Amidinate-Carboxylate Complexes of Dimolybdenum and Ditungsten: $\mathrm{M}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CR}^{\prime}\right)_{2}$.

 Preparations, Molecular and Electronic Structures and Reactions.Douglas J. Brown, Malcolm H. Chisholm*, and Judith C. Gallucci

Department of Chemistry
The Ohio State University
Columbus, OH 43210

Table of Contents

\qquadFigure S1pg 1
Figure S2 pg 2
Table S1 pg 2-3
Table S2 pg 3-4
Attempted Synthesis of Higher Order Oligomers pg 4-6

C18

Figure S1. ORTEP diagram of asymmetric unit (left) and centrosymmetric dimer (right) of $\mathrm{Li}\left[\left(\mathrm{N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right]$ with coordinating THF drawn with 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S2. ORTEP diagram of centrosymmetric dimer of $\mathrm{Li}\left[\left(\mathrm{N}^{i} \mathrm{Pr}\right)_{2} \mathrm{C}-2-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}\right]$ with coordinating THF drawn with 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity. The starred atoms $\left({ }^{*}\right)$ are related to the unstarred atom by the crystallographic inversion center.

TABLE 1: CRYSTALLOGRAPHIC DETAILS

	$\begin{aligned} & \mathrm{Li}\left[\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{C}\right. \\ & \mathrm{Ph}] \end{aligned}$	$\operatorname{Li}\left[\left(\mathrm{N}^{i} \operatorname{Pr}_{2} \mathrm{CC}_{4} \mathrm{H}_{4}\right.\right.$ S)]	$\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{C}\right.$ $\mathrm{Me})_{2}$	$\begin{aligned} & \mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{C}\right. \\ & \mathrm{Ph})_{2} \end{aligned}$
Molecular formula	C38 H54 Li2 N4	C15 H25 Li N2	C20 H40 Mo2 N4 O4	C34 H44 Mo2 N4 O4 and 3
	O 2	O S		THFs
Formula weight	612.73	288.37	592.44	980.92
Temperature	200(2) K	200(2) K	150(2) K	200(2) K
Wavelength	0.71073 £	0.71073 A	0.71073 £	0.71073 A
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	$\mathrm{P} \overline{1}$	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} \overline{1}$	$\mathrm{P} \overline{1}$
Unit cell dimensions	$\mathrm{a}=9.724(1) \AA$	$\mathrm{a}=9.173(1) \AA$	$\mathrm{a}=8.3023(10) \AA \quad \alpha=$	$\mathrm{a}=9.311(1) \AA \quad \alpha=$
	$\alpha=93.575(5){ }^{\circ}$	$\mathrm{b}=10.970(1) \AA$	$68.840(4){ }^{\circ}$	66.083(3) ${ }^{\circ}$
	$\mathrm{b}=10.008(1) \AA$	$\beta=95.953(7)^{\circ}$	$\mathrm{b}=9.0596(10) \AA \quad \beta=$	$\mathrm{b}=11.735(1) \AA \quad \beta=$
	$\beta=91.225(5)^{\circ}$	$\mathrm{c}=17.190(2) \AA$	$77.080(4){ }^{\circ}$	$74.895(3)^{\circ}$
	$\mathrm{c}=19.713(2) \AA$		$\mathrm{c}=9.5252(10) \AA \quad \gamma=$	$\mathrm{c}=12.973(1) \AA \quad \gamma=$
	$\gamma=90.848(4){ }^{\circ}$		$65.805(5)^{\circ}$	68.780(5) ${ }^{\circ}$
Volume	1914.0(3) \AA^{3}	1720.5(3) \AA^{3}	607.03(12) \AA^{3}	1197.1(2) \AA^{3}

