SUPPLEMENTARY MATERIAL

O,S-Donor Ligands as Inhibitors of Xantine Oxidase. Synthesis, Molybdenum Complexation and Enzyme Inhibition

Sílvia Chaves, Marco Gil, Ratomir Jelic, Maria João Romão, José Trincão, Eberhardt Herdtweck, Carmen Pereira, Paula Fresco and M. Amélia Santos

Contents

- <u>**Table S1**</u> Global stability constants (log β) for the species formed in the H⁺-MoO₄²⁻ system.
- <u>Figure S2</u> Cyclic voltammogram of $MoO_2(thiomaltol)_2$ in 20% (v/v) DMSO (I=0.1 M KNO₃, scan rate = 100 mV s⁻¹, pH = 4.7)
- <u>Table S3</u> Crystal Data and Details of the Structure Determination for: Compound α-1
- <u>**Table S4**</u> Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: **Compound** α -1
- Table S5- Hydrogen Atom Positions and Isotropic DisplacementParameters for: Compound α -1
- <u>**Table S6**</u> (An)isotropic Displacement Parameters for: Compound α -1
- <u>**Table S7**</u> Bond Distances (Angstrom) for: Compound α -1
- <u>**Table S8**</u> Bond Angles (Degrees) for: Compound α -1
- **Figure S9** [MoO₂(thiomaltol)]₂(μ -O) (compound α -1)
- Table S10- Crystal Data and Details of the Structure Determinationfor: Compound β -1
- <u>**Table S11</u>** Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: **Compound** β -1</u>
- Table S12- Hydrogen Atom Positions and Isotropic DisplacementParameters for: Compound β -1
- <u>**Table S13**</u> (An)isotropic Displacement Parameters for: Compound β -1
- **<u>Table S14</u>** Bond Distances (Angstrom) for: Compound β -1
- <u>**Table S15</u>** Bond Angles (Degrees) for: Compound β -1</u>
- **<u>Figure S16</u>** [MoO₂(thiomaltol)]₂(μ -O) (compound β -1)

<u>**Table S1**</u> - Global stability constants (log β) for the species formed in the H⁺-MoO₄²⁻ system.

Equilibrium	Formed Species	$\log eta$
$MoO_4^{2-} + H^+ \longrightarrow HMoO_4^{-}$	HMoO ₄ ⁻	$\begin{array}{c} 4.46(2)^{a} \\ 4.03 \ (6)^{b} \\ 4.00^{c} \end{array}$
$MoO_4^{2-} + 2H^+ \longrightarrow H_2MoO_4$	H_2MoO_4	$7.20(9)^{a} \\ 6.7(4)^{b} \\ 7.50^{c}$
$7MoO_4^{2^-} + 8H^+ \longrightarrow H_8(MoO_4)_7^{6^-}$	H ₈ (MoO ₄) ₇ ⁶⁻	55.27(3) ^a 53.18(5) ^b 57.699 ^c
$7MoO_4^{2-} + 9H^+ \longrightarrow H_9(MoO_4)_7^{5-}$	H ₉ (MoO ₄) ₇ ⁵⁻	$\begin{array}{c} 60.07(3)^{a} \\ 58.10(2)^{b} \\ 62.140^{c} \end{array}$
$7MoO_4^{2-} + 10H^+ \longrightarrow H_{10}(MoO_4)_7^{4-}$	$H_{10}(MoO_4)_7^{4-}$	65.31(3) ^a 62.11(3) ^b 65.595 ^c
$7MoO_4^{2-} + 11H^+$ $H_{11}(MoO_4)_7^{3-}$	$H_{11}(MoO_4)_7^{3-}$	$\begin{array}{r} 66.78(9)^{a} \\ 64.54(7)^{b} \\ 68.344^{c} \end{array}$

^a this work (I = 0.1 M KCl, $T = 25.0 \pm 0.1$ °C, in 15% (v/v) CH₃OH/H₂O; ^b ref. 1 (I = 0.2 M KCl, $T = 25.0 \pm 0.1$ °C, in water); ^c ref. 2 (I = 3 M NaClO₄)

Farkas E, Csóka H, Micera G, Dessi A, J. Inorg. Biochem. 1997, 65, 281-286.
 Petersson L, Andersson I, Őhman L-O, Acta Chem. Scand.A 1985, 39, 53-58.

