atoms and another, C6, for the methyl carbons. In addition the carbon thermal parameters were restrained with the ISOR command. Hydrogens were added to the methyl groups at ideal geometries and allowed to ride on the position of the parent carbon. Hydrogen thermal parameters were set to 1.5\\times the equivalent isotropic U of the parent atom. Hydrogens could not be located for the boron ring. A persistent 4-electron peak appeared near the Cp* face. It can be shifted by symmetry to a position near the boron face. Interatomic distances were consistent with Ir-C or Ir-B distances. This peak was modeled as iridium; its site occupancy was chosen to yield the most appropriate value for the thermal parameter. This iridium is being interpreted as a small degree of disorder that shifts the column of sandwich complexes 1/2 unit. The total coverage for the data collection was 99.2% of unique reflections for single-component data and 75.6% using the 3-component twin data. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0739P)^2^+115.1734P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 4739 _refine_ls_number_parameters 84 _refine_ls_number_restraints 12 _refine_ls_R_factor_all 0.0803 _refine_ls_R_factor_gt 0.0783 _refine_ls_wR_factor_ref 0.2131 _refine_ls_wR_factor_gt 0.2119 _refine_ls_goodness_of_fit_ref 1.245 _refine_ls_restrained_S_all 1.244 _refine_ls_shift/su_max 0.007 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ir1 Ir 0.12253(10) 0.23217(7) 0.63799(6) 0.00958(19) Uani 0.98 1 d P . . B1 B -0.059(4) 0.164(2) 0.7197(19) 0.022(3) Uani 1 1 d . . . B2 B -0.103(4) 0.115(2) 0.6161(19) 0.022(3) Uani 1 1 d . . . B3 B -0.130(3) 0.219(3) 0.5418(18) 0.022(3) Uani 1 1 d . . . B4 B -0.100(4) 0.344(2) 0.603(2) 0.022(3) Uani 1 1 d . . . B5 B -0.067(4) 0.303(2) 0.715(2) 0.022(3) Uani 1 1 d . . . C1 C 0.409(3) 0.1844(16) 0.7055(14) 0.0089(19) Uani 1 1 d U . . C2 C 0.383(3) 0.1420(17) 0.6205(14) 0.0089(19) Uani 1 1 d . . . C3 C 0.356(3) 0.2213(18) 0.5586(13) 0.0089(19) Uani 1 1 d . . . C4 C 0.375(3) 0.3167(16) 0.6084(13) 0.0089(19) Uani 1 1 d . . . C5 C 0.410(3) 0.2940(16) 0.6977(13) 0.0089(19) Uani 1 1 d . . . C6 C 0.454(3) 0.1202(17) 0.7882(13) 0.013(2) Uani 1 1 d U . . H6A H 0.4019 0.0507 0.7774 0.020 Uiso 1 1 calc R . . H6B H 0.3964 0.1529 0.8335 0.020 Uiso 1 1 calc R . . H6C H 0.5915 0.1161 0.8067 0.020 Uiso 1 1 calc R . . C7 C 0.385(3) 0.0267(17) 0.5976(13) 0.013(2) Uani 1 1 d . . . H7A H 0.4793 0.0142 0.5607 0.020 Uiso 1 1 calc R . . H7B H 0.2591 0.0065 0.5671 0.020 Uiso 1 1 calc R . . H7C H 0.4164 -0.0139 0.6504 0.020 Uiso 1 1 calc R . . C8 C 0.333(3) 0.2146(17) 0.4631(13) 0.013(2) Uani 1 1 d . . . H8A H 0.4414 0.1783 0.4471 0.020 Uiso 1 1 calc R . . H8B H 0.3254 0.2842 0.4387 0.020 Uiso 1 1 calc R . . H8C H 0.2158 0.1770 0.4408 0.020 Uiso 1 1 calc R . . C9 C 0.373(3) 0.4247(16) 0.5740(14) 0.013(2) Uani 1 1 d . . . H9A H 0.2668 0.4322 0.5260 0.020 Uiso 1 1 calc R . . H9B H 0.4922 0.4388 0.5539 0.020 Uiso 1 1 calc R . . H9C H 0.3569 0.4735 0.6196 0.020 Uiso 1 1 calc R . . C10 C 0.453(3) 0.3659(17) 0.7714(14) 0.013(2) Uani 1 1 d . . . H10A H 0.5901 0.3673 0.7919 0.020 Uiso 1 1 calc R . . H10B H 0.3882 0.3427 0.8178 0.020 Uiso 1 1 calc R . . H10C H 0.4090 0.4352 0.7531 0.020 Uiso 1 1 calc R . . Ir2 Ir 0.641(4) 0.234(3) 0.6172(19) 0.015(7) Uiso 0.02 1 d P . