Supplementary information for:

Insertion reactions of $\boldsymbol{\beta}$-diketiminate-stabilised calcium amides with 1,3dialkylcarbodiimides

Mark R. Crimmin, ${ }^{a}$ Anthony G. M. Barrett,*a Michael S. Hill, ${ }^{*{ }^{*}}{ }^{a}$ Peter B. Hitchcock ${ }^{\mathrm{b}}$ and Panayiotis A. Procopiou. ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2 AZ, U.K.
${ }^{b}$ The Chemistry Laboratory, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, U.K.
${ }^{c}$ GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, U.K.

General Procedures

All manipulations were carried out using standard Schlenk line and glovebox techniques under an inert atmosphere of either nitrogen or argon. NMR experiments were conducted in Youngs tap NMR tubes made up and sealed in a Glovebox, NMR were collected on recorded either Bruker AV-500 spectrometer at $\left({ }^{13} \mathrm{C}\right.$ NMR 125.8 Hz) or a Bruker AV-400 spectrometer (${ }^{13} \mathrm{C}$ NMR 100.6 MHz). Solvents (Toluene, Benzene, THF, Hexane) were dried by distillation from sodium-benzophenone ketyl, under nitrogen and stored in ampoules over molecular sieves. $\mathrm{C}_{6} \mathrm{D}_{6}$ and d_{8}-toluene were purchased from Goss Scientific Instruments Ltd. and dried over molten potassium before distilling under nitrogen and storing over molecular sieves. (Tetrakis(trimethylsilyl))silane (TMSS) was purchased from Goss Scientific Instruments Ltd. and used as received. 1,3Dialkylcarbodiimides were purchased from Sigma-Aldrich and used as received. The β diketiminate ligand, ${ }^{1}$ and heteroleptic calcium amides 1-4 were synthesised by literature procedures. ${ }^{2-3}$

NMR Scales reactions

In a glovebox the β-diketiminate stabilised calcium amide (2-4, 0.05 mmol) was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$, the 1,3-dialkylcarbodiimide (0.05 mmol) was added via micropipette (or as a solid) and the solution was transferred to a Youngs tap NMR tube. The reaction was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. In situ ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right.$, $400 \mathrm{MHz}) 5 ; 0.97(\mathrm{~d}, 12 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.31(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.32(\mathrm{~d}, 12 \mathrm{H}, J=6.8$ Hz), 1.39 (d, 12H, $J=6.9 \mathrm{~Hz}$), 1.77 (s, 6H), 3.49 (hept, 4H, $J=6.8 \mathrm{~Hz}$), 3.55 (hept, 2H, J $=6.2 \mathrm{~Hz}$), 3.73 (hept, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $4.88(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 9 \mathrm{H})$.

Figure 1. NMR scale reaction between 2 and 1,3-diisopropylcarbodiimide. Top (isolated compound 2), bottom (30 min after addition of a 1,3-diisopropylcarbodiimide).

Synthesis of heteroleptic guanidinate complexes

6: To a solution of $[\{\operatorname{ArNC}(\mathrm{Me}) \mathrm{CHC}(\mathrm{Me}) \mathrm{NAr}\} \mathrm{Ca}(\mathrm{NHAr})(\mathrm{THF})](2,600 \mathrm{mg}, 0.87$ mmol) in hexane was added 1,3-dicyclohexylcarbodiimide ($178 \mathrm{mg}, 0.86 \mathrm{mmol}$) as a solution in the same solvent. The solution was stirred for 1 h at room temperature, filtered and the volume reduced to induce crystallization. 6 was isolated as a colourless crystalline solid ($\mathrm{mg}, \mathrm{mmol}, \%$) yield by ${ }^{1} \mathrm{H} \mathrm{NMR}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, 400 \mathrm{MHz}$) $0.98-1.07$ (m, 9H), 1.15 (m, 4H, THF), 1.29 (d, 12H, $J=6.9 \mathrm{~Hz}), 1.33(\mathrm{~d}, 12 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 1.40(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.49-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}), 2.98-$ 3.03 (m, 2H), 3.33 (m, 4H, THF), 3.47 (hept, 4H, $J=6.8 \mathrm{~Hz}$), $3.67(\mathrm{~m}, 12 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $4.91(\mathrm{~s}, 1 \mathrm{H}), 5.26($ broad s, 1 H$), 7.10-7.21(\mathrm{~m}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, 125.8 \mathrm{MHz}\right)$ $25.1,25.2,25.4,26.5,26.6,28.3,28.3,28.5,37.7,54.8,68.3,93.5,123.2,123.6,123.7$, 124.0, 138.9, 141.6, 144.9, 148.4, 160.3, 165.4. Anal. Calc. for $\mathrm{C}_{58} \mathrm{H}_{89} \mathrm{CaN}_{5} \mathrm{O}$: C 76.28 H 9.75 N 7.67. Found: C..H..N.

