Supporting Information

Au(I)-benzimidazole/imidazole Complexes. Liquid Crystals and Nanomaterials

S. J. Hsu,^a K. M. Hsu,^b Max K. Leong^a and Ivan J. B. Lin.*^a

^a Department of Chemistry, National Dong Hwa University, Hualien, 974, Taiwan

^b Department of Chemistry, Fu Jen Catholic University, Hsinchuang, 242, Taipei, Taiwan

Tel: +886-3-863-3599, Fax: +886-3-863-3570, E-mail: <u>ijblin@mail.ndhu.edu.tw</u>

Experimental

[Au(C₁₆-bim)Cl]. White solid, yield 89%. ¹H NMR (ppm, CDCl₃) : δ 0.88 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.25-1.34 (m, 26H, CH₂, ionic and neutral overlapped), 1.95 (m, 2H, CH₂, ionic and neutral overlapped). 4.28 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.45-7.54 (m, 1H, CH, neutral form), 7.89-7.92 (m, 1H, CH, neutral form), 8.21 (s, 1H, CH, neutral form). 4.56 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.58-7.69 (m, 1H, CH, ionic form), 7.96-7.99 (m, 1H, CH, ionic form), 9.21 (s, 1H, CH, ionic form).

¹H NMR (ppm, d₆-DMSO) : δ 0.82 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.18-1.20 (m, 26H, CH₂, ionic and neutral overlapped), 1.83 (m, 2H, CH₂, ionic and neutral overlapped), 4.35 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.46 (m, 1H, CH, neutral form), 7.77-7.95 (m, 1H, CH, neutral form), 9.1 (s, 1H, CH, neutral form). 4.45 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.54 (m, 1H, CH, ionic form), 7.95-8.00 (m, 1H, CH, ionic form), 9.26 (s, 1H, CH, ionic form). Anal. Calcd. for C₂₃H₃₈N₂AuCl: C, 48.05; H, 6.66; N, 4.87. Found: C, 47.99; H, 6.61; N, 4.99%.

[Au(C₁₈-im)Cl]. White solid, yield 90%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, ³J = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.25-1.31 (m, 30, CH₂, ionic and neutral

Supplementary Material (ESI) for Dalton Transactions

This journal is (c) The Royal Society of Chemistry 2008

overlapped), 1.82 (m, 2H, CH₂, ionic and neutral overlapped), 4.01 (t, ${}^{3}J = 7$ Hz, 2H, CH₂, neutral form), 7.08 (s, 1H, CH, neutral form), 7.09 (s, 1H, CH, neutral form), 7.76 (s, 1H, CH, neutral form). 4.33 (t, ${}^{3}J = 7$ Hz, 2H, CH₂, ionic form), 7.26 (s, 1H, CH, ionic form), 7.27 (s, 1H, CH, ionic form), 8.42 (s, 1H, CH, ionic form).

¹H NMR (ppm, d₆-DMSO) : δ 0.83 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.10-1.21 (m, 30, CH₂, ionic and neutral overlapped), 1.74 (m, 2H, CH₂, ionic and neutral overlapped), 4.03 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.25 (s, 1H, CH, neutral form), 7.60 (s, 1H, CH, neutral form), 8.43 (s, 1H, CH, neutral form). 4.11 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.34 (s, 1H, CH, ionic form), 7.78 (s, 1H, CH, ionic form), 8.53 (s, 1H, CH, ionic form). ¹³C NMR (ppm, CDCl₃): δ 14.05, 22.65, 26.34, 28.90, 29.31, 29.43, 29.53, 29.65, 30.43, 31.89, 48.74, 119.88, 129.93, 138.32. Anal. Calcd. for C₂₁H₄₀N₂AuCl: C, 45.61; H, 7.29; N, 5.07. Found: C, 45.57; H, 7.13; N, 4.80%.

[Au(C₁₆-im)Cl]. White solid, yield 86%. ¹H NMR (ppm, CDCl₃) : δ 0.88 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.19-1.31 (m, 26, CH₂, ionic and neutral overlapped), 1.85 (m, 2H, CH₂, ionic and neutral overlapped), 4.00 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.08 (s, 1H, CH, neutral form), 7.10 (s, 1H, CH, neutral form), 7.72 (s, 1H, CH, neutral form). 3.97 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 6.9 (s, 1H, CH, ionic form), 7.09 (s, 1H, CH, ionic form), 8.05 (s, 1H, CH, ionic form).