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ir1 0.0026(3) 0.0164(4) 0.0094(3) 0.0033(4) -0.0001(3) 0.0012(3) B1 0.012(5) 0.029(7) 0.023(6) -0.004(6) 0.001(5) 0.004(6) B2 0.012(5) 0.029(7) 0.023(6) -0.004(6) 0.001(5) 0.004(6) B3 0.012(5) 0.029(7) 0.023(6) -0.004(6) 0.001(5) 0.004(6) B4 0.012(5) 0.029(7) 0.023(6) -0.004(6) 0.001(5) 0.004(6) B5 0.012(5) 0.029(7) 0.023(6) -0.004(6) 0.001(5) 0.004(6) C1 0.005(2) 0.011(3) 0.011(3) 0.000(2) 0.003(2) -0.002(2) C2 0.005(2) 0.011(3) 0.011(3) 0.000(2) 0.003(2) -0.002(2) C3 0.005(2) 0.011(3) 0.011(3) 0.000(2) 0.003(2) -0.002(2) C4 0.005(2) 0.011(3) 0.011(3) 0.000(2) 0.003(2) -0.002(2) C5 0.005(2) 0.011(3) 0.011(3) 0.000(2) 0.003(2) -0.002(2) C6 0.012(3) 0.016(3) 0.012(3) 0.001(2) 0.004(2) -0.001(2) C7 0.012(3) 0.016(3) 0.012(3) 0.001(2) 0.004(2) -0.001(2) C8 0.012(3) 0.016(3) 0.012(3) 0.001(2) 0.004(2) -0.001(2) C9 0.012(3) 0.016(3) 0.012(3) 0.001(2) 0.004(2) -0.001(2) C10 0.012(3) 0.016(3) 0.012(3) 0.001(2) 0.004(2) -0.001(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ir1 B4 2.16(3) . ? Ir1 B3 2.16(3) . ? Ir1 B1 2.17(3) . ? Ir1 B5 2.17(3) . ? Ir1 B2 2.20(3) . ? Ir1 C1 2.23(2) . ? Ir1 C4 2.233(19) . ? Ir1 C3 2.258(18) . ? Ir1 C5 2.26(2) . ? Ir1 C2 2.26(2) . ? B1 B2 1.74(4) . ? B1 B5 1.80(4) . ? B1 Ir2 2.62(4) 1_455 ? B2 B3 1.78(5) . ? B2 Ir2 2.40(5) 1_455 ? B3 B4 1.88(4) . ? B3 Ir2 2.19(4) 1_455 ? B4 B5 1.83(4) . ? B4 Ir2 2.39(5) 1_455 ? B5 Ir2 2.53(5) 1_455 ? C1 C5 1.43(3) . ? C1 C2 1.43(3) . ? C1 C6 1.54(3) . ? C1 Ir2 2.43(3) . ? C2 C3 1.41(3) . ? C2 C7 1.54(3) . ? C2 Ir2 2.21(4) . ? C3 C4 1.46(3) . ? C3 C8 1.49(3) . ? C3 Ir2 2.10(4) . ? C4 C5 1.42(3) . ? C4 C9 1.50(3) . ? C4 Ir2 2.17(4) . ? C5 C10 1.48(3) . ? C5 Ir2 2.38(4) . ? C6 H6A 0.9800 . ? C6 H6B 0.9800 . ? C6 H6C 0.9800 . ? C7 H7A 0.9800 . ? C7 H7B 0.9800 . ? C7 H7C 0.9800 . ? C8 H8A 0.9800 . ? C8 H8B 0.9800 . ? C8 H8C 0.9800 . ? C9 H9A 0.9800 . ? C9 H9B 0.9800 . ? C9 H9C 0.9800 . ? C10 H10A 0.9800 . ? C10 H10B 0.9800 . ? C10 H10C 0.9800 . ? #Ir2 B3 2.19(4) 1_655 ? #Ir2 B4 2.39(5) 1_655 ? #Ir2 B2 2.40(5) 1_655 ? #Ir2 B5 2.53(5) 1_655 ? #Ir2 B1 2.62(4) 1_655 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag B4 Ir1 B3 51.6(11) . . ? B4 Ir1 B1 86.3(11) . . ? B3 Ir1 B1 82.7(11) . . ? B4 Ir1 B5 49.9(12) . . ? B3 Ir1 B5 84.1(10) . . ? B1 Ir1 B5 48.9(10) . . ? B4 Ir1 B2 86.4(10) . . ? B3 Ir1 B2 48.2(12) . . ? B1 Ir1 B2 46.8(10) . . ? B5 Ir1 B2 82.4(11) . . ? B4 Ir1 C1 152.6(9) . . ? B3 Ir1 C1 154.8(10) . . ? B1 Ir1 C1 101.5(9) . . ? B5 Ir1 C1 117.6(9) . . ? B2 Ir1 C1 118.2(10) . . ? B4 Ir1 C4 101.7(9) . . ? B3 Ir1 C4 120.1(9) . . ? B1 Ir1 C4 156.0(9) . . ? B5 Ir1 C4 121.1(9) . . ? B2 Ir1 C4 154.8(9) . . ? C1 Ir1 C4 61.6(7) . . ? B4 Ir1 C3 118.8(9) . . ? B3 Ir1 C3 102.4(8) . . ? B1 Ir1 C3 151.8(10) . . ? B5 Ir1 C3 158.3(10) . . ? B2 Ir1 C3 117.5(9) . . ? C1 Ir1 C3 62.7(7) . . ? C4 Ir1 C3 38.0(7) . . ? B4 Ir1 C5 116.5(10) . . ? B3 Ir1 C5 156.1(10) . . ? B1 Ir1 C5 119.5(9) . . ? B5 Ir1 C5 103.3(9) . . ? B2 Ir1 C5 154.4(10) . . ? C1 Ir1 C5 37.1(7) . . ? C4 Ir1 C5 36.8(7) . . ? C3 Ir1 C5 63.0(7) . . ? B4 Ir1 C2 155.0(10) . . ? B3 Ir1 C2 118.9(9) . . ? B1 Ir1 C2 117.0(9) . . ? B5 Ir1 C2 153.5(10) . . ? B2 Ir1 C2 102.7(9) . . ? C1 Ir1 C2 37.2(7) . . ? C4 Ir1 C2 60.9(7) . . ? C3 Ir1 C2 36.4(8) . . ? C5 Ir1 C2 61.5(8) . . ? B2 B1 B5 109(2) . . ? B2 B1 Ir1 67.5(15) . . ? B5 B1 Ir1 65.7(14) . . ? B2 B1 Ir2 63.1(16) . 1_455 ? B5 B1 Ir2 67.1(16) . 