## **Electronic Supplementary Information (ESI)**

# Mixed-ligand coordination polymers from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzene-1,3,5-tricarboxylate: Trinuclear nickel or zinc secondary building units for three-dimensional networks with crystal-to-crystal transformation upon dehydration

Hesham A. Habib,<sup>a</sup> Joaquin Sanchiz<sup>b</sup> and Christoph Janiak<sup>\*a</sup>

<sup>a</sup> Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany. E-mail: <u>janiak@uni-freiburg.de</u>; Fax: 49 761 2036147; Tel: 49 761 2036127
 <sup>b</sup> Departamento de Química Inorganíca, Universidad de La Laguna, 38200 La Laguna,





**Fig. S1** X-ray powder diffractogram. Blue curve is simulated from single-crystal X-ray data of  ${}^{3}_{\infty}\{[Ni_{3}(\mu_{3}-btc)_{2}(\mu_{4}-btre)_{2}(\mu-H_{2}O)_{2}] \sim 20H_{2}O\}$ , **1**. Purple curve is measured on a crystal sample of **1** which was separated from mother liquor by filtration within one minute without extensive drying ("moist sample") and with no grinding.



Fig. S2 X-ray powder diffractogram. Blue curve is simulated from solvent-depleted singlecrystal X-ray data of  ${}^{3}_{\infty}$ {[Ni<sub>3</sub>( $\mu_{3}$ -btc)<sub>2</sub>( $\mu_{4}$ -btre)<sub>2</sub>( $\mu$ -H<sub>2</sub>O)<sub>2</sub>]}, **1** – 20H<sub>2</sub>O. Purple curve is measured on a dried sample of **1** with almost no grinding.



**Fig. S3** X-ray powder diffractogram. Blue curve is simulated from single-crystal X-ray data of  ${}^{3}_{\infty}\{[Ni_{3}(\mu_{2}-btc)_{2}(\mu_{4}-btre)_{2}(\mu_{2}-H_{2}O)_{2}]\cdot 4H_{2}O\}, 2$ . Purple curve is measured on a crystal sample of **2**.



**Fig. S4** X-ray powder diffractogram. Blue curve is simulated from single-crystal X-ray data of  ${}^{3}_{\infty}\{[Zn_{3}(\mu_{4}-btc)_{2}(\mu_{4}-btc)(H_{2}O)_{2}] \cdot 2H_{2}O\}$ , **3**. Purple curve is measured on an air-dried sample of **3**.

The following pages contain the experimental nitrogen adsorption isotherm of an evacuated, dried sample of compound 1 (after 3 days at 50 °C):

- isotherm with volume versus relative pressure  $(p/p_0)$
- iotherm with volume versus  $\log (p/p_0)$
- adsorption pore volume versus diameter (in Å)
- adsorption surface area versus diameter (in Å)

as Figures S5 to S8

Page 1 02/27/07 Date: Quantachrome Corporation Quantachrome Autosorb Automated Gas Sorption System Report Micropore Version 2.40 Sample ID..... 146 Vakuum Sample Description..... nach 50C 3 tage Comments..... Nitrogen Gas Type..... Ų Corr Factor.. 6.580E-05 Molec Wgt.. 28.0134 Cross-Sec Area.. 16.2 File Name.. 146VAC.RAW Sample Weight... 0.0180 g P/Po Toler... 3 Analysis Time... 281.2 min Equil Time... 2 Operator... Outgas Time..... 0.0 hrs O End of Run..... 02-27-07 07:38am °C Station #.. 1 Outgas Temp.. 0 Isotherm 2.33 2.10 1.86 1.63 1.40 Volume 1.17 0.93 0.70 0.47 0.23 0.00 0.30 0.40 0.50 0.60 0.70 0.90 1.00 0.10 0.20 0.80 0.00 Relative Pressure (P/Po) X-AXIS SCALE UNIT..... x 10E0 Y-AXIS SCALE UNIT..... cc/g x 10E2

**Fig. S5** Experimental nitrogen adsorption isotherm with volume versus relative pressure  $(p/p_0)$  of an evacuated, dried sample of compound 1 (after 3 days at 50 °C).



Fig. S6 Experimental nitrogen adsorption isotherm with volume versus log  $(p/p_0)$  of an evacuated, dried sample of compound 1 (after 3 days at 50 °C).