¹H NMR (ppm, d₆-DMSO) : δ 0.83 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.21 (m, 26, CH₂, ionic and neutral overlapped), 1.76 (m, 2H, CH₂, ionic and neutral overlapped), 4.0 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.25 (s, 1H, CH, neutral form), 7.60 (s, 1H, CH, neutral form), 8.43 (s, 1H, CH, neutral form). 4.09 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.33 (s, 1H, CH, ionic form), 7.68 (s, 1H, CH, ionic form), 8.53 (s, 1H, CH, ionic form). Anal. Calcd. for C₁₉H₃₆N₂AuCl: C, 43.47; H, 6.91; N, 5.34. Found: C, 43.30; H, 6.57; N, 5.09%.

[Au(C₁₄-im)Cl]. White solid, yield 88%. ¹H NMR (ppm, CDCl₃) : δ 0.88 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.19-1.31 (m, 22, CH₂, ionic and neutral overlapped), 1.84 (m, 2H, CH₂, ionic and neutral overlapped), 4.08 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.06 (s, 1H, CH, neutral form), 7.07 (s, 1H, CH, neutral form), 7.80 (s, 1H, CH, neutral form). 4.20 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 6.9 (s, 1H, CH, ionic form), 7.60 (s, 1H, CH, ionic form), 8.40 (s, 1H, CH, ionic form).

¹H NMR (ppm, d₆-DMSO) : δ 0.83 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.21 (m, 22, CH₂, ionic and neutral overlapped), 1.76 (m, 2H, CH₂, ionic and neutral overlapped), 4.06 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.25 (s, 1H, CH, neutral form), 7.60 (s, 1H, CH, neutral form), 8.43 (s, 1H, CH, neutral form). 4.09 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.34 (s, 1H, CH, ionic form), 7.68 (s, 1H, CH, ionic form), 8.53 (s, 1H, CH, Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008 ionic form). Anal. Calcd. for $C_{17}H_{32}N_2AuCl$: C, 41.09; H, 6.49; N, 5.64. Found: C, 41.30; H, 6.52; N, 5.64%.

[Au(C₁₂-im)Cl]. White solid, yield 86%. ¹H NMR (ppm, CDCl₃) : δ 0.88 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.16-1.2 (m, 18, CH₂, ionic and neutral overlapped), 1.80 (m, 2H, CH₂, ionic and neutral overlapped), 4.00 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.05 (s, 1H, CH, neutral form), 7.24 (s, 1H, CH, neutral form), 7.78 (s, 1H, CH, neutral form). 4.25 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.07 (s, 1H, CH, ionic form), 7.29 (s, 1H, CH, ionic form), 8.5 (s, 1H, CH, ionic form).

¹H NMR (ppm, d₆-DMSO) : δ 0.84 (t, ³*J* = 7 Hz, 3H, CH₃, ionic and neutral overlapped), 1.22 (m, 18, CH₂, ionic and neutral overlapped), 1.75 (m, 2H, CH₂, ionic and neutral overlapped), 4.03 (t, ³*J* = 7 Hz, 2H, CH₂, neutral form), 7.25 (s, 1H, CH, neutral form), 7.60 (s, 1H, CH, neutral form), 8.43 (s, 1H, CH, neutral form). 4.09 (t, ³*J* = 7 Hz, 2H, CH₂, ionic form), 7.34 (s, 1H, CH, ionic form), 7.68 (s, 1H, CH, ionic form), 8.53 (s, 1H, CH, ionic form). Anal. Calcd. for C₁₅H₂₈N₂AuCl: C, 38.43; H, 6.02; N, 5.98. Found: C, 388.50; H, 6.05; N, 5.97%.

[Au(C₁₆-im)₂][NO₃] · 2 H₂O. White solid, yield 85%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, ³*J* = 7 Hz, 6H, CH₃), 1.19-1.31 (m, 52H,CH₂), 1.83 (m, 4H, CH₂), 4.08 (t, ³*J* = 7 Hz, 4H, CH₂), 7.09 (s, 2H, CH), 7.10 (s, 2H, CH), 8.58 (s, 2H, CH). FAB/Mass : m/z 781.3, (M)⁺. Anal. Calcd. for C₃₈H₇₆N₅O₅Au: C, 51.86; H, 8.70; N, 7.96. Found: C, 51.87; H, 8.77; N, 7.97%.

[Au(C₁₄-im)₂][NO₃] · 2 H₂O. White solid, yield 79%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, ${}^{3}J$ = 7 Hz, 6H, CH₃), 1.21-1.31 (m, 44H,CH₂), 1.83 (m, 4H, CH₂), 4.08 (t, ${}^{3}J$ = 7 Hz, 4H, CH₂), 7.07 (s, 2H, CH), 7.09 (s, 2H, CH), 8.59 (s, 2H, CH). FAB/Mass : m/z 725.4, (M)⁺. Anal. Calcd. for C₃₄H₆₈N₅O₅Au: C, 49.57; H, 8.32; N, 8.50. Found: C, 49.41; H, 8.31; N, 8.49%.