1_455 ? Ir1 B1 Ir2 90.2(13) . 1_455 ? B1 B2 B3 109(2) . . ? B1 B2 Ir1 65.6(15) . . ? B3 B2 Ir1 64.7(13) . . ? B1 B2 Ir2 76.7(16) . 1_455 ? B3 B2 Ir2 61.2(13) . 1_455 ? Ir1 B2 Ir2 95.5(15) . 1_455 ? B2 B3 B4 109.2(18) . . ? B2 B3 Ir1 67.1(13) . . ? B4 B3 Ir1 64.2(12) . . ? B2 B3 Ir2 73.5(16) . 1_455 ? B4 B3 Ir2 71.3(17) . 1_455 ? Ir1 B3 Ir2 103.0(14) . 1_455 ? B5 B4 B3 103.0(19) . . ? B5 B4 Ir1 65.5(13) . . ? B3 B4 Ir1 64.2(12) . . ? B5 B4 Ir2 72.6(15) . 1_455 ? B3 B4 Ir2 60.5(15) . 1_455 ? Ir1 B4 Ir2 97.0(14) . 1_455 ? B1 B5 B4 110(2) . . ? B1 B5 Ir1 65.4(13) . . ? B4 B5 Ir1 64.6(12) . . ? B1 B5 Ir2 72.1(16) . 1_455 ? B4 B5 Ir2 64.0(14) . 1_455 ? Ir1 B5 Ir2 92.4(13) . 1_455 ? C5 C1 C2 108(2) . . ? C5 C1 C6 128(2) . . ? C2 C1 C6 124(2) . . ? C5 C1 Ir1 72.4(12) . . ? C2 C1 Ir1 72.4(13) . . ? C6 C1 Ir1 126.6(14) . . ? C5 C1 Ir2 71.0(15) . . ? C2 C1 Ir2 63.7(15) . . ? C6 C1 Ir2 124.7(15) . . ? Ir1 C1 Ir2 108.4(11) . . ? C3 C2 C1 110.4(19) . . ? C3 C2 C7 123.6(18) . . ? C1 C2 C7 126(2) . . ? C3 C2 Ir2 66.8(13) . . ? C1 C2 Ir2 80.7(16) . . ? C7 C2 Ir2 118.7(17) . . ? C3 C2 Ir1 71.7(12) . . ? C1 C2 Ir1 70.4(12) . . ? C7 C2 Ir1 124.9(14) . . ? Ir2 C2 Ir1 115.8(14) . . ? C2 C3 C4 104.9(16) . . ? C2 C3 C8 129.5(19) . . ? C4 C3 C8 125.3(19) . . ? C2 C3 Ir2 75.1(15) . . ? C4 C3 Ir2 72.6(16) . . ? C8 C3 Ir2 112.4(15) . . ? C2 C3 Ir1 71.9(11) . . ? C4 C3 Ir1 70.1(10) . . ? C8 C3 Ir1 126.9(13) . . ? Ir2 C3 Ir1 120.5(12) . . ? C5 C4 C3 110.1(17) . . ? C5 C4 C9 122.8(18) . . ? C3 C4 C9 127.0(18) . . ? C5 C4 Ir2 80.3(14) . . ? C3 C4 Ir2 67.4(15) . . ? C9 C4 Ir2 116.3(16) . . ? C5 C4 Ir1 72.5(11) . . ? C3 C4 Ir1 71.9(11) . . ? C9 C4 Ir1 125.0(13) . . ? Ir2 C4 Ir1 118.4(14) . . ? C4 C5 C1 106.9(18) . . ? C4 C5 C10 128.8(19) . . ? C1 C5 C10 124(2) . . ? C4 C5 Ir1 70.6(11) . . ? C1 C5 Ir1 70.5(12) . . ? C10 C5 Ir1 127.1(14) . . ? C4 C5 Ir2 63.7(12) . . ? C1 C5 Ir2 74.5(15) . . ? C10 C5 Ir2 123.7(17) . . ? Ir1 C5 Ir2 109.1(13) . . ? C1 C6 H6A 109.5 . . ? C1 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? C1 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? C2 C7 H7A 109.5 . . ? C2 C7 H7B 109.5 . . ? H7A C7 H7B 109.5 . . ? C2 C7 H7C 109.5 . . ? H7A C7 H7C 109.5 . . ? H7B C7 H7C 109.5 . . ? C3 C8 H8A 109.5 . . ? C3 C8 H8B 109.5 . . ? H8A C8 H8B 109.5 . . ? C3 C8 H8C 109.5 . . ? H8A C8 H8C 109.5 . . ? H8B C8 H8C 109.5 . . ? C4 C9 H9A 109.5 . . ? C4 C9 H9B 109.5 . . ? H9A C9 H9B 109.5 . . ? C4 C9 H9C 109.5 . . ? H9A C9 H9C 109.5 . . ? H9B C9 H9C 109.5 . . ? C5 C10 H10A 109.5 . . ? C5 C10 H10B 109.5 . . ? H10A C10 H10B 109.5 . . ? C5 C10 H10C 109.5 . . ? H10A C10 H10C 109.5 . . ? H10B C10 H10C 109.5 . . ? C3 Ir2 C4 40.0(10) . . ? C3 Ir2 B3 121.1(17) . 1_655 ? C4 Ir2 B3 137.5(17) . 1_655 ? C3 Ir2 C2 38.2(10) . . ? C4 Ir2 C2 62.7(11) . . ? B3 Ir2 C2 132(2) 1_655 . ? C3 Ir2 C5 63.2(11) . . ? C4 Ir2 C5 35.9(9) . . ? B3 Ir2 C5 166(2) 1_655 . ? C2 Ir2 C5 60.3(10) . . ? C3 Ir2 B4 135.9(18) . 1_655 ? C4 Ir2 B4 113(2) . 1_655 ? B3 Ir2 B4 48.2(12) 1_655 1_655 ? C2 Ir2 B4 174.1(18) . 1_655 ? C5 Ir2 B4 118(2) . 1_655 ? C3 Ir2 B2 129(2) . 1_655 ? C4 Ir2 B2 169(2) . 1_655 ? B3 Ir2 B2 45.3(13) 1_655 1_655 ? C2 Ir2 B2 107(2) . 1_655 ? C5 Ir2 B2 144.7(16) . 1_655 ? B4 Ir2 B2 77.1(13) 1_655 1_655 ? C3 Ir2 C1 61.6(11) . . ? C4 Ir2 C1 59.3(10) . . ? B3 Ir2 C1 159(2) 1_655 . ? C2 Ir2 C1 35.6(8) . . ? C5 Ir2 C1 34.5(8) . . ? B4 Ir2 C1 146(2) 1_655 . ? B2 Ir2 C1 115.6(17) 1_655 . ? C3 Ir2 B5 159(2) . 