<u>Figure S2</u> - Cyclic voltammogram of MoO₂(thiomaltol)₂ in 20% (v/v) DMSO (I=0.1 M KNO₃, scan rate = 100 mV s⁻¹, pH = 4.7)

<u>Table S3</u> - Crystal Data and Details of the Structure Determination for: Compound α-1

Crystal Data

Formula	C12 H10 Mo2 O9 S2
Formula Weight	554.22
Crystal System	Monoclinic
Space group	C2/c (No. 15)
a, b, c [Angstrom]	31.3625(3) 8.8600(1) 12.3099(1)
alpha, beta, gamma [deg]	90 108.7833(6) 90
V [Ang**3]	3238.40(6)
Ζ	8
D(calc) [g/cm**3]	2.273
Mu(MoKa) [/mm]	1.853
F(000)	2160
Crystal Size [mm]	0.05 x 0.13 x 0.13

Data Collection

Temperature (K)		173	3
Radiation [Angstrom]	MoK	la	0.71073
Theta Min-Max [Deg]		1.4,	25.3
Dataset	-37: 37; -10: 10;	-14:	14
Tot., Uniq. Data, R(int)	37862,	2966	6, 0.044
Observed data $[I > 2.0 \text{ sign}]$	na(I)]		2682

Refinement

Nref, Npar2966, 266R, wR2, S0.0204, 0.0476, 1.06 $w = 1/[\s^2^(Fo^2^)+(0.0167P)^2^+7.8083P]$ where P=(Fo^2^+2Fc^2^)/3Max. and Av. Shift/Error0.00, 0.00Min. and Max. Resd. Dens. [e/Ang^3]-0.42, 0.35

<u>**Table S4**</u> - Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: **Compound α-1**

Atom	Х	y z	U(eq) [Ang^2]
Mo1	0.08994(1)	0.63263(2	0.09450(2) 0.0173(1)
Mo2	0.16212(1)	0.89080(3) 0.17615(2) 0.0179(1)
S 1	0.06601(2)	0.53501(7)	0.25437(6) 0.0205(2)
S2	0.17941(2)	0.94526(7)	0.38286(6) 0.0206(2)
01	0.03943(6)	0.6439(2)	-0.01127(16) 0.0228(6)
O2	0.10929(6)	0.4571(2)	0.07957(16) 0.0242(6)
O3	0.12756(6)	0.7715(2)	0.04878(14) 0.0201(6)
O4	0.14268(7)	1.0706(2)	0.14749(16) 0.0250(6)
O5	0.21477(6)	0.8975(2)	0.16546(16) 0.0258(6)
O14	0.04148(6)	0.9726(2)	0.40490(15) 0.0212(6)
O18	0.08452(6)	0.83573(1)	9) 0.18546(14) 0.0170(5)
O24	0.19926(6)	0.4754(2)	0.52065(15) 0.0214(6)
O28	0.16385(6)	0.6684(2)	0.24900(15) 0.0192(5)

C11	0.05681(8) 0.7005(3)	0.3150(2)	0.0168(8)
C12	0.03803(9) 0.7067(3)	0.4044(2)	0.0185(8)
C13	0.03155(10) 0.8410(3) 0.4464(2)	0.0230(9)
C15	0.05928(9) 0.9726(3)	0.3175(2)	0.0178(8)
C16	0.06766(8) 0.8382(3)	0.2718(2)	0.0159(8)

<u>**Table S4 (cont.)</u>** - Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: **Compound α-1**</u>

Atom	Х	У	Z	U(eq) [An	g^2]
				/	/- \
C17	0.0663	1(11) 1	.1261(3)	0.2795(3)	0.0222(9)
C21	0.1876	(9) 0.	7655(3)	0.4386(2)	0.0177(8)
C22	0.2038	7(9) 0.	7361(3)	0.5571(2)	0.0211(9)
C23	0.2087	6(10) 0	.5921(3)	0.5932(3)	0.0239(9)
C25	0.1837	(1(9) 0.4	4970(3)	0.4054(2)	0.0183(8)
C26	0.1777	3(9) 0.	6419(3)	0.3619(2)	0.0170(8)
C27	0.1763	3(11) 0	.3531(3)	0.3417(3)	0.0232(9)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Table S5	- Hydrogen At	tom Position	s and Isoti	opic Displa	acement
Pa	rameters for: C	Compound α	-1		