Page 2 Date: 02/27/07 Quantachrome Corporation Quantachrome Autosorb Automated Gas Sorption System Report Micropore Version 2.40 Sample ID..... 146 Vakuum Sample Description..... nach 50C 3 tage Comments..... Gas Type..... Cross-Sec Area.. 16.2 Nitrogen Corr Factor.. 6.580E-05 Molec Wgt.. 28.0134 Ų P/Po Toler... 3 Equil Time... 2 File Name.. 146VAC.RAW Sample Weight... 0.0180 Analysis Time... 281.2 g Operator... min ۰C Station #.. 1 Outgas Time.... 0.0 Outgas Temp.. 0 hrs End of Run..... 02-27-07 07:38am



Adsorption Pore Volume

**Fig. S7** Experimental nitrogen adsorption adsorption pore volume versus diameter (in Å) of an evacuated, dried sample of compound **1** (after 3 days at 50 °C).

Date: 02/27/07 Quantachrome Corporation Quantachrome Autosorb Automated Gas Sorption System Report Micropore Version 2.40 Sample ID..... 146 Vakuum Sample Description..... nach 50C 3 tage Comments..... Nitrogen Gas Type..... Corr Factor.. 6.580E-05 Molec Wgt.. 28.0134 Ų Cross-Sec Area.. 16.2 File Name.. 146VAC.RAW P/Po Toler... 3 Equil Time... 2 Sample Weight... 0.0180 g Operator... Analysis Time... 281.2 min Outgas Temp.. 0 °C Outgas Time.... 0.0 Station #.. 1 hrs End of Run..... 02-27-07 07:38am



Adsorption Surface Area

Fig. S8 Experimental nitrogen adsorption isotherm adsorption surface area versus diameter (in Å) of an evacuated, dried sample of compound 1 (after 3 days at 50 °C).

Page 2

**Table S1** Hydrogen bonding interactions in  ${}^{3}_{\infty}$  {[Ni<sub>3</sub>( $\mu_3$ -btc)<sub>2</sub>( $\mu_4$ -btre)<sub>2</sub>( $\mu$ -H<sub>2</sub>O)<sub>2</sub>]·~20H<sub>2</sub>O}, 1.<sup>a)</sup>

| D–H<br>[Å] | H···A<br>[Å]                       | D…A<br>[Å]                                               | D–H…A<br>[°]                                                                                                                                                              |
|------------|------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                    |                                                          |                                                                                                                                                                           |
| .94(3)     | .61(3)                             | 2.531(2)                                                 | 166(3)                                                                                                                                                                    |
| .86(3)     | .69(4)                             | 2.536(3)                                                 | 168(3)                                                                                                                                                                    |
|            | D–H<br>[Å]<br>.94(3) 1<br>.86(3) 1 | D-H H···A<br>[Å] [Å]<br>.94(3) 1.61(3)<br>.86(3) 1.69(4) | D-H         H···A         D···A           [Å]         [Å]         [Å]           .94(3)         1.61(3)         2.531(2)           .86(3)         1.69(4)         2.536(3) |

<sup>*a*)</sup> D = Donor, A = acceptor. For found and refined atoms the standard deviations are given. Symmetry relations: 2 = x, -0.5-y, 0.5+z.

**Table S2** Hydrogen bonding interactions in  ${}^{3}_{\infty}{[Ni_{3}(\mu_{2}-btc)_{2}(\mu_{4}-btre)_{2}(\mu_{4}-H_{2}O)_{2}]\cdot 4H_{2}O}$ , **2**.<sup>a)</sup>

| D–H···A                    | D–H<br>[Å] | H…A<br>[Å] | D…A<br>[Å] | D–H…A<br>[°] |
|----------------------------|------------|------------|------------|--------------|
| from aqua ligands          |            |            |            |              |
| $O1-H1A\cdots O6^2$        | 0.86(5)    | 2.22(8)    | 2.965(11)  | 144(10)      |
| O1–H1A…O7 <sup>3</sup> '   | 0.86(5)    | 2.41(11)   | 2.833(11)  | 111(9)       |
| O1–H1B…O3                  | 0.84(5)    | 1.70(6)    | 2.516(9)   | 163(12)      |
| O1–H1B…O2                  | 0.84(5)    | 2.67(11)   | 3.052(10)  | 109(9)       |
| $O8-H8A\cdots O6^2$        | 0.98(5)    | 1.57(6)    | 2.532(13)  | 165(13)      |
| O8–H8B…O5 <sup>1</sup> '   | 0.80(14)   | 2.15(14)   | 2.789(13)  | 137(14)      |
| O8–H8B…O4 <sup>1</sup> '   | 0.80(14)   | 2.77(15)   | 2.822(13)  | 85(11)       |
| from crystal water         |            | ~ /        |            | × /          |
| O9–H9A…O10                 | 0.93       | 2.09       | 2.830(16)  | 135.6        |
| O9–H9B…O2 <sup>3</sup> "   | 0.94       | 2.31       | 2.896(12)  | 120.1        |
| O9–H9B…O4 <sup>2</sup> "   | 0.94       | 2.46       | 3.365(12)  | 160.5        |
| O10–H10A…O9 <sup>1</sup> " | 0.90       | 1.98       | 2.754(16)  | 143.2        |
| O10–H10B…O5 <sup>1</sup>   | 0.95       | 2.13       | 3.043(16)  | 161.1        |