7: To a solution of [\{ArNC(Me)CHC(Me)NAr\}Ca(NPh $)(\mathrm{THF})](3,516 \mathrm{mg}, 0.74 \mathrm{mmol})$ in hexane was added 1,3-dicyclohexylcarbodiimide ($154 \mathrm{mg}, 0.74 \mathrm{mmol}$) as a solution in the same solvent. The solution was stirred for 1 h at room temperature, filtered and the volume reduced to induce crystallization. 7 was isolated as a colourless crystalline solid ($148 \mathrm{mg}, 0.164 \mathrm{mmol}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, 500 \mathrm{MHz}$) $0.80-1.02(\mathrm{~m}, 5 \mathrm{H}), 1.08-$ $1.21(\mathrm{~m}, 7 \mathrm{H}), 1.13(\mathrm{~m}, 4 \mathrm{H}, T H F), 1.24(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.38(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $1.48-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 3.36$ (hept, $4 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.48(\mathrm{~m}, 4 \mathrm{H}$, THF), $4.95(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.10-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.38(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, 125.8 \mathrm{MHz}$) 24.7, 25.2, 25.5, 25.9, 26.3, 26.6, 28.5, 37.1, 56.0, $68.8,94.1,120.7,121.5,123.9,124.2,129.2,141.5,146.2,148.5,163.0,165.7$. Anal. Calc. for $\mathrm{C}_{58} \mathrm{H}_{81} \mathrm{CaN}_{5} \mathrm{O}:$ C 76.96 H 8.96 N 7.74. Found: C..H..N.

8•THF: A solution of 2-methoxyethylamine ($67 \mathrm{mg}, 0.89 \mathrm{mmol}$), and 1,3diisopropylcarbodiimide ($112 \mathrm{mg}, 0.89 \mathrm{mmol}$) in hexane (10 mL) were added to a
solution of $\mathbf{1}(600 \mathrm{mg}, 0.89 \mathrm{mmol})$ in the same solvent $(20 \mathrm{~mL})$. The reaction was stirred for 1 h at room temperature, filtered and the solvent volume reduced to ca 10 mL . The product crystallised upon storage of this solution at $-21^{\circ} \mathrm{C}$ for 24 h , and isolation by filtration gave $\mathbf{8} \cdot \mathbf{T H F}$ ($230 \mathrm{mg}, 0.32 \mathrm{mmol}, 35 \%$) as a colourless crystalline solid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 353 \mathrm{~K}, 400 \mathrm{MHz}\right) 1.02(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.05(\mathrm{~d}, 6 \mathrm{H}, J=6.1 \mathrm{~Hz}), 1.29(\mathrm{~d}$, $12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.31(\mathrm{~d}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.50-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H})$, $3.10-3.16$ (m, 4H), 3.20 (hept, $2 \mathrm{H}, J=6.1 \mathrm{~Hz}$), 3.34 (hept, $4 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 3.41 (broad s, 1 H), 3.43 (hept, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $3.55-3.58(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.15(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}, 125.8 \mathrm{MHz}$) 20.9, 23.5, 24.0, 24.6, 25.2, 25.8, 26.7, 28.3, 28.6, 44.5, 46.6, 47.8, 58.5, 67.8, 76.9, 91.7, 94.2, 124.0, 123.6, 141.5, 147.4, 165.2, 165.7. Anal. Calc. for $\mathrm{C}_{43} \mathrm{H}_{71} \mathrm{CaN}_{5} \mathrm{O}_{2}$: C 70.67 H 9.72 N 9.59. Found: C..H..N.

References

1. J. Feldman, S. J. McLain, A. Parthasarathy, W. Marshall, J. C. Calabrese and S. D. Arthur, Organometallics 1997, 16, 1514.
2. (a) M. H.Chisholm, J. C. Gallucci and K. Phophrai, Inorg. Chem., 2004, 43, 6717; (b) M. H.Chisholm, J. C. Gallucci and K. Phophrai, Chem. Commun., 2003, 48.
3. (a) A. G. Avent, M. R. Crimmin, M. S. Hill and P. B. Hitchcock, Dalton Trans., 2004, 3166; (b) A. G. Avent, M. R. Crimmin, M. S. Hill and P. B. Hitchcock, Dalton Trans., 2005, 278