1_655 ? C4 Ir2 B5 119(2) . 1_655 ? B3 Ir2 B5 75.3(13) 1_655 1_655 ? C2 Ir2 B5 141.4(15) . 1_655 ? C5 Ir2 B5 97.7(16) . 1_655 ? B4 Ir2 B5 43.4(12) 1_655 1_655 ? B2 Ir2 B5 71.3(13) 1_655 1_655 ? C1 Ir2 B5 108.4(14) . 1_655 ? C3 Ir2 B1 152(2) . 1_655 ? C4 Ir2 B1 145.8(17) . 1_655 ? B3 Ir2 B1 72.3(13) 1_655 1_655 ? C2 Ir2 B1 113.6(16) . 1_655 ? C5 Ir2 B1 110.7(13) . 1_655 ? B4 Ir2 B1 72.3(13) 1_655 1_655 ? B2 Ir2 B1 40.2(10) 1_655 1_655 ? C1 Ir2 B1 97.0(12) . 1_655 ? B5 Ir2 B1 40.7(10) 1_655 1_655 ? _diffrn_measured_fraction_theta_max 0.756 _diffrn_reflns_theta_full 28.28 _diffrn_measured_fraction_theta_full 0.756 _refine_diff_density_max 3.887 _refine_diff_density_min -4.740 _refine_diff_density_rms 0.466 _chemical_compound_source synthesized data_bcn129 _database_code_depnum_ccdc_archive 'CCDC 662579' _audit_creation_method SHELXL-97 _chemical_name_systematic ? _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C10 H28 B9 Ir' _chemical_formula_sum 'C10 H28 B9 Ir' _chemical_formula_weight 437.81 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' B B 0.0013 0.0007 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ir Ir -1.4442 7.9887 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/n' _symmetry_space_group_name_Hall '-P 2yn' _symmetry_int_tables_number 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 8.3313(1) _cell_length_b 16.0536(2) _cell_length_c 13.2029(2) _cell_angle_alpha 90.00 _cell_angle_beta 100.745(1) _cell_angle_gamma 90.00 _cell_volume 1734.89(4) _cell_formula_units_Z 4 _cell_measurement_temperature 200(2) _cell_measurement_reflns_used 8766 _cell_measurement_theta_min 2.54 _cell_measurement_theta_max 33.74 _exptl_crystal_description wedge _exptl_crystal_colour 'clear colorless' _exptl_crystal_size_max 0.31 _exptl_crystal_size_mid 0.31 _exptl_crystal_size_min 0.21 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.676 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 840 _exptl_absorpt_coefficient_mu 7.676 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.1356 _exptl_absorpt_correction_T_max 0.2009 _exptl_absorpt_process_details 'Blessing, R. H. (1995) Acta Cryst. A51, 33-38.' _exptl_special_details ; ? ; _diffrn_ambient_temperature 200(2) _diffrn_radiation_probe x-ray _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_source 'fine-focus sealed tube' _diffrn_source_type 'Siemens KFFMO2K-90' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART APEX CCD area detector' _diffrn_measurement_method '\f and \w scans' _diffrn_detector_area_resol_mean 8.33 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 26137 _diffrn_reflns_av_R_equivalents 0.0256 _diffrn_reflns_av_sigmaI/netI 0.0192 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -24 _diffrn_reflns_limit_k_max 21 _diffrn_reflns_limit_l_min -20 _diffrn_reflns_limit_l_max 18 _diffrn_reflns_theta_min 2.02 _diffrn_reflns_theta_max 33.14 _reflns_number_total 6500 _reflns_number_gt 5776 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX2 (Bruker, 2004)' _computing_cell_refinement 'APEX2/SAINT (Bruker, 2004)' _computing_data_reduction 'SAINT/XPREP (Bruker, 2004; Sheldrick, 2003)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'XP (Sheldrick, 1998)' _computing_publication_material 'XCIF (Sheldrick, 2001)' _refine_special_details ; The crystals