Atom	X	y z	U(iso) [Ang	g^2]	
H121	0.0306(9)	0.624(3)	0.430(2)	0.008(7)	
H131	0.0186(10)	0.855(3)	0.504(3)	0.026(8)	
H171	0.0834(11)	1.127(3)	0.227(3)	0.039(9)	
H172	0.0801(11)	1.179(4)	0.338(3)	0.034(9)	
H173	0.0373(12)	1.174(4)	0.241(3)	0.045(10)	
H221	0.2108(9)	0.806(3)	0.607(2)	0.012(7)	
H231	0.2188(9)	0.563(3)	0.666(3)	0.018(7)	
H271	0.1617(10)	0.287(3)	0.376(2)	0.027(8)	
H272	0.2063(12)	0.314(4)	0.343(3)	0.041(9)	
H273	0.1579(11)	0.370(3)	0.262(3)	0.034(9)	

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms

Table S6 - (An)isotropic Displacement Parameters for: Compound a-1

Atom	U(1,1)	or U J	J(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Mo1	0.0184((1) 0.0	173(1)	0.0167(1)	-0.0039(1) 0.0063	6(1) -0.0010(1)
Mo2	0.0194((1) 0.0	186(1)	0.0167(1)	0.0008(1) 0.0071	(1) -0.0027(1)
S 1	0.0250(4) 0.01	36(3) 0	.0253(4)	0.0001(3)) 0.0114(3	3) -0.0010(3)
S2	0.0254(4) 0.01	69(3) 0	.0197(3)	-0.0027(3) 0.0074(3) -0.0012(3)
O1	0.0203(1	0) 0.0	247(10)	0.0236(10	0) -0.0043	(8) 0.007	2(9) 0.0004(8)
O2	0.0227(1	0) 0.0	222(10)	0.0271(10	0) -0.0075	(8) 0.007	2(9) 0.0006(8)
03	0.0214(1	0) 0.0	249(10)	0.0151(9)	-0.0009((8) 0.0075	5(8) -0.0005(8)
O4	0.0283(1	1) 0.0	199(10)	0.0284(1	1) 0.0035	(8) 0.011	3(9) -0.0027(8)
05	0.0221(1	1) 0.0	337(12)	0.0221(10	0) -0.0004	(8) 0.007	7(9) -0.0036(9)
014	0.0259(11) 0.0	0203(10) 0.0199(1	0) -0.0002	2(8) 0.010	08(8) 0.0012(8)
		·			-	. ,	

- O18 0.0202(10) 0.0160(9) 0.0170(9) -0.0019(7) 0.0091(8) -0.0009(8)
- $\begin{array}{c} 0.0221(10) \ 0.0220(10) \ 0.0208(10) \ 0.0020(8) \ 0.0079(8) \ -0.0009(8) \end{array}$
- O28 0.0240(10) 0.0174(9) 0.0157(9) -0.0002(7) 0.0059(8) -0.0009(8)
- C11 0.0142(14) 0.0179(13) 0.0156(13) 0.0015(10) 0.0011(11) 0.0001(11)

Table S6 (cont.) - (An)isotropic Displacement Parameters for: Compound a-1

Atom U(1,1) or U(2,2) U(3,3) $U(2,3) \quad U(1,3)$ U(1,2) ------------------------C12 0.0169(14) 0.0192(14) 0.0184(14) 0.0068(11) 0.0042(11) 0.0010(11) 0.0234(16) 0.0302(16) 0.0177(14) 0.0027(12) 0.0100(13) 0.0013(12) C13 C15 0.0168(13) 0.0207(14) 0.0164(13) -0.0003(11) 0.0059(11) -0.0005(11) C16 0.0151(14) 0.0166(13) 0.0142(13) -0.0004(10) 0.0024(11) -0.0001(10) C17 0.0295(18) 0.0146(14) 0.0239(16) -0.0025(12) 0.0105(14) -0.0022(13) C21 0.0152(14) 0.0198(14) 0.0203(13) -0.0005(11) 0.0090(11) -0.0008(11) C22 0.0195(15) 0.0264(16) 0.0186(14) -0.0059(13) 0.0079(12) -0.0010(12) C23 0.0196(15) 0.0351(17) 0.0163(15) 0.0026(13) 0.0049(12) 0.0017(13) C25 0.0172(14) 0.0214(14) 0.0182(14) -0.0007(11) 0.0084(11) -0.0001(11) 0.0133(13) 0.0224(14) 0.0168(14) -0.0007(11) 0.0069(11) -0.0016(11) C26 0.0253(17) 0.0185(14) 0.0274(17) 0.0027(12) 0.0107(14) -0.0009(12) C27