Z	2	4	1	1
Density (calculated)	$1.063 \mathrm{Mg} / \mathrm{m}^{3}$	$1.113 \mathrm{Mg} / \mathrm{m}^{3}$	$1.621 \mathrm{Mg} / \mathrm{m}^{3}$	$1.361 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.065 \mathrm{~mm}^{-1}$	$0.185 \mathrm{~mm}^{-1}$	$1.065 \mathrm{~mm}^{-1}$	$0.574 \mathrm{~mm}^{-1}$
F(000)	664	624	304	512
Crystal size	$0.27 \times 0.35 \mathrm{x}$	$0.15 \times 0.23 \mathrm{x}$	$0.19 \times 0.31 \times 0.38 \mathrm{~mm}^{3}$	$0.15 \times 0.31 \times 0.38 \mathrm{~mm}^{3}$
	$0.38 \mathrm{~mm}^{3}$	$0.31 \mathrm{~mm}^{3}$		
Theta range for data collection	2.04 to 25.05°	2.21 to $25.04{ }^{\circ}$	2.99 to 27.46°	2.74 to $27.44{ }^{\circ}$
Index ranges	$-11 \leq \mathrm{h} \leq 11,-$	$-10 \leq h \leq 10,-$	$-10 \leq h \leq 10,-11 \leq \mathrm{k} \leq 11,-$	$-12 \leq h \leq 11,-15 \leq k \leq 15,-$
	$11 \leq \mathrm{k} \leq 11,-$	$13 \leq k \leq 13$, -	$12 \leq 1 \leq 12$	$16 \leq 1 \leq 16$
	$23 \leq 1 \leq 23$	$20 \leq 1 \leq 20$		
Reflections collected	36676	27382	17872	32426
Independent reflections	$6769[\mathrm{R}(\mathrm{int})=$	$3031[\mathrm{R}(\mathrm{int})=$	2771 [R(int) $=0.027$]	$5452[\mathrm{R}$ (int) $=0.028]$
	0.028]	0.036]		
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data/restraints/parame ters	6769 / 2 / 428	3031/9/221	2771/0/136	5452 / 4 / 273
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.007	1.040	1.084	1.036
Final R indices	$\mathrm{R} 1=0.0518$,	$\mathrm{R} 1=0.0472$,	$\mathrm{R} 1=0.0169, \mathrm{wR} 2=$	$\mathrm{R} 1=0.0300, \mathrm{wR} 2=0.0797$
[I > 2 $\sigma(\mathrm{I})$]	$w R 2=0.1348$	$\mathrm{wR} 2=0.1249$	0.0432	
R indices (all data)	$\mathrm{R} 1=0.0676$,	$\mathrm{R} 1=0.0659$,	$\mathrm{R} 1=0.0180, \mathrm{wR} 2=$	$\mathrm{R} 1=0.0336, \mathrm{wR} 2=0.0818$
	$\mathrm{wR} 2=0.1471$	$\mathrm{wR} 2=0.1361$	0.0436	
Largest diff. peak and	0.184 and -0.248	0.189 and -0.185	0.345 and -0.436 e/ \AA^{3}	0.774 and -0.742 e/ \AA^{3}
hole	e / \AA^{3}	e / \AA^{3}		

TABLE 2: CRYSTALLOGRAPHIC DETAILS

	$\begin{aligned} & \mathrm{W}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}((\\ & \left.\left.\mathrm{N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right)_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}((\\ & \left.\left.\mathrm{N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CFc}\right)_{2} \end{aligned}$	$\begin{aligned} & \mathrm{W}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC}\right. \\ & \equiv \mathrm{CFc})_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Mo}_{2}\left(c i s-\mu-\mathrm{O}_{2} \mathrm{C}-9-\right. \\ & \text { anthracene })_{2}\left(\eta^{2}-\right. \\ & \left.\left(\mathrm{N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CMe}\right)_{2} \end{aligned}$
Molecular formula	$\begin{aligned} & \text { C34 H44 N4 O4 } \\ & \text { W2 } \end{aligned}$	C42 H52 Fe2 Mo2 N4 O4 and 4 THFs	C42 H52 Fe2 N4 O4 W2 and 4 THFs	C46 H52 Mo2 N4 O4 and THF
Formula weight	940.43	1268.87	1444.69	988.90
Temperature	150(2) K	200(2) K	150(2) K	150(2) K
Wavelength	0.71073 £	0.71073 A	0.71073 £	0.71073 £
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P1	P $\overline{1}$	P 1	$\mathrm{P} 2{ }_{1 / \mathrm{n}}$
Unit cell dimensions	$\mathrm{a}=8.279(1) \AA$	$a=11.135(1) \AA$	$\mathrm{a}=11.051(1) \AA \quad \alpha=$	$\mathrm{a}=21.482(2) \AA$

Attempted preparation of $\left[-\mathbf{M o}_{\mathbf{2}}\left(\left(\mathbf{N}^{i} \mathbf{P r}\right)_{2} \mathbf{C C} \equiv \mathbf{C C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}}\left(\mathbf{O}_{\mathbf{2}} \mathbf{C P h C O} \mathbf{O}_{2}\right)-\right]_{\mathrm{n}} . \quad 230 \mathrm{mg}$ of $\mathbf{3 A}$ and 50
mg of terephthalic acid were mixed at room temperature in approximately 25 mL of ethanol. The solution was red in color and showed suspended white terephthalic acid. After 20 days, the solution remained red
but no terephthalic acid was visible. The mixture was centrifuged; the solvent was cannulared off, and the remaining solid was dried under vacuum. Analysis by MALDI-MS indicated low molecular weight oligimers with one, two, or three M_{2} repeating units.