<sup>*a*)</sup> D = Donor, A = acceptor. For found and refined atoms the standard deviations are given. Symmetry relations: 1' = 1-x, 1-y, 1-z; 1" = 1-x, 1-y, 2-z; 2 = x, 0.5-y, z+0.5; 2" = +x, 1.5-y, 0.5+z; 3' = -x, -0.5+y, 0.5-z; 3" = 1-x, 0.5+y, 1.5-z;

|                                                                                                           | 1                                       | 2                                                                  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|
| 01-Ni1-02                                                                                                 | 91.2(1)                                 | 91.3(2)                                                            |
| O1–Ni1–O4 <sup>1</sup> '                                                                                  | 177.0(1)                                | 176.2(3)                                                           |
| O1–Ni1–O6 <sup>2</sup> / O8 <sup>b</sup>                                                                  | 92.3(1)                                 | 93.9(3)                                                            |
| O2–Ni1–O4 <sup>1</sup> '                                                                                  | 86.2(1)                                 | 87.3(3)                                                            |
| O2–Ni1–O6 <sup>2</sup> / O8 <sup>b</sup>                                                                  | 90.9(1)                                 | 87.1(3)                                                            |
| $O4^{1}$ -Ni1- $O6^{2}/O8^{b}$                                                                            | 89.2(1)                                 | 89.6(3)                                                            |
| N1-Ni1-O1                                                                                                 | 84.0(1)                                 | 84.2(3)                                                            |
| N1-Ni1-O2                                                                                                 | 87.5(1)                                 | 85.4(3)                                                            |
| N1-Ni1-O4 <sup>1</sup>                                                                                    | 94.4(1)                                 | 92.1(3)                                                            |
| N1–Ni1–O6 <sup>2</sup> / O8 <sup>b</sup>                                                                  | 176.0(1)                                | 172.2(3)                                                           |
| N6-Ni1-O1                                                                                                 | 83.5(1)                                 | 83.8(3)                                                            |
| N6-Ni1-O2                                                                                                 | 174.7(1)                                | 171.8(3)                                                           |
| N6-Ni1-O4 <sup>1</sup> '                                                                                  | 99.1(1)                                 | 97.2(3)                                                            |
| N6–Ni1–O6 <sup>2</sup> / O8 <sup>b</sup>                                                                  | 89.2(1)                                 | 99.7(3)                                                            |
| N1-Ni1-N6                                                                                                 | 92.0(1)                                 | 87.6(3)                                                            |
| 01-Ni2-N2                                                                                                 | 85.4(1)                                 | 84.2(3)                                                            |
| $O1-Ni2-N2^1$                                                                                             | 94.7(1)                                 | 95.8(3)                                                            |
| 01-Ni2-N5                                                                                                 | 85.2(1)                                 | 84.0(3)                                                            |
| $O1-Ni2-N5^1$                                                                                             | 94.8(1)                                 | 96.1(3)                                                            |
| N2-Ni2-N5                                                                                                 | 90.5(1)                                 | 89.5(3)                                                            |
| N2–Ni2–N5 $^1$                                                                                            | 89.5(1)                                 | 90.5(3)                                                            |
| Ni2-O1-Ni1                                                                                                | 107.7(1)                                | 107.6(3)                                                           |
| <sup><i>a</i></sup> Symmetry relations in 1:<br>1–y, 1–z. <sup><i>b</i></sup> O6 <sup>2</sup> in 1 and O8 | l = -x, -y, -z; l' = 1<br>in <b>2</b> . | -x, -y, -z; 2 = x, -0.5-y, 0.5+z; in 2: 1 = -x, 1-y, 1-z; 1' = 1-x |

