[Si(SiMe₃)₃]₆Ge₁₈M (M = Cu, Ag, Au): Metalloid cluster compounds as unusual building blocks for a supramolecular chemistry.

Christian Schenk, Florian Henke, Gustavo Santiso-Quiñones, Ingo

Krossing, Andreas Schnepf*

Supporting Information

1.) Gas phase investigations of $[AgGe_{18}R_6]^-$ (R = Si(SiMe₃)₃) **3**

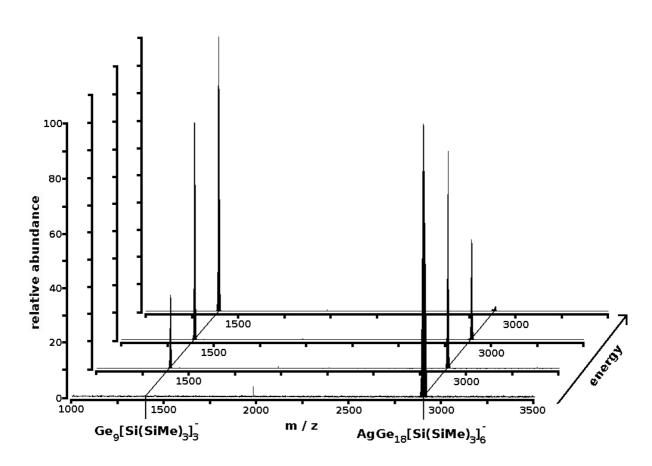


Figure S1: The FT/ICR-mass spectra obtained from a solution of $[AgGe_{18}R_6]^-$ (R = Si(SiMe₃)₃) **3** in thf using ESI as ionisation method. In the dissociation experiments (SORI-CAD) the parent ion **3** dissociates to give the fragment ion Ge₉R₃⁻ (R = Si(SiMe₃)₃) **1**. The relative abundance of the fragment ion **1** depends on the translation energy of the parent ion **3** prior to fragementation. Low energy gives less fragement ion than higher.

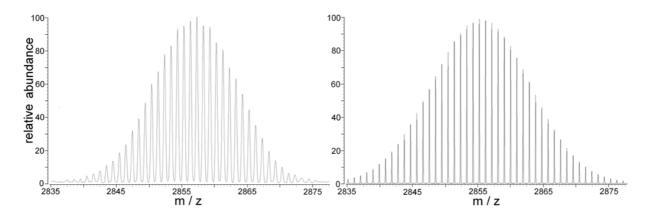


Figure S2: Measured (left) and calculated (right) isotopic pattern of the molecular peak of ${CuGe_{18}[Si(SiMe_3)_3]_6}^- 3$.

3.) Schematic presentation of subsequent reactions of $[AuGe_{18}R_6]^- 2$, $[AgGe_{18}R_6]^- 3$, $[CuGe_{18}R_6]^- 4$ (R = Si(SiMe_3)_3.

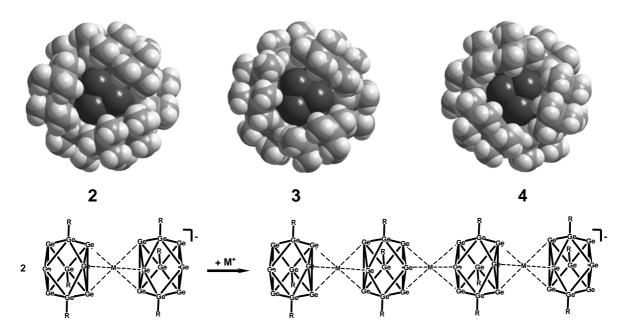


Figure S3: Top: Space filling models of $[AuGe_{18}R_6]^- 2$, $[AgGe_{18}R_6]^- 3$, $[CuGe_{18}R_6]^- 4$ (R = Si(SiMe₃)₃; view along the threefold axis). Bottom: Schematic presentation of the formation of an M₃Ge₃₆R₁₂⁻ unit.