
Supporting Information

A $Mn^{III}_2Ni^{II}$ single-chain magnet separated by a Zeolite-like network of BPh_4^- anions

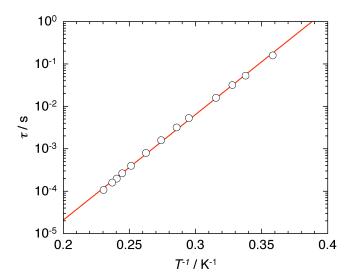

Hitoshi Miyasaka,* Ayumi Saitoh, Masahiro Yamashita and Rodolphe Clérac

Fig. S1. Field dependence of the initial magnetization on a polycrystalline sample of $\mathbf{Mn_2Ni\text{-}BPh_4}$ at 1.82 K. The solid red line represents a least-square linear fit between 40 – 70 kOe and the solid black line represents the value of $M_s = g_{av}S$ as S = 3 and $g_{av} = 1.90$ estimated from the simulation of high temperature susceptibilities. Inset: the magnetization variation by field sweep between ± 70 kOe.

Fig. S2. Frequency dependence of ac susceptibility measured at several temperatures in the range of 1.8 - 4.5 K. Solid curves represent the least-squared fit using a generalized Debye model with $\alpha < 0.1$ through the measured temperature range.

Fig. S3. Relaxation time (τ) vs. 1/T of $\mathbf{Mn_2Ni\text{-}BPh_4}$. Solid line represents the least-squares exponential fitting curve.