[Au(C₁₂-im)₂][NO₃] · 2 H₂O. White solid, yield 75%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, ${}^{3}J$ = 7 Hz, 6H, CH₃), 1.21-1.31 (m, 36H,CH₂), 1.84 (m, 4H, CH₂), 4.08 (t, ${}^{3}J$ = 7 Hz, 4H, CH₂), 7.07 (s, 2H, CH), 7.09 (s, 2H, CH), 8.59 (s, 2H, CH). FAB/Mass : m/z 669.3, (M)⁺. Anal. Calcd. for C₃₀H₆₀N₅O₅Au: C, 46.93; H, 7.88; N, 9.12. Found: C, 47.06; H, 7.95; N, 9.22%.

[Au(C₁₀-im)₂][NO₃] · 2 H₂O. White solid, yield 71%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, ³*J* = 7 Hz, 6H, CH₃), 1.19-1.31 (m, 28H,CH₂), 1.84 (m, 4H, CH₂), 4.08 (t, ³*J* = 7 Hz, 4H, CH₂), 7.07 (s, 2H, CH), 7.09 (s, 2H, CH), 8.58 (s, 2H, CH). FAB/Mass : m/z

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008 $613.2, (M)^+$. Anal. Calcd. for C₂₆H₅₂N₅O₅Au: C, 43.88; H, 7.36; N, 9.84. Found: C, 43.78; H, 7.35; N, 9.81%.

[Au(C₁₈-bim)₂][NO₃]. White solid, yield 88%. ¹H NMR (ppm, CDCl₃): δ 0.86 (t, ³*J* = 7 Hz, 3H, CH₃), 1.18-1.33 (m, 30H, CH₂), 1.87 (m, 2H, CH₂), 4.12 (t, ³*J* = 7 Hz, 2H, CH₂), 7.31 (m, 1H, CH), 7.36 (m, 1H, CH), 9.45 (m, 1H, CH). ¹³C NMR (ppm, CDCl₃): 14.1, 22.7, 26.5, 26.7, 28.9, 29.1, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 46.3, 110.7, 118.3, 124.0, 124.5, 131.5, 139.3, 147.0. Anal. Calcd. for C₅₀H₈₄N₅O₃Au: C, 60.04; H, 8.46; N, 7.00 Found: C, 59.74; H, 8.36; N, 6.92%.

Supplementary Material (ESI) for Dalton Transactions

This journal is (c) The Royal Society of Chemistry 2008 $[Au(C_{12}-im)_2][AuCl_2], \blacksquare = [Au(C_1-im)_2][AuCl_2], \blacksquare = [Au(C_{14}-im)_2][NO_3] \cdot 2H_2O.$

)2][······2], ···		2][1:0]] =1201
	Ι	Π	ш	IV
Formula	$C_{23}H_{38}N_2ClAu$	$C_{30}H_{56}N_4Cl_2Au_2$	$C_8H_{12}N_4Au_2Cl_2\\$	$\mathrm{C}_{34}\mathrm{H}_{68}\mathrm{N}_{5}\mathrm{O}_{5}\mathrm{Au}$
Fw	574.97	937.64	629.05	823.90
Crystal syst	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	P-1	C2/c	P-1	P-1
<i>a</i> , Å	6.9675(4)	38.885(12)	9.1626(2)	8.2729(11)
b, Å	8.3571(5)	8.920(3)	9.3947(2)	9.1630(12)
<i>c,</i> Å	21.1920(13)	10.471(3)	9.5693(2)	25.254(3)
$\alpha/^{o}$	82.377(1)	90	71.388(1)	92.838(2)
$\beta^{ m o}$	85.304(1)	92.140(6)	87.392(1)	92.054(2)
$\gamma/^{o}$	77.721(1)	90	61.453(1)	101.360(2)
Volume/Å ³	1193.25(12)	3629.5(18)	681.97(3)	1872.5(4)
Z, Density (calc.)/Mg m ^{-3}	2, 1.600	8, 1.716	2, 3.063	2, 1.461
Т, К	295(2)	295(2)	295(2)	100(2)
μ , mm ⁻¹	6.286	8.245	21.859	3.973
<i>F</i> (000)	572	1824	560	852
Crystal size/mm	0.90 x 0.10 x 0.10	0.20 x 0.02 x 0.05	0.20 x 0.10 x 0.10	0.40 x 0.30 x 0.20
$\theta_{\min}, \theta_{\max}, \deg$	0.97-28.28	1.05-26.54	2.26-28.36	0.81-28.38
Reflections collected	14155	10798	10516	22107
Independent reflections(R_{int})	5879 (0.0820)	3758(0.1012)	3416(0.0767)	9258(0.0573)
Data/restraints/ parameters	5879/0/244	3758/0/174	3416/0/148	9258/0/406
Goodness-of-fit on F^2	1.010	0.848	0.948	1.068
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0307	R1 = 0.0460	R1 = 0.0317	R1 = 0.0470
	wR2 = 0.0712	wR2 = 0.0871	wR2 = 0.0803	wR2 = 0.1231
R indices (all data)	R1 = 0.0352	R1 = 0.1291	R1 = 0.0398	R1 = 0.0529
	wR2 = 0.0858	wR2 = 0.1272	wR2 = 0.0950	wR2 = 0.1293