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Mo1 -S1	2.4770(7)	Mo2 -S2	2.4725(7)
Mo1 -01	1.6990(19)	Mo2 -O5	1.699(2)
Mo1 -O2	2 1.7007(18)	Mo2 -O4	1.7016(18)
Mo1 -03	3 1.9106(19)	Mo2 -O3	1.9121(17)
Mo1 -01	8 2.1548(17)	Mo2 -O18	2.521(2)
Mo1 -O2	28 2.5003(19)	Mo2 -O28	2.1584(18)
S1 -C11	1.711(3)	S2 -C21 1	.720(3)
O14 -C1	3 1.349(3)	O24 -C23	1.336(4)
O14 -C1	5 1.362(3)	O24 -C25	1.357(3)
O18 -C1	6 1.331(3)	O28 -C26	1.337(3)
C11 -C12	2 1.407(4)	C21 -C22	1.406(3)
C11 -C1	6 1.416(4)	C21 -C26	1.414(4)
C12 -C12	3 1.339(4)	C22 -C23	1.344(4)
C15 -C1	6 1.378(4)	C25 -C26	1.380(4)
C15 -C1	7 1.478(4)	C25 -C27	1.476(4)
C12 -H1	21 0.86(3)	C22 -H221	0.85(3)
C13 -H1	31 0.93(3)	C23 -H231	0.89(3)
C17 -H1	71 0.96(4)	C27 -H271	0.93(3)
C17 -H1	72 0.85(4)	C27 -H272	1.00(4)
C17 -H1	73 0.98(4)	C27 -H273	0.98(3)

Table S7 - Bond Distances (Angstrom) for: Compound α -1

<u>Table S8</u> - Bond Angles (Degrees) for: Compound α-1

S1 -Mo1 -O1 100.55(7) S2 -Mo2 -O5 100.16(7)

S 1	-Mo1 -O2	88.65(7)	S2 -Mo2 -O4	88.62(7)
S 1	-Mo1 -O3	146.38(5)	S2 -Mo2 -O3	146.14(6)
S 1	-Mo1 -O18	77.52(5)	S2 -Mo2 -O18	83.45(4)
S 1	-Mo1 -O28	83.33(5)	S2 -Mo2 -O28	77.45(5)