were observed to undergo an irreversible phase change at 100K. The actual transition temperature was not determined. Data were collected at 200K. Data collection on this strongly-diffracting crystal was to 0.65\%A. The highest shell, 0.70\%A to 0.65\%A is incomplete, with 92.9% coverage of the unique data. Below this shell there is 99.6% coverage. Including this shell, the total coverage is 98.2%. The methyl hydrogens were placed at optimized positions and allowed to ride on the position of the parent carbon. Thermal parameters for these hydrogens were set to 1.5\\times the equivalent isotropic U of the parent atom. Hydrogens attached to boron were located by difference Fourier map and freely refined in subsequent cycles of least-squares refinement. A parameter for isotropic thermal motion was refined for each of these hydrogens. All non-hydrogen atoms were refined with parameters for anisotropic thermal motion. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0231P)^2^+0.3939P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 6500 _refine_ls_number_parameters 238 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0229 _refine_ls_R_factor_gt 0.0187 _refine_ls_wR_factor_ref 0.0470 _refine_ls_wR_factor_gt 0.0458 _refine_ls_goodness_of_fit_ref 1.116 _refine_ls_restrained_S_all 1.116 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ir1 Ir 0.444571(8) 0.331675(4) 0.710326(5) 0.02279(3) Uani 1 1 d . . . B1 B 0.6942(3) 0.49970(15) 0.79230(17) 0.0333(4) Uani 1 1 d . . . H1 H 0.740(3) 0.5518(17) 0.753(2) 0.042(7) Uiso 1 1 d . . . B2 B 0.5422(3) 0.50384(14) 0.87024(17) 0.0317(4) Uani 1 1 d . . . H2 H 0.464(2) 0.5530(12) 0.8924(15) 0.014(4) Uiso 1 1 d . . . H23 H 0.618(3) 0.4682(17) 0.958(2) 0.054(8) Uiso 1 1 d . . . B3 B 0.7522(3) 0.48546(15) 0.92233(17) 0.0338(5) Uani 1 1 d . . . H3 H 0.820(3) 0.5234(17) 0.983(2) 0.050(8) Uiso 1 1 d . . . H34 H 0.804(3) 0.4128(17) 0.928(2) 0.053(8) Uiso 1 1 d . . . B4 B 0.8167(3) 0.41155(18) 0.83791(19) 0.0356(5) Uani 1 1 d . . . H4 H 0.943(3) 0.4069(16) 0.837(2) 0.049(8) Uiso 1 1 d . . . B5 B 0.6683(3) 0.40161(16) 0.72510(17) 0.0310(4) Uani 1 1 d . . . H5 H 0.730(4) 0.3999(17) 0.656(2) 0.054(8) Uiso 1 1 d . . . B6 B 0.4899(3) 0.46165(13) 0.74552(16) 0.0266(4) Uani 1 1 d . . . H6 H 0.411(4) 0.4988(18) 0.695(2) 0.054(9) Uiso 1 1 d . . . B7 B 0.3961(3) 0.40689(14) 0.83725(17) 0.0293(4) Uani 1 1 d . . . H7 H 0.277(3) 0.4175(14) 0.8504(18) 0.033(6) Uiso 1 1 d . . . H78 H 0.476(3) 0.3675(17) 0.918(2) 0.042(7) Uiso 1 1 d . . . B8 B 0.4972(3) 0.30429(16) 0.86681(17) 0.0335(5) Uani 1 1 d . . . H8 H 0.451(3) 0.2489(16) 0.9053(19) 0.039(7) Uiso 1 1 d . . . H89 H 0.662(4) 0.297(2) 0.909(3) 0.072(10) Uiso 1 1 d . . . B9 B 0.6806(3) 0.31030(17) 0.8053(2) 0.0359(5) Uani 1 1 d . . . H9 H 0.756(3) 0.2529(16) 0.798(2) 0.045(7) Uiso 1 1 d . . . C1 C 0.3534(2) 0.20980(11) 0.64111(15) 0.0276(4) Uani 1 1 d . . . C2 C 0.2156(2) 0.26209(13) 0.64805(18) 0.0350(4) Uani 1 1 d . . . C3 C 0.2236(3) 0.33357(12) 0.5844(2) 0.0439(6) Uani 1 1 d . . . C4 C 0.3646(4) 0.32619(13) 0.53845(17) 0.0415(6) Uani 1 1 d . . . C5 C 0.4461(3) 0.25004(13) 0.57353(15) 0.0320(4) Uani 1 1 d . . . C6 C 0.3884(3) 0.12657(14) 0.69165(19) 0.0393(5) Uani 1 1 d . . . H6A H 0.5068 0.1188 0.7110 0.059 Uiso 1 1 calc R . . H6B H 0.3419 0.0826 0.6435 0.059 Uiso 1 1 calc R . . H6C H 0.3392 0.1239 0.7535 0.059 Uiso 1 1 calc R . . C7 C 0.0824(3) 0.24206(18) 0.7071(3) 0.0594(8) Uani 1 1 d . . . H7A H -0.0076 0.2139 0.6615 0.089 Uiso 1 1 calc R . . H7B H 0.0423 0.2937 0.7332 0.089 Uiso 1 1 calc R . . H7C H 0.1258 0.2055 0.7652 0.089 Uiso 1 1 calc R . . C8 C 0.0995(4) 0.40251(18) 0.5653(3) 0.0793(12) Uani 1 1 d . . . H8A H 0.0446 0.4074 0.6245 0.119 Uiso 1 1 calc R . . H8B H 0.0186 0.3900 0.5032 0.119 Uiso 1 1 calc R . . H8C H 0.1544 0.4551 0.5557 0.119 Uiso 1 1 calc R . . C9 C 0.4176(5) 0.38544(18) 0.46282(19) 0.0754(11) Uani 1 1 d . . . H9A H 0.3801 0.3648 0.3925 0.113 Uiso 1 1 calc R . . H9B H 0.5371 0.3896 0.4767 0.113 Uiso 1 1 calc R . . H9C H 0.3703 0.4405 0.4700 0.113 Uiso 1 1 calc R . . C10 C 0.5990(3) 0.21724(17) 0.5430(2) 0.0508(7) Uani 1 1 d . . . H10A H 0.5710 0.1887 0.4764 0.076 Uiso 1 1 calc R . . H10B H 0.6524 0.1779 0.5954 0.076 Uiso 1 1 calc R . . H10C H 0.6732 0.2636 0.5373 0.076 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ir1 0.02179(4) 0.02175(4) 0.02260(4) -0.00107(2) -0.00166(2) 0.00121(2) B1 0.0332(11) 0.0363(11) 0.0275(9) 0.0017(8) -0.0019(8) -0.0122(9) B2 0.0344(11) 0.0276(10) 0.0304(9) -0.0032(8) -0.0012(8) -0.0013(9) B3 0.0336(12) 0.0367(12) 0.0273(9) -0.0014(8) -0.0044(8) -0.0063(9) B4 0.0240(11) 0.0491(14) 0.0308(10) -0.0044(9) -0.0028(8) -0.0001(9) B5 0.0252(10) 0.0418(12) 0.0250(9) -0.0031(8) 0.0023(8) -0.0036(8) B6 0.0274(10) 0.0231(9) 0.0261(9) 0.0023(7) -0.0032(8) -0.0005(7) B7 0.0277(10) 0.0294(10) 0.0307(10) -0.0052(8) 0.0052(8) -0.0018(8) B8 0.0426(14) 0.0295(11) 0.0260(9) 0.0043(8) 0.0000(9) -0.0031(9) B9 0.0328(12) 0.0342(11) 0.0354(11) -0.0038(9) -0.0078(9) 0.0096(9) C1 0.0243(9) 0.0235(8) 0.0331(9) -0.0052(6) 0.0001(7) -0.0012(6) C2 0.0209(9) 0.0338(10) 0.0463(11) -0.0122(8) -0.0039(8) 0.0001(7) C3 0.0386(12) 0.0308(11) 0.0495(13) -0.0099(8) -0.0251(11) 0.0074(8) C4 0.0618(17) 0.0312(11) 0.0240(9) -0.0017(7) -0.0112(10) -0.0081(9) C5 0.0366(10) 0.0319(10) 0.0269(8) -0.0080(7) 0.0041(8) -0.0049(8) C6 0.0393(12) 0.0287(10) 0.0482(12) 0.0008(8) 0.0035(10) -0.0019(9) C7 0.0275(11) 0.0602(16) 0.093(2) -0.0320(15) 0.0182(13) -0.0078(11) C8 0.066(2) 0.0420(15) 0.103(3) -0.0153(15) -0.0522(19) 0.0225(13) C9 0.143(3) 0.0471(15) 0.0266(11) 0.0055(10) -0.0082(15) -0.0306(18) C10 0.0521(15) 0.0534(15) 0.0534(14) -0.0238(12) 0.0267(12) -0.0139(12) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ir1 B8 2.078(2) . ? Ir1 B9 2.153(2) . ? Ir1 B5 2.153(2) . ? Ir1 B6 2.156(2) . ? Ir1 B7 2.164(2) . ? Ir1 C2 2.231(2) . ? Ir1 C1 2.2319(18) . ? Ir1 C5 2.2335(19) . ? Ir1 C3 2.239(2) . ? Ir1 C4 2.244(2) . ? B1 B3 1.710(3) . ? B1 B2 1.775(3) . ? B1 B4 1.783(4) . ? B1 B5 1.800(3) . ? B1 B6 1.805(3) . ? B1 H1 1.09(3) . ? B2 B6 1.758(3) . ? B2 B3 1.781(3) . ? B2 B7 1.974(3) . ? B2 H2 1.098(19) . ? B2 H23 1.34(3) . ? B3 B4 1.778(4) . ? B3 H23 1.32(3) . ? B3 H3 1.08(3) . ? B3 H34 1.24(3) . ? B4 B5 1.757(3) . ? B4 B9 1.983(4) . ? B4 H34 1.22(3) . ? B4 H4 1.06(3) . ? B5 B9 1.800(4) . ? B5 B6 1.833(3) . ? B5 H5 1.13(3) . ? B6 B7 1.790(3) . ? B6 H6 1.04(3) . ? B7 B8 1.858(3) . ? B7 H7 1.05(2) . ? B7 H78 1.31(3) . ? B8 B9 1.861(4) . ? B8 H78 1.25(3) . ? B8 H8 1.13(3) . ? B8 H89 1.39(3) . ? B9 H89 1.42(3) . ? B9 H9 1.13(3) . ? C1 C5 1.438(3) . ? C1 C2 1.439(3) . ? C1 C6 1.498(3) . ? C2 C3 1.431(3) . ? C2 C7 1.505(3) . ? C3 C4 1.424(4) . ? C3 C8 1.503(3) . ? C4 C5 1.433(3) . ? C4 C9 1.504(4) . ? C5 C10 1.501(3) . ? C6 