 Table S3 Selected Bonds Angles (°) in 1 and 2.<sup>a</sup>

**Table S4** Hydrogen bonding interactions in  ${}^{3}_{\infty}$  {[Zn<sub>3</sub>( $\mu_4$ -btc)<sub>2</sub>( $\mu_4$ -btre)(H<sub>2</sub>O)<sub>2</sub>] · 2H<sub>2</sub>O}, **3**. <sup>a)</sup>

| D–H…A                      | D–H<br>[Å] | H…A<br>[Å] | D…A<br>[Å] | D–H…A<br>[°] |
|----------------------------|------------|------------|------------|--------------|
| from aqua ligands          |            |            |            |              |
| $O1-H1A\cdots O23^{1}$     | 0.80(3)    | 1.89(3)    | 2.678(2)   | 168(3)       |
| $O1-H1B\cdots O24^2$       | 0.95(3)    | 1.74(3)    | 2.677(2)   | 171(2)       |
| O2–H2A…O16 <sup>1</sup> '  | 0.80(3)    | 2.02(3)    | 2.813(2)   | 168(3)       |
| O2–H2B…O16 <sup>2</sup> '  | 0.93(3)    | 1.75(3)    | 2.668(2)   | 170(3)       |
| from crystal water         |            |            |            |              |
| O3–H3C…O22                 | 0.84(4)    | 2.04(4)    | 2.865(3)   | 164(4)       |
| $O3-H3D\cdots O2^{1}$ "    | 0.83(4)    | 2.38(4)    | 3.096(3)   | 144(4)       |
| O4–H4A…O1 <sup>1</sup> ''' | 0.81(3)    | 2.58(4)    | 3.141(3)   | 128(4)       |
| O4–H4B…O14                 | 0.79(4)    | 2.05(4)    | 2.820(3)   | 165(4)       |

 $a^{(1)}$  D = Donor, A = acceptor. For found and refined atoms the standard deviations are given. Symmetry relations: 1 = 1+x, y, z; 1' = -1+x, y, z; 1'' = x, 1+y, 1+z; 1''' = x, -1+y, -1+z;

2 = -x, 2-y, 1-z; 2' = 1-x, 2-y, -z;