<u>Table S8 (cont.)</u> - Bond Angles (Degrees) for: Compound α-1

01	M_{a1} 02	104.26(0)	$O_4 = M_{\odot}^2 = O_5 = 104.00(10)$
	-M01 -02	104.30(9)	04 -1002 -03 -104.09(10)
01	-Mo1 -O3	104.37(8)	03 -Mo2 -O5 105.32(9)
01	-Mol -O18	97.99(8)	O5 -Mo2 -O28 99.73(8)
01	-Mo1 -O28	169.35(7)	O5 -Mo2 -O18 170.69(7)
02	-Mo1 -O3	106.34(9)	O3 -Mo2 -O4 106.07(9)
O2	-Mo1 -O18	155.56(8)	O4 -Mo2 -O28 154.19(9)
O2	-Mo1 -O28	85.55(8)	O4 -Mo2 -O18 84.49(9)
O3	-Mo1 -O18	76.99(7)	O3 -Mo2 -O28 76.57(7)
03	-Mo1 -O28	68.49(7)	O3 -Mo2 -O18 68.26(7)
018	-Mo1 -O28	73.01(6)	O18 -Mo2 -O28 72.53(7)
Mo1	-S1 -C11	100.61(9)	Mo2 -S2 -C21 100.65(8)
Mo1	-03 -Mo2	110.81(8)	
C13	-014 -C15	1202(2)	C23 - O24 - C25 = 121 2(2)
Mol	-018 -Mo2	84 21(6)	023 021 023 121.2(2)
10101	010 1002	01.21(0)	
Mo1	-018 -C16	123 14(16)	$M_{0}2 = 0.18 = 0.16 = 1.32 = 1.3(15)$
Mol	-010 -010 -028 Mo2	84 64(6)	W02 -018 -010 152.15(15)
Mol	-028 - 1002	122.99(17)	$M_{0}2$ 0.28 0.26 1.22 27(16)
NIOT C1	-028 - 020	152.00(17) 122.1(2)	M02 - 028 - 020 123.27(10)
SI S1	-C11 - C12	123.1(2) 119.69(10)	52 - C21 - C22 - 122.9(2)
010		118.08(19)	52 - C21 - C20 - 118.57(18)
CI2	-CII -CI6	118.2(2)	$C_{22} - C_{21} - C_{20} = 118.5(2)$
CH	-C12 -C13	119.4(3)	$C_{21} - C_{22} - C_{23} = 118.9(3)$
014	-C13 -C12	122.7(2)	O24 - C23 - C22 = 122.5(3)
014	-C15 -C16	120.2(2)	O24 -C25 -C26 119.7(2)
014	-C15 -C17	113.0(2)	O24 -C25 -C27 112.1(2)
C16	-C15 -C17	126.8(3)	C26 -C25 -C27 128.2(2)
O18	-C16 -C11	119.4(2)	O28 -C26 -C21 119.1(2)
O18	-C16 -C15	121.2(2)	O28 -C26 -C25 121.7(2)
C11	-C16 -C15	119.4(2)	C21 -C26 -C25 119.2(2)
C11	-C12 -H121	119.0(18)	C21 -C22 -H221 122.5(17)
C13	-C12 -H121	121.6(18)	C23 -C22 -H221 118.5(17)
014	-C13 -H131	112.5(17)	O24 -C23 -H231 112.4(18)
C12	-C13 -H131	124.7(17)	C22 -C23 -H231 125.2(18)
C15	-C17 -H171	113.1(16)	C25 -C27 -H271 108.7(16)
C15	-C17 -H172	109(2)	C25 - C27 - H272 = 108(2)
C15	-C17 -H173	110(2)	$C_{25} - C_{27} - H_{273} = 110.0(16)$
H17	1 -C17 -H172	109(3)	H271 - C27 - H272 - 112(3)
H17	1 -C17 -H173	109(3) 108(3)	H271 - C27 - H273 - 110(3)
111/ 1117	-C17 - H173	100(3)	$H_{271} = C_{27} = H_{273} = H_{00(3)}$
$\Pi I / J$	2 -UI/ -HI/3	100(3)	$112/2 - C2/ - \Pi2/3 = 109(3)$

<u>Figure S9</u> - [MoO₂(thiomaltol)]₂(μ -O) (compound α -1)

<u>**Table S10**</u> - Crystal Data and Details of the Structure Determination for: Compound β -1

Crystal Data

Formula	C12 H10 Mo2 O9 S2				
Formula Weight	554.22				
Crystal System	Monoclinic				
Space group	P21/n (No. 14)				
a, b, c [Angstrom]	8.2509(1) 13.9940(2) 14.6426(2)				
alpha, beta, gamma [deg]	90 105.8518(6) 90				
V [Ang**3]	1626.39(4)				
Z	4				
$D(calc) [g/cm^{**3}]$	2.263				
Mu(MoKa) [/mm]	1.845				
F(000)	1080				
Crystal Size [mm]	0.10 x 0.15 x 0.23				

Data Collection

 Temperature (K)
 173

 Radiation [Angstrom]
 MoKa
 0.71073

 Theta Min-Max [Deg]
 2.0, 25.3

 Dataset
 -9: 9 ; -16: 16 ; -17: 17

 Tot., Uniq. Data, R(int)
 40422, 2963, 0.034

 Observed data [I > 2.0 sigma(I)]
 2826

Refinement

Nref, Npar	2963, 229
R, wR2, S	0.0164, 0.0407, 1.14
Max. and Av. Shift/Error	0.00, 0.00
Min. and Max. Resd. Dens. [6	2/Ang^3] -0.31, 0.30

<u>**Table S11**</u> - Final Coordinates and Equivalent Isotropic Displacement Parameters of the non-Hydrogen atoms for: **Compound** β -1