Table S1. Summary of crystallographic data for $I = [Au(C_{16}-bim)Cl], II =$

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008

Figure S1. [Au(C₁₆-bim)Cl], (a) H-bonding interactions between the cation and anions. (b) imidazole-imidazole ring π - π interaction between neighboring neutral compounds.

Figure S2. $[Au(C_{12}-im)_2][AuCl_2]$, (a) the zigzag Au(I)-Au(I) interactions. (b) The C-H...Cl H-Bonding interactions between the cation and anions.

Figure S3. (a) ORTEP drawing of $[Au(C_1-im)_2][AuCl_2]$ (30 % thermal ellipsoids) with partial atomic numbering, hydrogens being omitted for claeity; selected distances [Å] and [°]: Au(1)-Cl(2) 2.262(3), Au(1)-Cl(1) 2.271(2), Au(1)-Au(2) 3.3778(3), Au(2)-N(1) 2.001(6), Au(3)-N(3) 2.007(6), Cl(2)-Au(1)-Cl(1) 177.88(8), Cl(2)-Au(1)-Au(2) 86.33(6), Cl(1)-Au(1)-Au(2) 95.23(6), N(1ⁱ)-Au(2)-N(1) 180.0, N(1)-Au(2)-Au(1ⁱ) 87.93(17), N(1ⁱ)-Au(2)-Au(1ⁱ) 92.07(17), N(3)-Au(3)-N(3ⁱⁱ) 180.0(4). (b) the crystal packing of [Au(CH₃-im)Cl]. view along the a-axis, and C-H...Cl H-Bonding interactions between

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008 the cation and anions. Symmetry operations used to generate equivalent atoms: (i) -x+1, -y, -z-1; (ii) -x+2, -y, -z.

Figure S4. $[Au(C_{14}-im)_2][NO_3] \cdot 2H_2O$ showing (a) the H-bonding interactions from imidazole, nitrate and water, (b) the hexagon channel formed from nitrate anions and water molecules.

Figure S5. ¹H-NMR spectrum of $[Au(C_{16}-im)Cl]$ in d₆-DMSO.

Figure S6. XRD diffractograms of $[Au(C_{12}-im)_2][AuCl_2]$. (a) powder sample obtained by adding hexane to the CHCl₃ solution, (b) single crystals (ionic compound).

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008

Figure S7. phase transition temperatures of $[Ag(C_n-im)][NO_3]$ V. S. $[Au(C_n-im)][NO_3]$: (\blacktriangle) : $[Ag(C_n-im)][NO_3]$, (\blacksquare) : $[Au(C_n-im)][NO_3]$.

Figure S8. TEM images and size distributions (in inset) of Au NPs from $[C_{18}-bim]/[Au(C_{18}-bim)_2][NO_3]$ with molar ratios of (a) 0, (b) 3, and (c) 7; (d) the corresponding UV-visible absorption spectra for Au NPs obtained at different molar ratios (from top to bottom).

Figure S9. SEM image of gold nanomaterials from thermolysis of $[Au(C_{18}-im)_2][AuCl_2]$ at 200 °C for 1 h.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008

Figure S10. SEM image of triangular, hexagonal and spherical gold nanomaterials from thermolysis of $[Au(C_{18}-bim)_2][NO_3]$ at 200 °C.

Figure S11. TEM images of gold nanomaterials from thermolysis of $[Au(C_{18}-im)_2][NO_3]$ at 100 °C (mesophase) for 1 h.

Figure S12. SEM image of gold nanomaterials from thermolysis of $[Au(C_{18}-im)_2][NO_3]$ at 200 °C (isotropic phase) for 1 h.