H6A 0.9800 . ? C6 H6B 0.9800 . ? C6 H6C 0.9800 . ? C7 H7A 0.9800 . ? C7 H7B 0.9800 . ? C7 H7C 0.9800 . ? C8 H8A 0.9800 . ? C8 H8B 0.9800 . ? C8 H8C 0.9800 . ? C9 H9A 0.9800 . ? C9 H9B 0.9800 . ? C9 H9C 0.9800 . ? C10 H10A 0.9800 . ? C10 H10B 0.9800 . ? C10 H10C 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag B8 Ir1 B9 52.17(11) . . ? B8 Ir1 B5 90.10(9) . . ? B9 Ir1 B5 49.41(10) . . ? B8 Ir1 B6 89.68(9) . . ? B9 Ir1 B6 85.66(9) . . ? B5 Ir1 B6 50.34(9) . . ? B8 Ir1 B7 51.92(10) . . ? B9 Ir1 B7 85.41(9) . . ? B5 Ir1 B7 85.54(9) . . ? B6 Ir1 B7 48.96(8) . . ? B8 Ir1 C2 105.54(10) . . ? B9 Ir1 C2 139.46(9) . . ? B5 Ir1 C2 163.86(9) . . ? B6 Ir1 C2 131.87(8) . . ? B7 Ir1 C2 107.13(8) . . ? B8 Ir1 C1 102.37(9) . . ? B9 Ir1 C1 107.63(9) . . ? B5 Ir1 C1 135.80(8) . . ? B6 Ir1 C1 165.78(8) . . ? B7 Ir1 C1 135.06(8) . . ? C2 Ir1 C1 37.61(7) . . ? B8 Ir1 C5 130.39(9) . . ? B9 Ir1 C5 103.60(9) . . ? B5 Ir1 C5 104.11(8) . . ? B6 Ir1 C5 135.65(8) . . ? B7 Ir1 C5 169.67(8) . . ? C2 Ir1 C5 62.72(8) . . ? C1 Ir1 C5 37.57(7) . . ? B8 Ir1 C3 137.15(12) . . ? B9 Ir1 C3 165.86(10) . . ? B5 Ir1 C3 129.65(10) . . ? B6 Ir1 C3 103.51(7) . . ? B7 Ir1 C3 108.73(9) . . ? C2 Ir1 C3 37.35(9) . . ? C1 Ir1 C3 62.48(7) . . ? C5 Ir1 C3 62.32(9) . . ? B8 Ir1 C4 164.79(9) . . ? B9 Ir1 C4 130.50(11) . . ? B5 Ir1 C4 101.59(9) . . ? B6 Ir1 C4 105.25(8) . . ? B7 Ir1 C4 137.88(9) . . ? C2 Ir1 C4 62.32(10) . . ? C1 Ir1 C4 62.44(7) . . ? C5 Ir1 C4 37.33(8) . . ? C3 Ir1 C4 37.03(11) . . ? B3 B1 B2 61.44(14) . . ? B3 B1 B4 61.17(14) . . ? B2 B1 B4 105.04(16) . . ? B3 B1 B5 111.31(17) . . ? B2 B1 B5 106.59(16) . . ? B4 B1 B5 58.72(13) . . ? B3 B1 B6 111.75(16) . . ? B2 B1 B6 58.83(12) . . ? B4 B1 B6 106.93(16) . . ? B5 B1 B6 61.11(13) . . ? B3 B1 H1 121.3(14) . . ? B2 B1 H1 126.6(13) . . ? B4 B1 H1 122.8(14) . . ? B5 B1 H1 117.4(14) . . ? B6 B1 H1 119.3(14) . . ? B6 B2 B1 61.43(13) . . ? B6 B2 B3 110.60(17) . . ? B1 B2 B3 57.47(13) . . ? B6 B2 B7 56.96(12) . . ? B1 B2 B7 108.65(15) . . ? B3 B2 B7 118.40(16) . . ? B6 B2 H2 118.1(10) . . ? B1 B2 H2 134.8(10) . . ? B3 B2 H2 127.3(10) . . ? B7 B2 H2 104.7(10) . . ? B6 B2 H23 129.8(12) . . ? B1 B2 H23 102.2(12) . . ? B3 B2 H23 47.4(12) . . ? B7 B2 H23 91.6(12) . . ? H2 B2 H23 106.5(15) . . ? B1 B3 B4 61.44(15) . . ? B1 B3 B2 61.09(14) . . ? B4 B3 B2 104.98(16) . . ? B1 B3 H23 106.8(13) . . ? B4 B3 H23 117.3(12) . . ? B2 B3 H23 48.6(13) . . ? B1 B3 H3 132.7(15) . . ? B4 B3 H3 131.5(15) . . ? B2 B3 H3 122.4(15) . . ? H23 B3 H3 102.5(19) . . ? B1 B3 H34 102.6(13) . . ? B4 B3 H34 43.1(13) . . ? B2 B3 H34 119.1(14) . . ? H23 B3 H34 95.1(17) . . ? H3 B3 H34 111(2) . . ? B5 B4 B3 110.16(18) . . ? B5 B4 B1 61.14(14) . . ? B3 B4 B1 57.39(13) . . ? B5 B4 B9 57.16(13) . . ? B3 B4 B9 117.09(18) . . ? B1 B4 B9 107.98(16) . . ? B5 B4 H34 131.1(14) . . ? B3 B4 H34 44.3(13) . . ? B1 B4 H34 99.8(13) . . ? B9 B4 H34 94.4(14) . . ? B5 B4 H4 122.0(15) . . ? B3 B4 H4 118.1(15) . . ? B1 B4 H4 124.1(15) . . ? B9 B4 H4 118.1(15) . . ? H34 B4 H4 106(2) . . ? B4 B5 B9 67.75(15) . . ? B4 B5 B1 60.14(14) . . ? B9 B5 B1 115.71(16) . . ? B4 B5 B6 106.83(16) . . ? B9 B5 B6 107.48(16) . . ? B1 B5 B6 59.57(13) . . ? B4 B5 Ir1 125.79(15) . . ? B9 B5 Ir1 65.29(11) . . ? B1 B5 Ir1 121.52(14) . . ? B6 B5 Ir1 64.90(10) . . ? B4 B5 H5 109.4(15) . . ? B9 B5 H5 118.1(14) . . ? B1 B5 H5 112.9(15) . . ? B6 B5 H5 129.5(15) . . ? Ir1 