Atom	х	у	Z	U(eq) [Ang^2]
Mo1	0.58082	2(2) 0.3	32020(1)	0.29920(1) $0.0164(1)$
Mo2	0.25841	(2) 0.2	25148(1)	0.36184(1) 0.0165(1)
S1	0.72983(7) 0.18	3810(4)	0.24391(4) 0.0212(2)
S2	0.19903(7) 0.07	7933(4)	0.33218(4) 0.0205(2)
01	0.5932(2	2) 0.40	730(11)	0.22107(11) 0.0253(5)
O2	0.75375((19) 0.3	3840(11	0.39312(11) 0.0227(5)
O3	0.39587((18) 0.3	5688(10) 0.34687(10) 0.0186(4)
O4	0.06913	(19) 0.2	27569(11	0.28297(11) 0.0248(5)
O5	0.2246(2	2) 0.26	660(12)	0.46999(11) 0.0262(5)
O14	0.2884(2) 0.0	1975(11)	0.07784(11) 0.0230(5)
O18	0.37428	(18) 0.2	23756(10	0) 0.21313(10) 0.0179(5)
O24	0.7244(2	2) -0.0	3367(11)	0.42720(11) 0.0235(5)
O28	0.50561	(18) 0.	19066(10	0) 0.40342(10) 0.0179(4)
C11	0.5617(.	3) 0.12	2177(15)	0.18137(14) 0.0176(6)

C12	0.5824(3)	0.03204(16)	0.14290(16)	0.0232(7)
C13	0.4452(3)	-0.01644(17)	0.09393(16)	0.0249(7)
C15	0.2626(3)	0.10502(16)	0.11531(15)	0.0199(6)
C16	0.3970(3)	0.15632(15)	0.17044(14)	0.0165(6)

Table S11 (cont.)- Final Coordinates and Equivalent Isotropic DisplacementParameters of the non-Hydrogen atoms for: Compound β -1

Х	У	Z	U(eq) [Ang^	2]
0.0834(3	3) 0.13	430(19)	0.08916(17)	0.0298(8)
0.3998(3	3) 0.03	373(15)	0.36681(14)	0.0179(6)
0.4356(2	3) -0.06	6426(16)	0.36036(15)	0.0230(7)
0.5968(3) -0.09	379(17)	0.38902(16)	0.0272(7)
0.6973(3	3) 0.06	145(16)	0.43455(15)	0.0198(6)
0.5353(2	3) 0.09	718(15)	0.40144(14)	0.0164(6)
0.8506(3	3) 0.11	567(18)	0.48184(17)	0.0275(8)
	x 0.0834(: 0.3998(: 0.4356(: 0.5968(: 0.6973(: 0.5353(: 0.8506(:	x y 0.0834(3) 0.13 0.3998(3) 0.03 0.4356(3) -0.06 0.5968(3) -0.09 0.6973(3) 0.06 0.5353(3) 0.09 0.8506(3) 0.11	x y z 0.0834(3) 0.13430(19) 0.3998(3) 0.03373(15) 0.4356(3) -0.06426(16) 0.5968(3) -0.09379(17) 0.6973(3) 0.06145(16) 0.5353(3) 0.09718(15) 0.8506(3) 0.11567(18)	x y z U(eq) [Ang^ 0.0834(3) 0.13430(19) 0.08916(17) 0.3998(3) 0.03373(15) 0.36681(14) 0.4356(3) -0.06426(16) 0.36036(15) 0.5968(3) -0.09379(17) 0.38902(16) 0.6973(3) 0.06145(16) 0.43455(15) 0.5353(3) 0.09718(15) 0.40144(14) 0.8506(3) 0.11567(18) 0.48184(17)

U(eq) = 1/3 of the trace of the orthogonalized U Tensor

Table S12 - Hydrogen	Atom Positions and	l Isotropic Displacemer	ıt
Parameters for:	Compound β -1		

Atom	х	У	Z	U(iso)	[Ang^2]
					-
H121	0.6918	3 0.0	0059	0.1513	0.028
H131	0.4593	3 -0.	0781	0.0700	0.030
*H171	0.017	9 0.	0918	0.0394	0.045
*H172	0.073	5 0.	2002	0.0657	0.045
*H173	0.040	2 0.	1302	0.1451	0.045
*H174	0.069	8 0.	1897	0.1274	0.045
*H175	0.014	3 0.	0813	0.1011	0.045
*H176	0.047	5 0.	1513	0.0217	0.045
H221	0.3473	3 -0.	1087	0.3361	0.028
H231	0.6212	2 -0.	1593	0.3821	0.033
H271	0.9362	2 0.1	1058	0.4477	0.041
H272	0.8940) 0.0	0934	0.5474	0.041
H273	0.8234	4 0.1	1838	0.4817	0.041

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms Starred atoms have an sof of 0.5.

