Supporting Information

Substitution behaviour of amine-bridged dinuclear Pt(II) complexes with biorelevant nucleophiles

Hakan Ertürk, Joachim Maigut, Ralph Puchta and Rudi van Eldik*

Figure S1a. Plots of k_{obs1} and k_{obs2} versus thiourea concentration for the reaction with the **heptane** bridged diaqua complex. I = 0.01 M (CF₃SO₃H), T = 25.0 °C, pH = 2.0.

Figure S1b. Plots of k_{obs1} and k_{obs2} versus thiourea concentration for the reaction with the **decane** bridged diaqua complex. I = 0.01 M (CF₃SO₃H), T = 25.0 °C, pH = 2.0.

Figure S1c. Plots of k_{obs1} and k_{obs2} versus L-methionine concentration for the reaction with the **heptane** bridged diaqua complex. I = 0.01 M (CF₃SO₃H), T = 25.0 °C, pH = 2.0.

Figure S1d. Plots of k_{obs1} and k_{obs2} versus L-methionine concentration for the reaction with the **decane** bridged diaqua complex. I = 0.01 M (CF₃SO₃H), T = 25.0 °C, pH = 2.0.

Figure S2a: Plot of k_{obs} versus thiourea concentration for the **pentane** bridged dichloro complex. I = 0. 1 M (NaCl), 2.5 mM Hepes, T = 37.5 °C, pH = 7.4.

Figure S2b. Plot of k_{obs} versus thiourea concentration for the **heptane** bridged dichlorocomplex. I = 0. 1 M (NaCl), 2.5 mM Hepes, T = 37.5 °C, pH = 7.4.

Figure S2c. Plot of k_{obs} versus L-methionine concentration for the **pentane** bridged dichloro complex. I = 0. 1 M (NaCl), 2.5 mM Hepes, T = 37.5 °C, pH = 7.4.

Figure S2d. Plot of k_{obs} versus L-methionine concentration for the **heptane** bridged dichloro complex. I = 0. 1 M (NaCl), 2.5 mM Hepes, T = 37.5 °C, pH = 7.4.

Figure S3a. Eyring plots for the determination of the activation parameters for the reaction of the **pentane** bridged diaqua complex with thiourea based on second order rate constants. $I = 0.01 \text{ M} (CF_3SO_3H)$, pH = 2.0.

Figure S3b. Eyring plots for the determination of the activation parameters for the reaction of the **heptane** bridged diaqua complex with thiourea based on second order rate constants. $I = 0.01 \text{ M} (CF_3SO_3H)$, pH = 2.0.

Figure S3c. Eyring plots for the determination of the activation parameters for the reaction of the **decane** bridged diaqua complex with thiourea based on second order rate constants. $I = 0.01 \text{ M} (\text{CF}_3\text{SO}_3\text{H}), \text{pH} = 2.$

Figure S3d. Eyring plots for the determination of the activation parameters for the reaction of the **pentane** bridged diaqua complex with L-methionine based on second order rate constants. $I = 0.01 \text{ M} (CF_3SO_3H)$, pH = 2.0.

Figure S3e. Eyring plots for the determination of the activation parameters for the reaction of the **heptane** bridged diaqua complex with L-methionine based on second order rate constants. $I = 0.01 \text{ M} (CF_3SO_3H)$, pH = 2.0.

Figure S3f. Eyring plots for the determination of the activation parameters for the reaction of the **decane** bridged diaqua complex with L-methionine based on second order rate constants. $I = 0.01 \text{ M} (CF_3SO_3H)$, pH = 2.0.