Microanalysis found: C $50.94 ; \mathrm{H} 4.88 ; \mathrm{N} 6.55 \% . \mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Mo}_{2}$ requires: C 56.30 ; H $5.22 ; \mathrm{N} 6.91 \%$.

Solvent 1: 230 mg of trans $-\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right)_{2}(0.3 \mathrm{mmol})$ and 50 mg of terephthalic acid (0.3 mmol) were mixed at room temperature in approximately 25 mL of THF. The solution was red in color with a white suspension of terephthalic acid. After 20 days, the solution remained red but no terephthalic acid was visible. The mixture was centrifuged; the solvent was cannulared off, and the remaining solid was dried under vacuum. ${ }^{1} \mathrm{H}$ NMR spectrum indicated a mixture of products with overlapping resonances. Analysis by MALDI-TOF indicated low molecular weight oligomers with mono-, di-, tri- or tetra- Mo_{2} units.

Solvent 2: This reaction was carried out under similar conditions outlined for the initial reaction using 230 mg of trans $-\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right)_{2}(0.3 \mathrm{mmol})$ and 50 mg of terephthalic acid $(0.3$ mmol) in approximately 25 mL of ethanol. A red solid was isolated by centrifugation. ${ }^{1} \mathrm{H}$ NMR spectrum indicated a mixture of products with overlapping resonances. Analysis by MALDI-TOF indicated low molecular weight oligomers with mono-, di, and tri- Mo_{2} units. No elemental analysis was conducted.

Solvent 3: This reaction was carried out under similar conditions outlined for the initial reaction using 230 mg of trans $-\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right)_{2}(0.3 \mathrm{mmol})$ and 50 mg of terephthalic acid in approximately 25 mL of hexanes. A red solid was isolated by centrifugation. ${ }^{1}$ H NMR spectrum indicated a mixture of products with overlapping resonances. Analysis by MALDI-TOF indicated low molecular weight oligomers with mono- and di- Mo_{2} units.

Microanalysis found: C $55.25 ; \mathrm{H} 5.51 ; \mathrm{N} 6.59 \% . \mathrm{C}_{72} \mathrm{H}_{86} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Mo}_{4}$ (simple pairs of dimers) requires: C 54.90; H 5.50; N 7.11\%.

Attempted preparation of $\left[\text { trans }-\mathrm{Mo}_{2}\left(\left(\mathbf{N}^{i} \mathbf{P r}\right)_{2} \mathbf{C C} \equiv \mathbf{C P h}\right)_{2}\right]^{\mathbf{2 +}}$.

Method A: To a solution of 380 mg of trans $-\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\left(\mathrm{~N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right)_{2}(0.5 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2.5 mL of MeCN was added 330 mg of $\mathrm{Me}_{3} \mathrm{OBF}_{4}(2.25 \mathrm{mmol})$. Within 1 h all of the solid material had dissolved and the solution was bright red. After stirring overnight, the reaction mixture was concentrated and cooled to $-20^{\circ} \mathrm{C}$. After several days, red crystals formed. The product was isolated by removal of the mother liquor under a dynamic vacuum; the residue was washed with diethyl ether, and dried under vacuum. ${ }^{1} \mathrm{H}$ NMR characterized the product as a
$\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\left(\mathrm{N}^{i} \mathrm{Pr}\right)_{2} \mathrm{CC} \equiv \mathrm{CPh}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{BF}_{4}^{-}\right)_{2}$ species. Full characterization of this product was deferred since it was not the target complex.

Method B: 0.16 mL of $\mathrm{N}, \mathrm{N}^{\prime}$-di-iso-propylcarbodiimide (1.0 mmol) was dissolved in approximately 25 mL of THF and cooled to $0^{\circ} \mathrm{C} .5 \mathrm{~mL}$ of 1.0 M lithium phenylacetylide $(1.0 \mathrm{mmol})$ in THF was added to the mixture. The solution was allowed to warm slowly to room temperature. After stirring overnight, it was used in situ for the next reaction. A solution of 0.475 g of $\left[\mathrm{Mo}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{10}\right]^{4+}\left(\mathrm{BF}_{4}^{-}\right)_{4},(0.5 \mathrm{mmol})$ in approximately 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was made and cooled to $0{ }^{\circ} \mathrm{C}$. The in situ solution was cooled again to $0^{\circ} \mathrm{C}$. The in-situ solution was slowly added to the solution. The initial color change was gray-black. After stirring at room temperature overnight, the solvent was evaporated under a dynamic vacuum and the residue extracted with approximately 25 mL of hexanes. The solution was filtered over Celite. The filtrate was near colorless with no apparent soluble product.