<u>**Table S13**</u> - (An)isotropic Displacement Parameters for: Compound β -1

Atom	U(1,1) or U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
			/ .		
Mol	0.0151(1) 0.0139(1) ().0198(1)	0.0003(1	.) 0.0039((1) - 0.0023(1)
Mo2	0.0139(1) 0.0152(1) ().0202(1)	0.0019(1) 0.0043	$(1) \ 0.0008(1)$
S1	0.0144(3) 0.0229(3) 0.0	0261(3) -	0.0020(2)	0.0051(2	2) -0.0001(2)
S2	0.0181(3) 0.0186(3) 0.0	0239(3) (0.0014(2)	0.0043(2	2) -0.0044(2)
01	0.0261(9) 0.0224(9) 0.	0276(9)	0.0052(7)	0.0079(7	7) -0.0013(7)

O2	0.0203(8)	0.0206(8)	0.0256(8)	-0.0015(7)	0.0034(7) - 0.0054(7)
O3	0.0196(8)	0.0128(7)	0.0241(8)	-0.0017(6)	0.0069(6) -0.0003(6)
O4	0.0170(8)	0.0234(9)	0.0320(9)	0.0057(7)	0.0034(7) 0.0004(7)
05	0.0280(9)	0.0266(9)	0.0263(9)	0.0015(7)	0.0113(7) 0.0031(7)

<u>**Table S13 (cont.)**</u> - (An)isotropic Displacement Parameters for: Compound β -1

Atom U(1,1) or U(2,2) U(3,3)U(2,3) U(1,3) U(1,2) ---------_____ -----_____ 014 0.0291(9) 0.0191(8) 0.0216(8) -0.0026(6) 0.0085(7) -0.0059(7) 018 0.0158(8) 0.0169(8) 0.0199(8) -0.0017(6) 0.0029(6) 0.0003(6) 024 0.0273(9) 0.0222(8) 0.0206(8) 0.0027(6) 0.0061(7) 0.0094(7) O28 0.0164(8) 0.0137(7) 0.0222(8) 0.0005(6) 0.0027(6) 0.0006(6) 0.0200(11) 0.0184(11) 0.0152(10) 0.0027(8) 0.0063(9) -0.0011(9) C11 C12 0.0259(13) 0.0202(12) 0.0251(12) 0.0019(9) 0.0097(10) 0.0042(10) C13 0.0375(14) 0.0168(11) 0.0234(12) -0.0006(9) 0.0136(10)-0.0008(10) C15 0.0230(12) 0.0206(11) 0.0158(10) 0.0016(9) 0.0048(9) -0.0026(9) C16 0.0195(11) 0.0157(10) 0.0144(10) 0.0019(8) 0.0049(8) -0.0001(9) 0.0197(12) 0.0396(15) 0.0260(12) -0.0041(11)-0.0008(10)-0.0035(11) C17 C21 0.0260(12) 0.0180(11) 0.0111(10) 0.0020(8) 0.0076(9) 0.0005(9) C22 0.0357(14) 0.0166(11) 0.0175(11) -0.0005(9) 0.0088(10)-0.0024(10) C23 0.0439(15) 0.0164(11) 0.0223(12) 0.0009(9) 0.0109(11) 0.0058(11) C25 0.0246(12) 0.0200(11) 0.0154(10) 0.0032(9) 0.0067(9) 0.0052(9) C26 0.0204(11) 0.0170(11) 0.0125(10) 0.0021(8) 0.0058(8) 0.0015(9) C27 0.0196(12) 0.0313(14) 0.0279(13) 0.0041(10) 0.0002(10) 0.0035(10)

The Temperature Factor has the Form of Exp(-T) Where T = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms T = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices.

Table S14	- Bond Distances	(Angstrom) f	or: Compound β -	1
-----------	------------------	--------------	------------------	---