B5 H5 115.6(15) . . ? B2 B6 B7 67.59(13) . . ? B2 B6 B1 59.75(13) . . ? B7 B6 B1 115.94(15) . . ? B2 B6 B5 105.91(15) . . ? B7 B6 B5 108.03(15) . . ? B1 B6 B5 59.33(13) . . ? B2 B6 Ir1 125.27(13) . . ? B7 B6 Ir1 65.75(10) . . ? B1 B6 Ir1 121.16(14) . . ? B5 B6 Ir1 64.76(10) . . ? B2 B6 H6 113.6(16) . . ? B7 B6 H6 114.4(16) . . ? B1 B6 H6 118.2(17) . . ? B5 B6 H6 130.0(15) . . ? Ir1 B6 H6 110.6(17) . . ? B6 B7 B8 109.84(16) . . ? B6 B7 B2 55.45(12) . . ? B8 B7 B2 114.57(16) . . ? B6 B7 Ir1 65.29(10) . . ? B8 B7 Ir1 61.65(10) . . ? B2 B7 Ir1 114.48(13) . . ? B6 B7 H7 125.1(13) . . ? B8 B7 H7 120.9(13) . . ? B2 B7 H7 113.4(12) . . ? Ir1 B7 H7 122.4(13) . . ? B6 B7 H78 124.5(12) . . ? B8 B7 H78 42.0(12) . . ? B2 B7 H78 90.2(12) . . ? Ir1 B7 H78 102.6(12) . . ? H7 B7 H78 107.4(17) . . ? B7 B8 B9 103.84(16) . . ? B7 B8 Ir1 66.43(10) . . ? B9 B8 Ir1 66.01(11) . . ? B7 B8 H78 44.6(12) . . ? B9 B8 H78 113.7(12) . . ? Ir1 B8 H78 109.7(13) . . ? B7 B8 H8 128.1(13) . . ? B9 B8 H8 127.8(13) . . ? Ir1 B8 H8 126.1(13) . . ? H78 B8 H8 107.8(18) . . ? B7 B8 H89 122.3(15) . . ? B9 B8 H89 49.1(14) . . ? Ir1 B8 H89 115.1(14) . . ? H78 B8 H89 94.7(19) . . ? H8 B8 H89 98.5(19) . . ? B5 B9 B8 109.73(17) . . ? B5 B9 B4 55.09(13) . . ? B8 B9 B4 115.52(17) . . ? B5 B9 Ir1 65.30(11) . . ? B8 B9 Ir1 61.82(11) . . ? B4 B9 Ir1 114.78(14) . . ? B5 B9 H89 133.1(14) . . ? B8 B9 H89 47.7(13) . . ? B4 B9 H89 94.2(14) . . ? Ir1 B9 H89 109.5(14) . . ? B5 B9 H9 125.6(14) . . ? B8 B9 H9 120.8(14) . . ? B4 B9 H9 112.5(14) . . ? Ir1 B9 H9 122.7(14) . . ? H89 B9 H9 97(2) . . ? C5 C1 C2 107.75(18) . . ? C5 C1 C6 126.51(18) . . ? C2 C1 C6 125.68(19) . . ? C5 C1 Ir1 71.28(10) . . ? C2 C1 Ir1 71.17(11) . . ? C6 C1 Ir1 125.21(15) . . ? C3 C2 C1 107.8(2) . . ? C3 C2 C7 126.5(2) . . ? C1 C2 C7 125.6(2) . . ? C3 C2 Ir1 71.61(12) . . ? C1 C2 Ir1 71.21(11) . . ? C7 C2 Ir1 125.32(17) . . ? C4 C3 C2 108.43(19) . . ? C4 C3 C8 125.9(3) . . ? C2 C3 C8 125.7(3) . . ? C4 C3 Ir1 71.70(13) . . ? C2 C3 Ir1 71.04(12) . . ? C8 C3 Ir1 125.40(17) . . ? C3 C4 C5 108.2(2) . . ? C3 C4 C9 126.7(3) . . ? C5 C4 C9 125.0(3) . . ? C3 C4 Ir1 71.27(13) . . ? C5 C4 Ir1 70.92(11) . . ? C9 C4 Ir1 125.30(17) . . ? C4 C5 C1 107.9(2) . . ? C4 C5 C10 126.0(2) . . ? C1 C5 C10 126.1(2) . . ? C4 C5 Ir1 71.75(12) . . ? C1 C5 Ir1 71.16(10) . . ? C10 C5 Ir1 123.78(15) . . ? C1 C6 H6A 109.5 . . ? C1 C6 H6B 109.5 . . ? H6A C6 H6B 109.5 . . ? C1 C6 H6C 109.5 . . ? H6A C6 H6C 109.5 . . ? H6B C6 H6C 109.5 . . ? C2 C7 H7A 109.5 . . ? C2 C7 H7B 109.5 . . ? H7A C7 H7B 109.5 . . ? C2 C7 H7C 109.5 . . ? H7A C7 H7C 109.5 . . ? H7B C7 H7C 109.5 . . ? C3 C8 H8A 109.5 . . ? C3 C8 H8B 109.5 . . ? H8A C8 H8B 109.5 . . ? C3 C8 H8C 109.5 . . ? H8A C8 H8C 109.5 . . ? H8B C8 H8C 109.5 . . ? C4 C9 H9A 109.5 . . ? C4 C9 H9B 109.5 . . ? H9A C9 H9B 109.5 . . ? C4 C9 H9C 109.5 . . ? H9A C9 H9C 109.5 . . ? H9B C9 H9C 109.5 . . ? C5 C10 H10A 109.5 . . ? C5 C10 H10B 109.5 . . ? H10A C10 H10B 109.5 . . ? C5 C10 H10C 109.5 . . ? H10A C10 H10C 109.5 . . ? H10B C10 H10C 109.5 . . ? _diffrn_measured_fraction_theta_max 0.984 _diffrn_reflns_theta_full 33.14 _diffrn_measured_fraction_theta_full 0.984 _refine_diff_density_max 0.967 _refine_diff_density_min -1.682 _refine_diff_density_rms 0.133 _chemical_compound_source synthesized _exptl_crystal_recrystallization_method 'diffusion of hexanes into a dichloromethane solution'