| Table 55 Crystal data                   |                                       |                                       | many incalcu crysta                   | 115 01 <b>J</b> .                     |
|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Compound                                | 3 - no thermal                        | <b>3</b> – dried at 35 °C             | <b>3</b> – dried at 100 °C            | <b>3</b> – dried at 35 °C and         |
|                                         | treatment                             | and 1.5 mbar for                      | and $1.10^{-4}$ mbar                  | 1.5 mbar for 6 h prior                |
|                                         |                                       | 6 h prior to the X-                   | (diffusion pump) for                  | to the X-ray data                     |
|                                         |                                       | ray data                              | 6 h prior to the X-                   | collection.                           |
|                                         |                                       | collection.                           | ray data collection.                  | halved unit cell <sup>e)</sup>        |
| Empirical formula $M/g \mod^{-1}$       | $C_{24}H_{22}N_6O_{16}Zn_3$<br>846 59 | $C_{24}H_{22}N_6O_{16}Zn_3$<br>846 59 | $C_{24}H_{22}N_6O_{16}Zn_3$<br>846 59 | $C_{24}H_{22}N_6O_{16}Zn_3$<br>846 59 |
| Crystal size/mm                         | $0.40 \ge 0.40 \ge 0.30$              | 0.42 x 0.18 x 0.04                    | 0.25 x 0.17 x 0.04                    | $0.42 \ge 0.18 \ge 0.04$              |
| $\theta$ range/°                        | 3.8 - 53.2                            | 3.86 - 54.8                           | 3.86 - 54.8                           | 4.1 - 54.8                            |
| h; k; l range                           | $\pm 14; \pm 15; \pm 15$              | $\pm 15; \pm 15; \pm 16$              | $\pm 15; \pm 15; \pm 16$              | $\pm 15; \pm 15; \pm 16$              |
| Crystal system                          | triclinic                             | triclinic                             | triclinic                             | triclinic                             |
| Space group                             | <i>P</i> –1                           | <i>P</i> –1                           | <i>P</i> –1                           | <i>P</i> -1                           |
| a/A                                     | 11.8109(2)                            | 11.7994(4)                            | 11.8033(8)                            | 7.3034(2)                             |
| b/Å                                     | 11.9995(2)                            | 11.9776(4)                            | 11.9829(9)                            | 9.6603(3)                             |
| c/A                                     | 12.4175(3)                            | 12.4136(4)                            | 12.4230(15)                           | 9.8852(5)                             |
| $\alpha/^{\circ}$                       | 109.0470(10)                          | 109.048(2)                            | 108.993(6)                            | 87.158(2)                             |
| $\beta_{\mu}^{\prime\circ}$             | 105.8250(10)                          | 105.841(2)                            | 105.919(5)                            | 86.985(4)                             |
| $\chi^{\circ}_{\mu\nu}$                 | 110.9600(10)                          | 110.9620(2)                           | 110.977(4)                            | 86.979(3)                             |
| $V/A^{3}$                               | 1394.08(5)                            | 1389.47(8)                            | 1391.1(2)                             | 694.73(5)                             |
| L T/V                                   | $\frac{2}{202(2)}$                    | $\frac{2}{202(2)}$                    | $\frac{2}{203(2)}$                    | $\frac{1}{202(2)}$                    |
| $D /a \text{ cm}^{-3}$                  | 203(2)                                | 203(2)                                | 203(2)                                | 203(2)                                |
| $E_{calc}$ g cm                         | 2.017                                 | 2.023                                 | 2.021<br>852                          | 426                                   |
| $\mu/mm^{-1}$                           | 0.52<br>2.655                         | 0.52<br>2.66A                         | 2 661                                 | 2 664                                 |
| $M_{\text{ax}/\text{min}}$ transmiss    | 0.451/0.360                           | 0.901/0.401                           | 0.001/0.5559                          | 0.901/0.401                           |
| Ref. collected $(R_{\rm ex})$           | 26451(0.0371)                         | 28707 (0.0442)                        | 29309 (0.0418)                        | 14325 (0.0380)                        |
| Inden reflections                       | 5757                                  | 6318                                  | 6334                                  | 3169                                  |
| Obs refl $[I > 2\sigma(I)]$             | 4726                                  | 5312                                  | 5134                                  | 2885                                  |
| Parameters refined                      | 466                                   | 466                                   | 466                                   | 235                                   |
| Max./min. $\Delta \rho / e Å^{-3 a}$    | 0.466/-0.633                          | 0.609/-0.475                          | 0.374/-0.344                          | 0.893/-0.744                          |
| $R_1/wR_2 [I > 2\sigma(I)]^{b}$         | 0.0274/0.0733                         | 0.0272/0.0687                         | 0.0273/0.0649                         | 0.0363/0.0887                         |
| $R_1/wR_2$ (all reflect.) <sup>b)</sup> | 0.0382/0.0793                         | 0.0356/0.0727                         | 0.0388/0.0709                         | 0.0404/0.0914                         |
| Goodness-of-fit on $F^{2 c}$            | 1.040                                 | 1.014                                 | 1.021                                 | 1.045                                 |
| Weight. scheme w; $a/b^{d}$             | 0.0440/0.0306                         | 0.0355/0.3566                         | 0.0321/0.6420                         | 0.0319/1.9953                         |
|                                         |                                       |                                       |                                       |                                       |

| <b>Tuble</b> 55 Crystal data and Structure remember for mermany fronted or ystars or a | Table S5 | Crystal data and | l structure refinement | for thermally | y treated cr | vstals of 3 |
|----------------------------------------------------------------------------------------|----------|------------------|------------------------|---------------|--------------|-------------|
|----------------------------------------------------------------------------------------|----------|------------------|------------------------|---------------|--------------|-------------|

<sup>a)</sup> Largest difference peak and hole.  ${}^{b)}R_1 = [\Sigma(||F_o| - |F_c||)/\Sigma |F_o|]; wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]]^{1/2}.$  ${}^{c)}$  Goodness-of-fit =  $[\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)]^{1/2}.$   ${}^{d)}w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$  where  $P = (\max(F_o^2 \text{ or } 0) + 2F_c^2)/3.$ 

<sup>e)</sup> Note: After the thermal treatment structure refinement was also possible in a halved unit cell. This resulted, however, in larger and more anisotropic temperature factors of various atoms and somewhat higher R-values. Several atoms have large maximum and minimum main axis ADP ratios (Angstrom Units) which may indicate unresolved disorder and result in prolate appearance of the ellipsoid. Large Ueq(max)/Ueq(min) ratios are found for different atoms types.