Mo1 -S1	2.4755(6)	Mo2 -S2	2.4731(6)
Mo1 -O1	1.6937(16)	Mo2 -O5	1.6946(16)
Mo1 -O2	1.7088(16)	Mo2 -O4	1.7036(16)
Mo1 -O3	1.9135(15)	Mo2 -O3	1.9094(15)
Mo1 -O18	2.1579(15)	Mo2 -O28	3 2.1393(15)
S1 -C11	1.712(2)	S2 -C21	1.717(3)
O14 -C13	1.349(3)	O24 -C23	1.344(3)
O14 -C15	1.354(3)	O24 -C25	1.359(3)
O18 -C16	1.335(3)	O28 -C26	1.333(3(
C11 -C12	1.406(3)	C21 -C22	1.411(3)
C11 -C16	1.410(4)	C21 -C26	1.409(3)
C12 -C13	1.346(3)	C22 -C23	1.346(4)
C15 -C16	1.381(3)	C25 -C26	1.385(3)
C15 -C17	1.480(4)	C25 -C27	1.475(3)
C12 -H121	0.95	C22 -H221	0.95
C13 -H131	0.95	C23 -H231	0.95
C17 -H171	0.98	C27 -H271	0.98
C17 -H172	0.98	C27 -H272	0.98
C17 -H173	0.98	C27 -H273	0.98
C17 -H174	0.98		
C17 -H175	0.98		
C17 -H176	0.98		

<u>**Table S15</u>** - Bond Angles (Degrees) for: **Compound** β -1</u>

S 1	-Mo1 -O1	100.93(6)	S2 -Mo2 -O5	102.15(6)
S 1	-Mo1 -O2	89.68(5)	S2 -Mo2 -O4	88.49(5)
S 1	-Mo1 -O3	146.77(5)	S2 -Mo2 -O3	145.87(5)
S 1	-Mo1 -O18	78.01(4)	S2 -Mo2 -O28	77.89(4)
01	-Mo1 -O2	104.19(8)	O4 -Mo2 -O5	104.73(8)
01	-Mo1 -O18	100.07(7)	O5 -Mo2 -O28	99.86(7)
O2	-Mo1 -O18	154.49(6)	O4 -Mo2 -O28	153.93(7)
O3	-Mo1 -O1	104.75(7)	O3 -Mo2 -O5	105.39(7)
O3	-Mo1 -O2	103.90(7)	O3 -Mo2 -O4	103.41(7)
O3	-Mo1 -O18	77.03(6)	O3 -Mo2 -O28	77.88(6)
Mo1	-S1 -C11	100.23(8)	Mo2 -S2 -C21	100.44(8)
Mo1	-O3 -Mo2	113.11(7)		~ /
C13	-O14 -C15	120.63(19)	C23 -O24 -C25	121.26(19)
Mo1	-O18 -C16	122.71(14)	Mo2 -O28 -C26	5 123.43(14)
S 1	-C11 -C12	121.96(19)	S2 -C21 -C22	122.95(18)
S 1	-C11 -C16	119.34(16)	S2 -C21 -C26	118.59(17)
C12	-C11 -C16	118.7(2)	C22 -C21 -C26	118.4(2)
C11	-C12 -C13	119.1(2)	C21 -C22 -C23	119.0(2)
014	-C13 -C12	122.1(2)	O24 -C23 -C22	122.2(2)
014	-C15 -C16	120.3(2)	O24 -C25 -C26	119.3(2)
014	-C15 -C17	113.3(2)	O24 -C25 -C27	113.7(2)
C16	-C15 -C17	126.4(2)	C26 -C25 -C27	126.9(2)
O18	-C16 -C11	119.6(2)	O28 -C26 -C21	119.6(2)
018	-C16 -C15	121.6(2)	O28 -C26 -C25	120.8(2)
C11	-C16 -C15	118.9(2)	C21 -C26 -C25	119.6(2)
C11	-C12 -H121	120.47	С21 -С22 -Н221	120.53
C13	-C12 -H121	120.38	C23 -C22 -H221	120.49
O14	-C13 -H131	118.99	O24 -C23 -H231	118.92
C12	-C13 -H131	118.95	С22 -С23 -Н231	118.90
C15	-C17 -H171	109.46	С25 -С27 -Н271	109.45
C15	-C17 -H172	109.45	С25 -С27 -Н272	109.48
C15	-C17 -H173	109.46	С25 -С27 -Н273	109.46
C15	-C17 -H174	109.46		
C15	-C17 -H175	109.45		
C15	-C17 -H176	109.48		
H17	1 -C17 -H172	109.52	H271 -C27 -H27	2 109.49
H17	1 -C17 -H173	109.45	H271 -C27 -H27	3 109.44
H17	2 -C17 -H173	109.49	H272 -C27 -H27	3 109.52
H174	4 -C17 -H175	109.49		
H174	4 -C17 -H176	109.48		
H17	5 -C17 -H176	109.46		

<u>Figure S16</u> - [MoO₂(thiomaltol)]₂(μ -O) (compound β -1)

